Search results for: Error estimation
1906 PID Parameter Optimization of an UAV Longitudinal Flight Control System
Authors: Kamran Turkoglu, Ugur Ozdemir, Melike Nikbay, Elbrous M. Jafarov
Abstract:
In this paper, an automatic control system design based on Integral Squared Error (ISE) parameter optimization technique has been implemented on longitudinal flight dynamics of an UAV. It has been aimed to minimize the error function between the reference signal and the output of the plant. In the following parts, objective function has been defined with respect to error dynamics. An unconstrained optimization problem has been solved analytically by using necessary and sufficient conditions of optimality, optimum PID parameters have been obtained and implemented in control system dynamics.Keywords: Optimum Design, KKT Conditions, UAV, Longitudinal Flight Dynamics, ISE Parameter Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37451905 FPGA Implementation of Generalized Maximal Ratio Combining Receiver Diversity
Authors: Rafic Ayoubi, Jean-Pierre Dubois, Rania Minkara
Abstract:
In this paper, we study FPGA implementation of a novel supra-optimal receiver diversity combining technique, generalized maximal ratio combining (GMRC), for wireless transmission over fading channels in SIMO systems. Prior published results using ML-detected GMRC diversity signal driven by BPSK showed superior bit error rate performance to the widely used MRC combining scheme in an imperfect channel estimation (ICE) environment. Under perfect channel estimation conditions, the performance of GMRC and MRC were identical. The main drawback of the GMRC study was that it was theoretical, thus successful FPGA implementation of it using pipeline techniques is needed as a wireless communication test-bed for practical real-life situations. Simulation results showed that the hardware implementation was efficient both in terms of speed and area. Since diversity combining is especially effective in small femto- and picocells, internet-associated wireless peripheral systems are to benefit most from GMRC. As a result, many spinoff applications can be made to the hardware of IP-based 4th generation networks.Keywords: Femto-internet cells, field-programmable gate array, generalized maximal-ratio combining, Lyapunov fractal dimension, pipelining technique, wireless SIMO channels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26001904 Channel Estimation for Orthogonal Frequency Division Multiplexing Systems over Doubly Selective Channels Based on the DCS-DCSOMP Algorithm
Authors: Linyu Wang, Furui Huo, Jianhong Xiang
Abstract:
The Doppler shift generated by high-speed movement and multipath effects in the channel are the main reasons for the generation of a time-frequency doubly-selective (DS) channel. There is severe inter-carrier interference (ICI) in the DS channel. Channel estimation for an orthogonal frequency division multiplexing (OFDM) system over a DS channel is very difficult. The simultaneous orthogonal matching pursuit (SOMP) algorithm under distributed compressive sensing theory (DCS-SOMP) has been used in channel estimation for OFDM systems over DS channels. However, the reconstruction accuracy of the DCS-SOMP algorithm is not high enough in the low Signal-to-Noise Ratio (SNR) stage. To solve this problem, in this paper, we propose an improved DCS-SOMP algorithm based on the inner product difference comparison operation (DCS-DCSOMP). The reconstruction accuracy is improved by increasing the number of candidate indexes and designing the comparison conditions of inner product difference. We combine the DCS-DCSOMP algorithm with the basis expansion model (BEM) to reduce the complexity of channel estimation. Simulation results show the effectiveness of the proposed algorithm and its advantages over other algorithms.
Keywords: OFDM, doubly selective, channel estimation, compressed sensing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3711903 Program Memories Error Detection and Correction On-Board Earth Observation Satellites
Authors: Y. Bentoutou
Abstract:
Memory Errors Detection and Correction aim to secure the transaction of data between the central processing unit of a satellite onboard computer and its local memory. In this paper, the application of a double-bit error detection and correction method is described and implemented in Field Programmable Gate Array (FPGA) technology. The performance of the proposed EDAC method is measured and compared with two different EDAC devices, using the same FPGA technology. Statistical analysis of single-event upset (SEU) and multiple-bit upset (MBU) activity in commercial memories onboard the first Algerian microsatellite Alsat-1 is given.
