Search results for: general variable neighborhood search algorithm.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5720

Search results for: general variable neighborhood search algorithm.

3140 Sliding Mode Control with Fuzzy Boundary Layer to Air-Air Interception Problem

Authors: Mustafa Resa Becan

Abstract:

The performance of a type of fuzzy sliding mode control is researched by considering the nonlinear characteristic of a missile-target interception problem to obtain a robust interception process. The variable boundary layer by using fuzzy logic is proposed to reduce the chattering around the switching surface then is applied to the interception model which was derived. The performances of the sliding mode control with constant and fuzzy boundary layer are compared at the end of the study and the results are evaluated.

Keywords: Sliding mode control, fuzzy, boundary layer, interception problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
3139 Improving Topic Quality of Scripts by Using Scene Similarity Based Word Co-Occurrence

Authors: Yunseok Noh, Chang-Uk Kwak, Sun-Joong Kim, Seong-Bae Park

Abstract:

Scripts are one of the basic text resources to understand broadcasting contents. Topic modeling is the method to get the summary of the broadcasting contents from its scripts. Generally, scripts represent contents descriptively with directions and speeches, and provide scene segments that can be seen as semantic units. Therefore, a script can be topic modeled by treating a scene segment as a document. Because scene segments consist of speeches mainly, however, relatively small co-occurrences among words in the scene segments are observed. This causes inevitably the bad quality of topics by statistical learning method. To tackle this problem, we propose a method to improve topic quality with additional word co-occurrence information obtained using scene similarities. The main idea of improving topic quality is that the information that two or more texts are topically related can be useful to learn high quality of topics. In addition, more accurate topical representations lead to get information more accurate whether two texts are related or not. In this paper, we regard two scene segments are related if their topical similarity is high enough. We also consider that words are co-occurred if they are in topically related scene segments together. By iteratively inferring topics and determining semantically neighborhood scene segments, we draw a topic space represents broadcasting contents well. In the experiments, we showed the proposed method generates a higher quality of topics from Korean drama scripts than the baselines.

Keywords: Broadcasting contents, generalized P´olya urn model, scripts, text similarity, topic model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823
3138 A Modular On-line Profit Sharing Approach in Multiagent Domains

Authors: Pucheng Zhou, Bingrong Hong

Abstract:

How to coordinate the behaviors of the agents through learning is a challenging problem within multi-agent domains. Because of its complexity, recent work has focused on how coordinated strategies can be learned. Here we are interested in using reinforcement learning techniques to learn the coordinated actions of a group of agents, without requiring explicit communication among them. However, traditional reinforcement learning methods are based on the assumption that the environment can be modeled as Markov Decision Process, which usually cannot be satisfied when multiple agents coexist in the same environment. Moreover, to effectively coordinate each agent-s behavior so as to achieve the goal, it-s necessary to augment the state of each agent with the information about other existing agents. Whereas, as the number of agents in a multiagent environment increases, the state space of each agent grows exponentially, which will cause the combinational explosion problem. Profit sharing is one of the reinforcement learning methods that allow agents to learn effective behaviors from their experiences even within non-Markovian environments. In this paper, to remedy the drawback of the original profit sharing approach that needs much memory to store each state-action pair during the learning process, we firstly address a kind of on-line rational profit sharing algorithm. Then, we integrate the advantages of modular learning architecture with on-line rational profit sharing algorithm, and propose a new modular reinforcement learning model. The effectiveness of the technique is demonstrated using the pursuit problem.

Keywords: Multi-agent learning; reinforcement learning; rationalprofit sharing; modular architecture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454
3137 The Development of Online-Class Scheduling Management System Conducted by the Case Study of Department of Social Science: Faculty of Humanities and Social Sciences Suan Sunandha Rajabhat University

Authors: Wipada Chaiwchan, Patcharee Klinhom

Abstract:

This research is aimed to develop the online-class scheduling management system and improve as a complex problem solution, this must take into consideration in various conditions and factors. In addition to the number of courses, the number of students and a timetable to study, the physical characteristics of each class room and regulations used in the class scheduling must also be taken into consideration. This system is developed to assist management in the class scheduling for convenience and efficiency. It can provide several instructors to schedule simultaneously. Both lecturers and students can check and publish a timetable and other documents associated with the system online immediately. It is developed in a web-based application. PHP is used as a developing tool. The database management system was MySQL. The tool that is used for efficiency testing of the system is questionnaire. The system was evaluated by using a Black-Box testing. The sample was composed of 2 groups: 5 experts and 100 general users. The average and the standard deviation of results from the experts were 3.50 and 0.67. The average and the standard deviation of results from the general users were 3.54 and 0.54. In summary, the results from the research indicated that the satisfaction of users were in a good level. Therefore, this system could be implemented in an actual workplace and satisfy the users’ requirement effectively.

Keywords: Timetable, schedule, management system, online.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6410
3136 Artificial Neural Network Modeling and Genetic Algorithm Based Optimization of Hydraulic Design Related to Seepage under Concrete Gravity Dams on Permeable Soils

Authors: Muqdad Al-Juboori, Bithin Datta

Abstract:

Hydraulic structures such as gravity dams are classified as essential structures, and have the vital role in providing strong and safe water resource management. Three major aspects must be considered to achieve an effective design of such a structure: 1) The building cost, 2) safety, and 3) accurate analysis of seepage characteristics. Due to the complexity and non-linearity relationships of the seepage process, many approximation theories have been developed; however, the application of these theories results in noticeable errors. The analytical solution, which includes the difficult conformal mapping procedure, could be applied for a simple and symmetrical problem only. Therefore, the objectives of this paper are to: 1) develop a surrogate model based on numerical simulated data using SEEPW software to approximately simulate seepage process related to a hydraulic structure, 2) develop and solve a linked simulation-optimization model based on the developed surrogate model to describe the seepage occurring under a concrete gravity dam, in order to obtain optimum and safe design at minimum cost. The result shows that the linked simulation-optimization model provides an efficient and optimum design of concrete gravity dams.

Keywords: Artificial neural network, concrete gravity dam, genetic algorithm, seepage analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1385
3135 Automatic Intelligent Analysis of Malware Behaviour

Authors: H. Dornhackl, K. Kadletz, R. Luh, P. Tavolato

Abstract:

In this paper, we describe the use of formal methods to model malware behaviour. The modelling of harmful behaviour rests upon syntactic structures that represent malicious procedures inside malware. The malicious activities are modelled by a formal grammar, where API calls’ components are the terminals and the set of API calls used in combination to achieve a goal are designated non-terminals. The combination of different non-terminals in various ways and tiers make up the attack vectors that are used by harmful software. Based on these syntactic structures a parser can be generated which takes execution traces as input for pattern recognition.

Keywords: Malware behaviour, modelling, parsing, search, pattern matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1532
3134 Complex-Valued Neural Network in Image Recognition: A Study on the Effectiveness of Radial Basis Function

Authors: Anupama Pande, Vishik Goel

Abstract:

A complex valued neural network is a neural network, which consists of complex valued input and/or weights and/or thresholds and/or activation functions. Complex-valued neural networks have been widening the scope of applications not only in electronics and informatics, but also in social systems. One of the most important applications of the complex valued neural network is in image and vision processing. In Neural networks, radial basis functions are often used for interpolation in multidimensional space. A Radial Basis function is a function, which has built into it a distance criterion with respect to a centre. Radial basis functions have often been applied in the area of neural networks where they may be used as a replacement for the sigmoid hidden layer transfer characteristic in multi-layer perceptron. This paper aims to present exhaustive results of using RBF units in a complex-valued neural network model that uses the back-propagation algorithm (called 'Complex-BP') for learning. Our experiments results demonstrate the effectiveness of a Radial basis function in a complex valued neural network in image recognition over a real valued neural network. We have studied and stated various observations like effect of learning rates, ranges of the initial weights randomly selected, error functions used and number of iterations for the convergence of error on a neural network model with RBF units. Some inherent properties of this complex back propagation algorithm are also studied and discussed.