Keywords: Error Detection and Correction, On-board computer, small satellite missions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22201902 Combining Diverse Neural Classifiers for Complex Problem Solving: An ECOC Approach
Authors: R. Ebrahimpour, M. Abbasnezhad Arabi, H. Babamiri Moghaddam
Abstract:
Combining classifiers is a useful method for solving complex problems in machine learning. The ECOC (Error Correcting Output Codes) method has been widely used for designing combining classifiers with an emphasis on the diversity of classifiers. In this paper, in contrast to the standard ECOC approach in which individual classifiers are chosen homogeneously, classifiers are selected according to the complexity of the corresponding binary problem. We use SATIMAGE database (containing 6 classes) for our experiments. The recognition error rate in our proposed method is %10.37 which indicates a considerable improvement in comparison with the conventional ECOC and stack generalization methods.Keywords: Error correcting output code, combining classifiers, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14001901 Study of Adaptive Filtering Algorithms and the Equalization of Radio Mobile Channel
Authors: Said Elkassimi, Said Safi, B. Manaut
Abstract:
This paper presented a study of three algorithms, the equalization algorithm to equalize the transmission channel with ZF and MMSE criteria, application of channel Bran A, and adaptive filtering algorithms LMS and RLS to estimate the parameters of the equalizer filter, i.e. move to the channel estimation and therefore reflect the temporal variations of the channel, and reduce the error in the transmitted signal. So far the performance of the algorithm equalizer with ZF and MMSE criteria both in the case without noise, a comparison of performance of the LMS and RLS algorithm.
Keywords: Adaptive filtering second equalizer, LMS, RLS Bran A, Proakis (B) MMSE, ZF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21241900 Model Based Monitoring Using Integrated Data Validation, Simulation and Parameter Estimation
Authors: Reza Hayati, Maryam Sadi, Saeid Shokri, Mehdi Ahmadi Marvast, Saeid Hassan Boroojerdi, Amin Hamzavi Abedi
Abstract:
Efficient and safe plant operation can only be achieved if the operators are able to monitor all key process parameters. Instrumentation is used to measure many process variables, like temperatures, pressures, flow rates, compositions or other product properties. Therefore Performance monitoring is a suitable tool for operators. In this paper, we integrate rigorous simulation model, data reconciliation and parameter estimation to monitor process equipments and determine key performance indicator (KPI) of them. The applied method here has been implemented in two case studies.Keywords: Data Reconciliation, Measurement, Optimization, Parameter Estimation, Performance Monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20871899 Density Estimation using Generalized Linear Model and a Linear Combination of Gaussians
Authors: Aly Farag, Ayman El-Baz, Refaat Mohamed
Abstract:
In this paper we present a novel approach for density estimation. The proposed approach is based on using the logistic regression model to get initial density estimation for the given empirical density. The empirical data does not exactly follow the logistic regression model, so, there will be a deviation between the empirical density and the density estimated using logistic regression model. This deviation may be positive and/or negative. In this paper we use a linear combination of Gaussian (LCG) with positive and negative components as a model for this deviation. Also, we will use the expectation maximization (EM) algorithm to estimate the parameters of LCG. Experiments on real images demonstrate the accuracy of our approach.