Keywords: Complex valued neural network, Radial BasisFunction, Image recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2418
3133 Video Matting based on Background Estimation

Authors: J.-H. Moon, D.-O Kim, R.-H. Park

Abstract:

This paper presents a video matting method, which extracts the foreground and alpha matte from a video sequence. The objective of video matting is finding the foreground and compositing it with the background that is different from the one in the original image. By finding the motion vectors (MVs) using a sliced block matching algorithm (SBMA), we can extract moving regions from the video sequence under the assumption that the foreground is moving and the background is stationary. In practice, foreground areas are not moving through all frames in an image sequence, thus we accumulate moving regions through the image sequence. The boundaries of moving regions are found by Canny edge detector and the foreground region is separated in each frame of the sequence. Remaining regions are defined as background regions. Extracted backgrounds in each frame are combined and reframed as an integrated single background. Based on the estimated background, we compute the frame difference (FD) of each frame. Regions with the FD larger than the threshold are defined as foreground regions, boundaries of foreground regions are defined as unknown regions and the rest of regions are defined as backgrounds. Segmentation information that classifies an image into foreground, background, and unknown regions is called a trimap. Matting process can extract an alpha matte in the unknown region using pixel information in foreground and background regions, and estimate the values of foreground and background pixels in unknown regions. The proposed video matting approach is adaptive and convenient to extract a foreground automatically and to composite a foreground with a background that is different from the original background.

Keywords: Background estimation, Object segmentation, Blockmatching algorithm, Video matting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1816
3132 Hybrid Approach for Software Defect Prediction Using Machine Learning with Optimization Technique

Authors: C. Manjula, Lilly Florence

Abstract:

Software technology is developing rapidly which leads to the growth of various industries. Now-a-days, software-based applications have been adopted widely for business purposes. For any software industry, development of reliable software is becoming a challenging task because a faulty software module may be harmful for the growth of industry and business. Hence there is a need to develop techniques which can be used for early prediction of software defects. Due to complexities in manual prediction, automated software defect prediction techniques have been introduced. These techniques are based on the pattern learning from the previous software versions and finding the defects in the current version. These techniques have attracted researchers due to their significant impact on industrial growth by identifying the bugs in software. Based on this, several researches have been carried out but achieving desirable defect prediction performance is still a challenging task. To address this issue, here we present a machine learning based hybrid technique for software defect prediction. First of all, Genetic Algorithm (GA) is presented where an improved fitness function is used for better optimization of features in data sets. Later, these features are processed through Decision Tree (DT) classification model. Finally, an experimental study is presented where results from the proposed GA-DT based hybrid approach is compared with those from the DT classification technique. The results show that the proposed hybrid approach achieves better classification accuracy.

Keywords: Decision tree, genetic algorithm, machine learning, software defect prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1475
3131 Automatic Road Network Recognition and Extraction for Urban Planning

Authors: D. B. L. Bong, K.C. Lai, A. Joseph

Abstract:

The uses of road map in daily activities are numerous but it is a hassle to construct and update a road map whenever there are changes. In Universiti Malaysia Sarawak, research on Automatic Road Extraction (ARE) was explored to solve the difficulties in updating road map. The research started with using Satellite Image (SI), or in short, the ARE-SI project. A Hybrid Simple Colour Space Segmentation & Edge Detection (Hybrid SCSS-EDGE) algorithm was developed to extract roads automatically from satellite-taken images. In order to extract the road network accurately, the satellite image must be analyzed prior to the extraction process. The characteristics of these elements are analyzed and consequently the relationships among them are determined. In this study, the road regions are extracted based on colour space elements and edge details of roads. Besides, edge detection method is applied to further filter out the non-road regions. The extracted road regions are validated by using a segmentation method. These results are valuable for building road map and detecting the changes of the existing road database. The proposed Hybrid Simple Colour Space Segmentation and Edge Detection (Hybrid SCSS-EDGE) algorithm can perform the tasks fully automatic, where the user only needs to input a high-resolution satellite image and wait for the result. Moreover, this system can work on complex road network and generate the extraction result in seconds.

Keywords: Road Network Recognition, Colour Space, Edge Detection, Urban Planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2998
3130 Learning Difficulties of Children with Disabilities

Authors: Chalise Kiran

Abstract:

The learning difficulties of children with disabilities are always a matter of concern when we talk about educational needs and quality education of children with disabilities. This paper is the outcome of the review of the literature focused on the educational needs and learning difficulties of children with disabilities. For the paper, different studies written on children with disabilities and their education were collected through search engines. The literature put together were analyzed from the angle of learning difficulties faced by children with disabilities and the same were used as a precursor to arrive at the findings on the learning of the children. The analysis showed that children with disabilities face learning difficulties. The reasons for these difficulties could be attributed to factors in terms of authority, structure, school environment and behaviors of teachers and parents and the society as a whole.

Keywords: Children with disabilities, learning difficulties, education of children with disabilities, disabled children.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 436
3129 Socioculture and Cognitivist Perspectives on Language and Communication Barriers in Learning

Authors: David Hallberg

Abstract:

It is believed that major account on language diversity must be taken in learning, and especially in learning using ICT. This paper-s objective is to exhibit language and communication barriers in learning, to approach the topic from socioculture and cognitivist perspectives, and to give exploratory solutions of handling such barriers. The review is mainly conducted by approaching the journal Computers & Education, but also an initially broad search was conducted. The results show that not much attention is paid on language and communication barriers in an immediate relation to learning using ICT. The results shows, inter alia, that language and communication barriers are caused because of not enough account is taken on both the individual-s background and the technology.

Keywords: communication barriers, cognitive, ICT, language barriers, learning, socioculture

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2366
3128 The Role of Counselling Psychology on Expatriate Adjustment in East Asia: A Systematic Review

Authors: Panagiotis Platanitis

Abstract:

Purpose: This research paper seeks to review the empirical studies in the field of expatriate adjustment in East Asia in order to produce a thematic understanding of the current adjustment challenges, thus enabling practitioners to enrich their knowledge. Background: Learning to live, work, and function in a country and culture vastly different from that of one’s upbringing can pose some unique challenges in terms of adaptation and adjustment. This has led to a growing body of research about the adjustment of expatriate workers. Adjustment itself has been posited as a three-dimensional construct; work adjustment, interaction adjustment and general or cultural adjustment. Methodology: This qualitative systematic review has been conducted on all identified peer-reviewed empirical studies related to expatriate adjustment in East Asia. Five electronic databases (PsychInfo, Emerald, Scopus, EBSCO and JSTOR) were searched to December 2015. Out of 625 identified records, thorough evaluation for eligibility resulted in 15 relevant studies being subjected to data analysis. The quality of the identified research was assessed according to the Standard Quality Assessment Criteria for Evaluating Primary Research Papers from a Variety of Fields. The data were analysed by means of thematic synthesis for systematic reviews of qualitative research. Findings: Data analysis revealed five key themes. The themes developed were: (1) personality traits (2) types of adjustment, (3) language, (4) culture and (5) coping strategies. Types of adjustment included subthemes such as: Interaction, general, work, psychological, sociocultural and cross-cultural adjustment. Conclusion: The present review supported previous literature on the different themes of adjustment and it takes the focus from work and general adjustment to the psychological challenges and it introduces the psychological adjustment. It also gives a different perspective about the use of cross-cultural training and the coping strategies expatriates use when they are abroad. This review helps counselling psychologists to understand the importance of a multicultural approach when working with expatriates and also to be aware of what expatriates might face when working and living in East Asia.

Keywords: Expatriates, adjustment, East Asia, counselling psychology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2066
3127 Assessment Power and Frequency Oscillation Damping Using POD Controller and Proposed FOD Controller

Authors: Yahya Naderi, Tohid Rahimi, Babak Yousefi, Seyed Hossein Hosseini

Abstract:

Today’s modern interconnected power system is highly complex in nature. In this, one of the most important requirements during the operation of the electric power system is the reliability and security. Power and frequency oscillation damping mechanism improve the reliability. Because of power system stabilizer (PSS) low speed response against of major fault such as three phase short circuit, FACTs devise that can control the network condition in very fast time, are becoming popular. But FACTs capability can be seen in a major fault present when nonlinear models of FACTs devise and power system equipment are applied. To realize this aim, the model of multi-machine power system with FACTs controller is developed in MATLAB/SIMULINK using Sim Power System (SPS) blockiest. Among the FACTs device, Static synchronous series compensator (SSSC) due to high speed changes its reactance characteristic inductive to capacitive, is effective power flow controller. Tuning process of controller parameter can be performed using different method. But Genetic Algorithm (GA) ability tends to use it in controller parameter tuning process. In this paper firstly POD controller is used to power oscillation damping. But in this station, frequency oscillation dos not has proper damping situation. So FOD controller that is tuned using GA is using that cause to damp out frequency oscillation properly and power oscillation damping has suitable situation.