Keywords: Logistic regression model, Expectationmaximization, Segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17321898 An Improved Integer Frequency Offset Estimator using the P1 Symbol for OFDM System
Authors: Yong-An Jung, Young-Hwan You
Abstract:
This paper suggests an improved integer frequency offset (IFO) estimation scheme using P1 symbol for orthogonal frequency division multiplexing (OFDM) based the second generation terrestrial digital video broadcasting (DVB-T2) system. Proposed IFO estimator is designed by a low-complexity blind IFO estimation scheme, which is implemented with complex additions. Also, we propose active carriers (ACs) selection scheme in order to prevent performance degradation in blind IFO estimation. The simulation results show that under the AWGN and TU6 channels, the proposed method has low complexity than conventional method and almost similar performance in comparison with the conventional method.Keywords: OFDM, DVB-T2, P1 symbol, ACs, IFO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18981897 Factors of Effective Business Software Systems Development and Enhancement Projects Work Effort Estimation
Authors: Beata Czarnacka-Chrobot
Abstract:
Majority of Business Software Systems (BSS) Development and Enhancement Projects (D&EP) fail to meet criteria of their effectiveness, what leads to the considerable financial losses. One of the fundamental reasons for such projects- exceptionally low success rate are improperly derived estimates for their costs and time. In the case of BSS D&EP these attributes are determined by the work effort, meanwhile reliable and objective effort estimation still appears to be a great challenge to the software engineering. Thus this paper is aimed at presenting the most important synthetic conclusions coming from the author-s own studies concerning the main factors of effective BSS D&EP work effort estimation. Thanks to the rational investment decisions made on the basis of reliable and objective criteria it is possible to reduce losses caused not only by abandoned projects but also by large scale of overrunning the time and costs of BSS D&EP execution.Keywords: Benchmarking data, business software systems development and enhancement projects, effort estimation, software engineering economics, software functional size measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15421896 A Robust Frequency Offset Estimator for Orthogonal Frequency Division Multiplexing
Authors: Keunhong Chae, Seokho Yoon
Abstract:
We address the integer frequency offset (IFO) estimation under the influence of the timing offset (TO) in orthogonal frequency division multiplexing (OFDM) systems. Incorporating the IFO and TO into the symbol set used to represent the received OFDM symbol, we investigate the influence of the TO on the IFO, and then, propose a combining method between two consecutive OFDM correlations, reducing the influence. The proposed scheme has almost the same complexity as that of the conventional schemes, whereas it does not need the TO knowledge contrary to the conventional schemes. From numerical results it is confirmed that the proposed scheme is insensitive to the TO, consequently, yielding an improvement of the IFO estimation performance over the conventional schemes when the TO exists.
Keywords: Estimation, integer frequency offset, OFDM, timing offset.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21291895 Maximum Power Point Tracking Based on Estimated Power for PV Energy Conversion System
Authors: Zainab Almukhtar, Adel Merabet
Abstract:
In this paper, a method for maximum power point tracking of a photovoltaic energy conversion system is presented. This method is based on using the difference between the power from the solar panel and an estimated power value to control the DC-DC converter of the photovoltaic system. The difference is continuously compared with a preset error permitted value. If the power difference is more than the error, the estimated power is multiplied by a factor and the operation is repeated until the difference is less or equal to the threshold error. The difference in power will be used to trigger a DC-DC boost converter in order to raise the voltage to where the maximum power point is achieved. The proposed method was experimentally verified through a PV energy conversion system driven by the OPAL-RT real time controller. The method was tested on varying radiation conditions and load requirements, and the Photovoltaic Panel was operated at its maximum power in different conditions of irradiation.Keywords: Control system, power error, solar panel, MPPT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13221894 A Linear Use Case Based Software Cost Estimation Model
Authors: Hasan.O. Farahneh, Ayman A. Issa
Abstract:
Software development is moving towards agility with use cases and scenarios being used for requirements stories. Estimates of software costs are becoming even more important than before as effects of delays is much larger in successive short releases context of agile development. Thus, this paper reports on the development of new linear use case based software cost estimation model applicable in the very early stages of software development being based on simple metric. Evaluation showed that accuracy of estimates varies between 43% and 55% of actual effort of historical test projects. These results outperformed those of wellknown models when applied in the same context. Further work is being carried out to improve the performance of the proposed model when considering the effect of non-functional requirements.
Keywords: Metrics, Software Cost Estimation, Use Cases
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20111893 Vehicle Velocity Estimation for Traffic Surveillance System
Authors: H. A. Rahim, U. U. Sheikh, R. B. Ahmad, A. S. M. Zain
Abstract:
This paper describes an algorithm to estimate realtime vehicle velocity using image processing technique from the known camera calibration parameters. The presented algorithm involves several main steps. First, the moving object is extracted by utilizing frame differencing technique. Second, the object tracking method is applied and the speed is estimated based on the displacement of the object-s centroid. Several assumptions are listed to simplify the transformation of 2D images from 3D real-world images. The results obtained from the experiment have been compared to the estimated ground truth. From this experiment, it exhibits that the proposed algorithm has achieved the velocity accuracy estimation of about ± 1.7 km/h.
Keywords: camera calibration, object tracking, velocity estimation, video image processing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44551892 Dynamic Voltage Stability Estimation using Particle Filter
Authors: Osea Zebua, Norikazu Ikoma, Hiroshi Maeda
Abstract:
Estimation of voltage stability based on optimal filtering method is presented. PV curve is used as a tool for voltage stability analysis. Dynamic voltage stability estimation is done by using particle filter method. Optimum value (nose point) of PV curve can be estimated by estimating parameter of PV curve equation optimal value represents critical voltage and condition at specified point of measurement. Voltage stability is then estimated by analyzing loading margin condition c stimating equation. This maximum loading ecified dynamically.Keywords: normalized PV curve, optimal filtering method particle filter, voltage stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18011891 Testing the Accuracy of ML-ANN for Harmonic Estimation in Balanced Industrial Distribution Power System
Authors: Wael M. El-Mamlouk, Metwally A. El-Sharkawy, Hossam. E. Mostafa
Abstract:
In this paper, we analyze and test a scheme for the estimation of electrical fundamental frequency signals from the harmonic load current and voltage signals. The scheme was based on using two different Multi Layer Artificial Neural Networks (ML-ANN) one for the current and the other for the voltage. This study also analyzes and tests the effect of choosing the optimum artificial neural networks- sizes which determine the quality and accuracy of the estimation of electrical fundamental frequency signals. The simulink tool box of the Matlab program for the simulation of the test system and the test of the neural networks has been used.Keywords: Harmonics, Neural Networks, Modeling, Simulation, Active filters, electric Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15931890 A Generalized Approach for State Analysis and Parameter Estimation of Bilinear Systems using Haar Connection Coefficients
Authors: Monika Garg, Lillie Dewan
Abstract:
Three novel and significant contributions are made in this paper Firstly, non-recursive formulation of Haar connection coefficients, pioneered by the present authors is presented, which can be computed very efficiently and avoid stack and memory overflows. Secondly, the generalized approach for state analysis of singular bilinear time-invariant (TI) and time-varying (TV) systems is presented; vis-˜a-vis diversified and complex works reported by different authors. Thirdly, a generalized approach for parameter estimation of bilinear TI and TV systems is also proposed. The unified framework of the proposed method is very significant in that the digital hardware once-designed can be used to perform the complex tasks of state analysis and parameter estimation of different types of bilinear systems single-handedly. The simplicity, effectiveness and generalized nature of the proposed method is established by applying it to different types of bilinear systems for the two tasks.Keywords: Bilinear Systems, Haar Wavelet, Haar ConnectionCoefficients, Parameter Estimation, Singular Bilinear Systems, StateAnalysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15771889 Restarted GMRES Method Augmented with the Combination of Harmonic Ritz Vectors and Error Approximations
Authors: Qiang Niu, Linzhang Lu
Abstract:
Restarted GMRES methods augmented with approximate eigenvectors are widely used for solving large sparse linear systems. Recently a new scheme of augmenting with error approximations is proposed. The main aim of this paper is to develop a restarted GMRES method augmented with the combination of harmonic Ritz vectors and error approximations. We demonstrate that the resulted combination method can gain the advantages of two approaches: (i) effectively deflate the small eigenvalues in magnitude that may hamper the convergence of the method and (ii) partially recover the global optimality lost due to restarting. The effectiveness and efficiency of the new method are demonstrated through various numerical examples.