Keywords: Power oscillation damping (POD), frequency oscillation damping (FOD), Static synchronous series compensator (SSSC), Genetic Algorithm (GA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3175
3126 Emerging VC Industry: Do Market Expectations Play the Most Important Role in Project Selection? Evidence on Russian Data

Authors: I. Rodionov, A. Semenov, E. Gosteva, O. Sokolova

Abstract:

The venture capital becomes more and more advanced and effective source of the innovation project financing, connected with a high-risk level. In the developed countries, it plays a key role in transforming innovation projects into successful businesses and creating the prosperity of the modern economy. In Russia, there are many necessary preconditions for creation of the effective venture investment system: the network of the public institutes for innovation financing operates; there is a significant number of the small and medium-sized enterprises, capable to sell production with good market potential. However, the current system does not confirm the necessary level of efficiency in practice that can be substantially explained by the absence of the accurate plan of action to form the national venture model and by the lack of experience of successful venture deals with profitable exits in Russian economy. This paper studies the influence of various factors on the venture industry development by the example of the IT-sector in Russia. The choice of the sector is based on the fact, that this segment is the main driver of the venture capital market growth in Russia, and the necessary set of data exists. The size of investment of the second round is used as the dependent variable. To analyse the influence of the previous round, such determinant as the volume of the previous (first) round investments is used. There is also used a dummy variable in regression to examine that the participation of an investor with high reputation and experience in the previous round can influence the size of the next investment round. The regression analysis of short-term interrelations between studied variables reveals prevailing influence of the volume of the first round investments on the venture investments volume of the second round. The most important determinant of the value of the second-round investment is the value of first–round investment, so it means that the most competitive on the Russian market are the start-up teams that can attract more money on the start, and the target market growth is not the factor of crucial importance. This supports the point of view that VC in Russia is driven by endogenous factors and not by exogenous ones that are based on global market growth.

Keywords: Venture industry, venture investment, determinants of the venture sector development, IT-sector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1563
3125 Tunable Photonic Microwave Bandpass Filter Based on EOPM and VPBS

Authors: R. Heydari, M. R. Salehi

Abstract:

A tunable photonic microwave bandpass filter with negative coefficient based on an electro-optic phase modulator (EOPM) and a variable polarization beamsplitter (VPBS) is demonstrated. A two-tap microwave bandpass filter with one negative coefficient is presented. The chromatic dispersion and optical coherence are not affected on this filter.

Keywords: Bandpass filter, EOPM, photonic microwave filter, polarization beamsplitter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669
3124 An Efficient Motion Recognition System Based on LMA Technique and a Discrete Hidden Markov Model

Authors: Insaf Ajili, Malik Mallem, Jean-Yves Didier

Abstract:

Human motion recognition has been extensively increased in recent years due to its importance in a wide range of applications, such as human-computer interaction, intelligent surveillance, augmented reality, content-based video compression and retrieval, etc. However, it is still regarded as a challenging task especially in realistic scenarios. It can be seen as a general machine learning problem which requires an effective human motion representation and an efficient learning method. In this work, we introduce a descriptor based on Laban Movement Analysis technique, a formal and universal language for human movement, to capture both quantitative and qualitative aspects of movement. We use Discrete Hidden Markov Model (DHMM) for training and classification motions. We improve the classification algorithm by proposing two DHMMs for each motion class to process the motion sequence in two different directions, forward and backward. Such modification allows avoiding the misclassification that can happen when recognizing similar motions. Two experiments are conducted. In the first one, we evaluate our method on a public dataset, the Microsoft Research Cambridge-12 Kinect gesture data set (MSRC-12) which is a widely used dataset for evaluating action/gesture recognition methods. In the second experiment, we build a dataset composed of 10 gestures(Introduce yourself, waving, Dance, move, turn left, turn right, stop, sit down, increase velocity, decrease velocity) performed by 20 persons. The evaluation of the system includes testing the efficiency of our descriptor vector based on LMA with basic DHMM method and comparing the recognition results of the modified DHMM with the original one. Experiment results demonstrate that our method outperforms most of existing methods that used the MSRC-12 dataset, and a near perfect classification rate in our dataset.