Keywords: Arnoldi process, GMRES, Krylov subspace, systems of linear equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19371888 Antenna Array Beamforming Using Neural Network
Authors: Maja Sarevska, Abdel-Badeeh M. Salem
Abstract:
This paper considers the problem of Null-Steering beamforming using Neural Network (NN) approach for antenna array system. Two cases are presented. First, unlike the other authors, the estimated Direction Of Arrivals (DOAs) are used for antenna array weights NN-based determination and the imprecise DOAs estimations are taken into account. Second, the blind null-steering beamforming is presented. In this case the antenna array outputs are presented at the input of the NN without DOAs estimation. The results of computer simulations will show much better relative mean error performances of the first NN approach compared to the NNbased blind beamforming.
Keywords: Beamforming, DOAs, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24151887 Comparative Analysis of Various Multiuser Detection Techniques in SDMA-OFDM System Over the Correlated MIMO Channel Model for IEEE 802.16n
Authors: Susmita Das, Kala Praveen Bagadi
Abstract:
SDMA (Space-Division Multiple Access) is a MIMO (Multiple-Input and Multiple-Output) based wireless communication network architecture which has the potential to significantly increase the spectral efficiency and the system performance. The maximum likelihood (ML) detection provides the optimal performance, but its complexity increases exponentially with the constellation size of modulation and number of users. The QR decomposition (QRD) MUD can be a substitute to ML detection due its low complexity and near optimal performance. The minimum mean-squared-error (MMSE) multiuser detection (MUD) minimises the mean square error (MSE), which may not give guarantee that the BER of the system is also minimum. But the minimum bit error rate (MBER) MUD performs better than the classic MMSE MUD in term of minimum probability of error by directly minimising the BER cost function. Also the MBER MUD is able to support more users than the number of receiving antennas, whereas the rest of MUDs fail in this scenario. In this paper the performance of various MUD techniques is verified for the correlated MIMO channel models based on IEEE 802.16n standard.Keywords: Multiple input multiple output, multiuser detection, orthogonal frequency division multiplexing, space division multiple access, Bit error rate
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19241886 Estimation of the Bit Side Force by Using Artificial Neural Network
Authors: Mohammad Heidari
Abstract:
Horizontal wells are proven to be better producers because they can be extended for a long distance in the pay zone. Engineers have the technical means to forecast the well productivity for a given horizontal length. However, experiences have shown that the actual production rate is often significantly less than that of forecasted. It is a difficult task, if not impossible to identify the real reason why a horizontal well is not producing what was forecasted. Often the source of problem lies in the drilling of horizontal section such as permeability reduction in the pay zone due to mud invasion or snaky well patterns created during drilling. Although drillers aim to drill a constant inclination hole in the pay zone, the more frequent outcome is a sinusoidal wellbore trajectory. The two factors, which play an important role in wellbore tortuosity, are the inclination and side force at bit. A constant inclination horizontal well can only be drilled if the bit face is maintained perpendicular to longitudinal axis of bottom hole assembly (BHA) while keeping the side force nil at the bit. This approach assumes that there exists no formation force at bit. Hence, an appropriate BHA can be designed if bit side force and bit tilt are determined accurately. The Artificial Neural Network (ANN) is superior to existing analytical techniques. In this study, the neural networks have been employed as a general approximation tool for estimation of the bit side forces. A number of samples are analyzed with ANN for parameters of bit side force and the results are compared with exact analysis. Back Propagation Neural network (BPN) is used to approximation of bit side forces. Resultant low relative error value of the test indicates the usability of the BPN in this area.Keywords: Artificial Neural Network, BHA, Horizontal Well, Stabilizer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19771885 System-Level Energy Estimation for SoC based on the Dynamic Behavior of Embedded Software
Authors: Yoshifumi Sakamoto, Kouichi Ono, Takeo Nakada, Yousuke Kubo, Hiroto Yasuura
Abstract:
This paper describes a system-level SoC energy consumption estimation method based on a dynamic behavior of embedded software in the early stages of the SoC development. A major problem of SOC development is development rework caused by unreliable energy consumption estimation at the early stages. The energy consumption of an SoC used in embedded systems is strongly affected by the dynamic behavior of the software. At the early stages of SoC development, modeling with a high level of abstraction is required for both the dynamic behavior of the software, and the behavior of the SoC. We estimate the energy consumption by a UML model-based simulation. The proposed method is applied for an actual embedded system in an MFP. The energy consumption estimation of the SoC is more accurate than conventional methods and this proposed method is promising to reduce the chance of development rework in the SoC development. ∈Keywords: SoC, Embedded Sytem, Energy Consumption, Dynamic behavior, UML, Modeling, Model-based simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24571884 Adaptive Extended Kalman Filter for Ballistic Missile Tracking
Authors: Gaurav Kumar, Dharmbir Prasad, Rudra Pratap Singh
Abstract:
In the current work, adaptive extended Kalman filter (AEKF) is presented for solution of ground radar based ballistic missile (BM) tracking problem in re-entry phase with unknown ballistic coefficient. The estimation of trajectory of any BM in re-entry phase is extremely difficult, because of highly non-linear motion of BM. The estimation accuracy of AEKF has been tested for a typical test target tracking problem adopted from literature. Further, the approach of AEKF is compared with extended Kalman filter (EKF). The simulation result indicates the superiority of the AEKF in solving joint parameter and state estimation problems.Keywords: Adaptive, AEKF, ballistic missile, EKF, re-entry phase, target tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16651883 CNC Wire-Cut Parameter Optimized Determination of the Stair Shape Workpiece
Authors: Chana Raksiri, Pornchai Chatchaikulsiri
Abstract:
The objective of this research is parameters optimized of the stair shape workpiece which is cut by CNC Wire-Cut EDM (WEDW). The experiment material is SKD-11 steel of stair-shaped with variable height workpiece 10, 20, 30 and 40 mm. with the same 10 mm. thickness are cut by Sodick's CNC Wire-Cut EDM model AD325L. The experiments are designed by 3k full factorial experimental design at 3 level 2 factors and 9 experiments with 2 replicate. The selected two factor are servo voltage (SV) and servo feed rate (SF) and the response is cutting thickness error. The experiment is divided in two experiments. The first experiment determines the significant effective factor at confidential interval 95%. The SV factor is the significant effective factor from first result. In order to result smallest cutting thickness error of workpieces is 17 micron with the SV value is 46 volt. Also show that the lower SV value, the smaller different thickness error of workpiece. Then the second experiment is done to reduce different cutting thickness error of workpiece as small as possible by lower SV. The second experiment result show the significant effective factor at confidential interval 95% is the SV factor and the smallest cutting thickness error of workpieces reduce to 11 micron with the experiment SV value is 36 volt.Keywords: CNC Wire-Cut, Variable Thickness Workpiece, Design of Experiments, Full Factorial Design
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 48201882 A Family Cars- Life Cycle Cost (LCC)-Oriented Hybrid Modelling Approach Combining ANN and CBR
Authors: Xiaochuan Chen, Jianguo Yang, Beizhi Li
Abstract:
Design for cost (DFC) is a method that reduces life cycle cost (LCC) from the angle of designers. Multiple domain features mapping (MDFM) methodology was given in DFC. Using MDFM, we can use design features to estimate the LCC. From the angle of DFC, the design features of family cars were obtained, such as all dimensions, engine power and emission volume. At the conceptual design stage, cars- LCC were estimated using back propagation (BP) artificial neural networks (ANN) method and case-based reasoning (CBR). Hamming space was used to measure the similarity among cases in CBR method. Levenberg-Marquardt (LM) algorithm and genetic algorithm (GA) were used in ANN. The differences of LCC estimation model between CBR and artificial neural networks (ANN) were provided. ANN and CBR separately each method has its shortcomings. By combining ANN and CBR improved results accuracy was obtained. Firstly, using ANN selected some design features that affect LCC. Then using LCC estimation results of ANN could raise the accuracy of LCC estimation in CBR method. Thirdly, using ANN estimate LCC errors and correct errors in CBR-s estimation results if the accuracy is not enough accurate. Finally, economically family cars and sport utility vehicle (SUV) was given as LCC estimation cases using this hybrid approach combining ANN and CBR.Keywords: case-based reasoning, life cycle cost (LCC), artificialneural networks (ANN), family cars
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19591881 Methodology of Estimating Assembly Cost by MODAPTS
Authors: Heung Jae Cho, Jae Il Park
Abstract:
This paper presents the development of an MODAPTS based cost estimating system to help designers in estimating the manufacturing cost of a assembly products which is belonged from the workers in working fields. Competitiveness of manufacturing cost is getting harder because of the development of Information and telecommunication, but also globalization. Therefore, the accuracy of the assembly cost estimation is getting important. DFA and MODAPTS is useful method for measuring the working hour. But these two methods are used just as a timetable. Therefore, in this paper, we suggest the process of measuring the working hours by MODAPTS which includes the working field-s accurate information. In addition, we adduce the estimation method of accuracy assembly cost with the real information. This research could be useful for designers that can estimate the assembly cost more accurately, and also effective for the companies that which are concerned to reduce the product cost.