Keywords: Human Motion Recognition, Motion representation, Laban Movement Analysis, Discrete Hidden Markov Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 738
3123 Game Theory Based Diligent Energy Utilization Algorithm for Routing in Wireless Sensor Network

Authors: X. Mercilin Raajini, R. Raja Kumar, P. Indumathi, V. Praveen

Abstract:

Many cluster based routing protocols have been proposed in the field of wireless sensor networks, in which a group of nodes are formed as clusters. A cluster head is selected from one among those nodes based on residual energy, coverage area, number of hops and that cluster-head will perform data gathering from various sensor nodes and forwards aggregated data to the base station or to a relay node (another cluster-head), which will forward the packet along with its own data packet to the base station. Here a Game Theory based Diligent Energy Utilization Algorithm (GTDEA) for routing is proposed. In GTDEA, the cluster head selection is done with the help of game theory, a decision making process, that selects a cluster-head based on three parameters such as residual energy (RE), Received Signal Strength Index (RSSI) and Packet Reception Rate (PRR). Finding a feasible path to the destination with minimum utilization of available energy improves the network lifetime and is achieved by the proposed approach. In GTDEA, the packets are forwarded to the base station using inter-cluster routing technique, which will further forward it to the base station. Simulation results reveal that GTDEA improves the network performance in terms of throughput, lifetime, and power consumption.

Keywords: Cluster head, Energy utilization, Game Theory, LEACH, Sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1913
3122 Octonionic Reformulation of Vector Analysis

Authors: Bhupendra C. S. Chauhan, P. S. Bisht, O. P. S. Negi

Abstract:

According to celebrated Hurwitz theorem, there exists four division algebras consisting of R (real numbers), C (complex numbers), H (quaternions) and O (octonions). Keeping in view the utility of octonion variable we have tried to extend the three dimensional vector analysis to seven dimensional one. Starting with the scalar and vector product in seven dimensions, we have redefined the gradient, divergence and curl in seven dimension. It is shown that the identity n(n - 1)(n - 3)(n - 7) = 0 is satisfied only for 0, 1, 3 and 7 dimensional vectors. We have tried to write all the vector inequalities and formulas in terms of seven dimensions and it is shown that same formulas loose their meaning in seven dimensions due to non-associativity of octonions. The vector formulas are retained only if we put certain restrictions on octonions and split octonions.

Keywords: Octonions, Vector Space and seven dimensions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1206
3121 Sperm Identification Using Elliptic Model and Tail Detection

Authors: Vahid Reza Nafisi, Mohammad Hasan Moradi, Mohammad Hosain Nasr-Esfahani

Abstract:

The conventional assessment of human semen is a highly subjective assessment, with considerable intra- and interlaboratory variability. Computer-Assisted Sperm Analysis (CASA) systems provide a rapid and automated assessment of the sperm characteristics, together with improved standardization and quality control. However, the outcome of CASA systems is sensitive to the method of experimentation. While conventional CASA systems use digital microscopes with phase-contrast accessories, producing higher contrast images, we have used raw semen samples (no staining materials) and a regular light microscope, with a digital camera directly attached to its eyepiece, to insure cost benefits and simple assembling of the system. However, since the accurate finding of sperms in the semen image is the first step in the examination and analysis of the semen, any error in this step can affect the outcome of the analysis. This article introduces and explains an algorithm for finding sperms in low contrast images: First, an image enhancement algorithm is applied to remove extra particles from the image. Then, the foreground particles (including sperms and round cells) are segmented form the background. Finally, based on certain features and criteria, sperms are separated from other cells.

Keywords: Computer-Assisted Sperm Analysis (CASA), Sperm identification, Tail detection, Elliptic shape model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936
3120 Dynamic Inverted Index Maintenance

Authors: Leo Galambos

Abstract:

The majority of today's IR systems base the IR task on two main processes: indexing and searching. There exists a special group of dynamic IR systems where both processes (indexing and searching) happen simultaneously; such a system discards obsolete information, simultaneously dealing with the insertion of new in¬formation, while still answering user queries. In these dynamic, time critical text document databases, it is often important to modify index structures quickly, as documents arrive. This paper presents a method for dynamization which may be used for this task. Experimental results show that the dynamization process is possible and that it guarantees the response time for the query operation and index actualization.

Keywords: Search engine, inverted file, index management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382
3119 Power Control in a Doubly Fed Induction Machine

Authors: A. Ourici

Abstract:

This paper proposes a direct power control for doubly-fed induction machine for variable speed wind power generation. It provides decoupled regulation of the primary side active and reactive power and it is suitable for both electric energy generation and drive applications. In order to control the power flowing between the stator of the DFIG and the network, a decoupled control of active and reactive power is synthesized using PI controllers.The obtained simulation results show the feasibility and the effectiveness of the suggested method

Keywords: Doubly fed induction machine , decoupled power control , vector control , active and reactive power, PWM inverter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2383
3118 Ranking DMUs by Ideal PPS in Data Envelopment Analysis

Authors: V.Rezaie, M.Khanmohammady

Abstract:

An original DEA model is to evaluate each DMU optimistically, but the interval DEA Model proposed in this paper has been formulated to obtain an efficiency interval consisting of Evaluations from both the optimistic and the pessimistic view points. DMUs are improved so that their lower bounds become so large as to attain the maximum Value one. The points obtained by this method are called ideal points. Ideal PPS is calculated by ideal of efficiency DMUs. The purpose of this paper is to rank DMUs by this ideal PPS. Finally we extend the efficiency interval of a DMU under variable RTS technology.

Keywords: Data envelopment analysis (DEA), Decision makingunit (DMU), Interval DEA, Ideal points, Ideal PPS, Return to scale(RTS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933
3117 Integrating Computational Intelligence Techniques and Assessment Agents in ELearning Environments

Authors: Konstantinos C. Giotopoulos, Christos E. Alexakos, Grigorios N. Beligiannis, Spiridon D.Likothanassis

Abstract:

In this contribution an innovative platform is being presented that integrates intelligent agents and evolutionary computation techniques in legacy e-learning environments. It introduces the design and development of a scalable and interoperable integration platform supporting: I) various assessment agents for e-learning environments, II) a specific resource retrieval agent for the provision of additional information from Internet sources matching the needs and profile of the specific user and III) a genetic algorithm designed to extract efficient information (classifying rules) based on the students- answering input data. The agents are implemented in order to provide intelligent assessment services based on computational intelligence techniques such as Bayesian Networks and Genetic Algorithms. The proposed Genetic Algorithm (GA) is used in order to extract efficient information (classifying rules) based on the students- answering input data. The idea of using a GA in order to fulfil this difficult task came from the fact that GAs have been widely used in applications including classification of unknown data. The utilization of new and emerging technologies like web services allows integrating the provided services to any web based legacy e-learning environment.

Keywords: Bayesian Networks, Computational Intelligencetechniques, E-learning legacy systems, Service Oriented Integration, Intelligent Agents, Genetic Algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1749
3116 A Study and Implementation of On-line Learning Diagnosis and Inquiry System

Authors: YuLung Wu

Abstract:

In Knowledge Structure Graph, each course unit represents a phase of learning activities. Both learning portfolios and Knowledge Structure Graphs contain learning information of students and let teachers know which content are difficulties and fails. The study purposes "Dual Mode On-line Learning Diagnosis System" that integrates two search methods: learning portfolio and knowledge structure. Teachers can operate the proposed system and obtain the information of specific students without any computer science background. The teachers can find out failed students in advance and provide remedial learning resources.

Keywords: Knowledge Structure Graph, On-line LearningDiagnosis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1472
3115 Fuzzy Processing of Uncertain Data

Authors: Petr Morávek, Miloš Šeda

Abstract:

In practice, we often come across situations where it is necessary to make decisions based on incomplete or uncertain data. In control systems it may be due to the unknown exact mathematical model, or its excessive complexity (e.g. nonlinearity) when it is necessary to simplify it, respectively, to solve it using a rule base. In the case of databases, searching data we compare a similarity measure with of the requirements of the selection with stored data, where both the select query and the data itself may contain vague terms, for example in the form of linguistic qualifiers. In this paper, we focus on the processing of uncertain data in databases and demonstrate it on the example multi-criteria decision making in the selection of variants, specified by higher number of technical parameters.