Keywords: Cost estimation, DFA, MODAPTS, Assembly cost
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39831880 Integrated Method for Detection of Unknown Steganographic Content
Authors: Magdalena Pejas
Abstract:
This article concerns the presentation of an integrated method for detection of steganographic content embedded by new unknown programs. The method is based on data mining and aggregated hypothesis testing. The article contains the theoretical basics used to deploy the proposed detection system and the description of improvement proposed for the basic system idea. Further main results of experiments and implementation details are collected and described. Finally example results of the tests are presented.Keywords: Steganography, steganalysis, data embedding, data mining, feature extraction, knowledge base, system learning, hypothesis testing, error estimation, black box program, file structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15631879 Statistical Estimation of Spring-back Degree Using Texture Database
Authors: Takashi Sakai, Shinsaku Kikuta, Jun-ichi Koyama
Abstract:
Using a texture database, a statistical estimation of spring-back was conducted in this study on the basis of statistical analysis. Both spring-back in bending deformation and experimental data related to the crystal orientation show significant dispersion. Therefore, a probabilistic statistical approach was established for the proper quantification of these values. Correlation was examined among the parameters F(x) of spring-back, F(x) of the buildup fraction to three orientations after 92° bending, and F(x) at an as-received part on the basis of the three-parameter Weibull distribution. Consequent spring-back estimation using a texture database yielded excellent estimates compared with experimental values.
Keywords: Bending, Spring-back, Database, Crystallographic Orientation, Texture, SEM-EBSD, Weibull distribution, Statistical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18991878 Accurate Crosstalk Analysis for RLC On-Chip VLSI Interconnect
Authors: Susmita Sahoo, Madhumanti Datta, Rajib Kar
Abstract:
This work proposes an accurate crosstalk noise estimation method in the presence of multiple RLC lines for the use in design automation tools. This method correctly models the loading effects of non switching aggressors and aggressor tree branches using resistive shielding effect and realistic exponential input waveforms. Noise peak and width expressions have been derived. The results obtained are at good agreement with SPICE results. Results show that average error for noise peak is 4.7% and for the width is 6.15% while allowing a very fast analysis.
Keywords: Crosstalk, distributed RLC segments, On-Chip interconnect, output response, VLSI, noise peak, noise width.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16441877 Reachable Set Bounding Estimation for Distributed Delay Systems with Disturbances
Authors: Li Xu, Shouming Zhong
Abstract:
The reachable set bounding estimation for distributed delay systems with disturbances is a new problem. In this paper,we consider this problem subject to not only time varying delay and polytopic uncertainties but also distributed delay systems which is not studied fully untill now. we can obtain improved non-ellipsoidal reachable set estimation for neural networks with time-varying delay by the maximal Lyapunov-Krasovskii fuctional which is constructed as the pointwise maximum of a family of Lyapunov-Krasovskii fuctionals corresponds to vertexes of uncertain polytope.On the other hand,matrix inequalities containing only one scalar and Matlabs LMI Toolbox is utilized to give a non-ellipsoidal description of the reachable set.finally,numerical examples are given to illustrate the existing results.
Keywords: Reachable set, Distributed delay, Lyapunov-Krasovskii function, Polytopic uncertainties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856