Keywords: fuzzy logic, linguistic variable, multicriteria decision

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425
3114 Soccer Video Edition Using a Multimodal Annotation

Authors: Fendri Emna, Ben-Abdallah Hanêne, Ben-Hamadou Abdelmajid

Abstract:

In this paper, we present an approach for soccer video edition using a multimodal annotation. We propose to associate with each video sequence of a soccer match a textual document to be used for further exploitation like search, browsing and abstract edition. The textual document contains video meta data, match meta data, and match data. This document, generated automatically while the video is analyzed, segmented and classified, can be enriched semi automatically according to the user type and/or a specialized recommendation system.

Keywords: XML, Multimodal Annotation, recommendation system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1450
3113 Laser Ultrasonic Imaging Based on Synthetic Aperture Focusing Technique Algorithm

Authors: Sundara Subramanian Karuppasamy, Che Hua Yang

Abstract:

In this work, the laser ultrasound technique has been used for analyzing and imaging the inner defects in metal blocks. To detect the defects in blocks, traditionally the researchers used piezoelectric transducers for the generation and reception of ultrasonic signals. These transducers can be configured into the sparse and phased array. But these two configurations have their drawbacks including the requirement of many transducers, time-consuming calculations, limited bandwidth, and provide confined image resolution. Here, we focus on the non-contact method for generating and receiving the ultrasound to examine the inner defects in aluminum blocks. A Q-switched pulsed laser has been used for the generation and the reception is done by using Laser Doppler Vibrometer (LDV). Based on the Doppler effect, LDV provides a rapid and high spatial resolution way for sensing ultrasonic waves. From the LDV, a series of scanning points are selected which serves as the phased array elements. The side-drilled hole of 10 mm diameter with a depth of 25 mm has been introduced and the defect is interrogated by the linear array of scanning points obtained from the LDV. With the aid of the Synthetic Aperture Focusing Technique (SAFT) algorithm, based on the time-shifting principle the inspected images are generated from the A-scan data acquired from the 1-D linear phased array elements. Thus the defect can be precisely detected with good resolution.

Keywords: Laser ultrasonics, linear phased array, nondestructive testing, synthetic aperture focusing technique, ultrasonic imaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 974
3112 Evolutionary Query Optimization for Heterogeneous Distributed Database Systems

Authors: Reza Ghaemi, Amin Milani Fard, Hamid Tabatabaee, Mahdi Sadeghizadeh

Abstract:

Due to new distributed database applications such as huge deductive database systems, the search complexity is constantly increasing and we need better algorithms to speedup traditional relational database queries. An optimal dynamic programming method for such high dimensional queries has the big disadvantage of its exponential order and thus we are interested in semi-optimal but faster approaches. In this work we present a multi-agent based mechanism to meet this demand and also compare the result with some commonly used query optimization algorithms.

Keywords: Information retrieval systems, list fusion methods, document score, multi-agent systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3434
3111 A Neurofuzzy Learning and its Application to Control System

Authors: Seema Chopra, R. Mitra, Vijay Kumar

Abstract:

A neurofuzzy approach for a given set of input-output training data is proposed in two phases. Firstly, the data set is partitioned automatically into a set of clusters. Then a fuzzy if-then rule is extracted from each cluster to form a fuzzy rule base. Secondly, a fuzzy neural network is constructed accordingly and parameters are tuned to increase the precision of the fuzzy rule base. This network is able to learn and optimize the rule base of a Sugeno like Fuzzy inference system using Hybrid learning algorithm, which combines gradient descent, and least mean square algorithm. This proposed neurofuzzy system has the advantage of determining the number of rules automatically and also reduce the number of rules, decrease computational time, learns faster and consumes less memory. The authors also investigate that how neurofuzzy techniques can be applied in the area of control theory to design a fuzzy controller for linear and nonlinear dynamic systems modelling from a set of input/output data. The simulation analysis on a wide range of processes, to identify nonlinear components on-linely in a control system and a benchmark problem involving the prediction of a chaotic time series is carried out. Furthermore, the well-known examples of linear and nonlinear systems are also simulated under the Matlab/Simulink environment. The above combination is also illustrated in modeling the relationship between automobile trips and demographic factors.

Keywords: Fuzzy control, neuro-fuzzy techniques, fuzzy subtractive clustering, extraction of rules, and optimization of membership functions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2600