
�
Abstract—In this paper, we describe the use of formal methods 

to model malware behaviour. The modelling of harmful behaviour 
rests upon syntactic structures that represent malicious procedures 
inside malware. The malicious activities are modelled by a formal 
grammar, where API calls’ components are the terminals and the set 
of API calls used in combination to achieve a goal are designated 
non-terminals. The combination of different non-terminals in various 
ways and tiers make up the attack vectors that are used by harmful 
software. Based on these syntactic structures a parser can be 
generated which takes execution traces as input for pattern 
recognition.

Keywords—Malware behaviour, modelling, parsing, search, 
pattern matching.

I. INTRODUCTION

HE daily increase of new malware is a major challenge 
for antivirus companies. Malware writers use generating 

engines, which use encryption or metamorphic methods to 
produce myriads of variants of code – each version having a 
different binary appearance, while the procedures executed by 
the binary as well as the goal of the malware remains the 
same. Through these obfuscation techniques, the malware 
attempts to stay undetected by antivirus software and their 
signatures. This confronts malware analysts with an ever-
increasing number of new samples of suspicious code 
demanding laborious inspection. 

Malware analysis is a very time-consuming activity 
requiring a lot of domain-specific knowledge and intelligence. 
Therefore it is hard – probably impossible – to keep up with 
the growing number of new suspicious samples.  Automating 
this procedure would be a great advantage in the battle against 
the dark sides of the information society. However, as the 
analysis process is a rather unstructured undertaking relying 
heavily on the experience and personal skills of the analyst, 
automating it – even only in parts – is a big challenge. 

Automating behavioural analysis of suspicious code 
samples is a promising way of tackling this challenge. The 
way harmful programs modify the operating system and 
resources is called ‘malware behaviour’. Malware manipulates 
an operating system by executing machine instructions, the 
most important of them those, which invoke application 
programming interface (API) functions. Such behaviour is 
independent of the actual representation or appearance of the 
code. In other words, behavioural analysis focuses on the 
semantics of a code sample, not on its syntactic guise.  

H. Dornhackl, K. Kadletz, R. Luh, and P. Tavolato are with the 
Department of Information Security, University of Applied Sciences St. 
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The task of a malware analyst is not only to learn about the 
behaviour of a sample but also to estimate its maliciousness 
and ultimately decide whether it is malware or not. To 
automate this intrinsically intelligent task we have to solve the 
following problems: 
1. Define elementary tasks that are constituents of malicious 

behaviour of code. 
2. Define a mapping between these tasks and possible 

execution traces of code. 
3. Having defined the code patterns a pattern-matching 

program can be created to locate malicious behaviour. 
The definition of elementary tasks is described in [15]. This 

paper concentrates on step 2 and 3 of the above list. 
Regarding step 2, we first have to decide on how we will 

represent the execution traces, the low-level behaviour, of the 
code. As mentioned above, the most significant activities 
executed are the system calls. Therefore, we restrict our 
analysis to system calls ignoring all other machine instructions 
in the trace. It is important to keep in mind that a single call 
must be considered safe, but certain combinations of calls can 
constitute one of the high-level elementary tasks defined in 
step 1 and therefore be dangerous for the user and the 
operating system.  

We have to record all API calls executed by a code sample; 
these traces are the basis for subsequent pattern extraction. 
The patterns must be defined in a way so they can be 
processed automatically. One possibility is the use of formal 
languages to describe the structural layout of the patterns.  

A parser based on the grammar describing malicious 
behaviour can perform pattern recognition (step 3). The 
execution trace of a suspicious code sample is used as input. 
The parser checks whether the input is generated by the rules 
of one of the behaviour patterns. If the parsing succeeds, this 
indicates malicious behaviour. 

II.RELATED WORK

The first attempt to formalize malware was proposed by 
Cohen [1] in 1987. He demonstrated in his work that there is 
no single algorithm that flawlessly detects all possible 
malware; Filiol [2] demanded a theoretical and formal 
treatment of malware. But there were only few contributions 
to this topic since. A paper written by Kramer and Bradfield 
[3] suggests a very abstract model for the definition of 
malware based on modal logics. Application of this model to 
real world problems is still far away (because of performance 
considerations among others). In [4], the problem of 
polymorphic malware is described and some analogies to 
techniques used in compiler construction are drawn. 

The approach to model malware behaviour based on formal 
methods is rarely found in the scientific literature. In [5], 
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attributed grammars are used to describe malware in general; 
in [6], a special variant of Lambda calculus is used. In [7], 
formal languages are used to describe traces generated by a 
dynamic analysis of code samples; these traces are then 
compared to predefined reference patterns. The authors do not 
provide any information about how these patterns were 
constructed. 

Bayer did important work in the area of behavioural 
analysis of malware as did Moser, Kruegel and Kirda [8], [9]. 
Kirda and Kruegel [10] describe dynamic methods to analyze 
a large number of code samples. Interpretation of the output 
with respect to the behaviour of the samples is discussed in 
these papers and others: Christodorescu, Jha and Kruegel [11] 
specify a formalism and an algorithm to find malicious 
behaviour. All these methods, especially when they rely on 
statistical data, have problems with false-positives. 
Fukushima, Sakai, Hori and Sakurai [14] try to distinguish 
between malicious and benign code based on statistical 
analysis of the execution traces. Luh and Tavolato [13] use a 
dual approach for determining the potential danger of a 
sample: The decision is made based not only on malicious 
activities but also on benign activities of a sample’s behaviour. 

For reasons of practical importance, this paper concentrates 
on malware for Microsoft Windows systems. Due to the huge 
amount of possible different behaviour patterns, we focus on 
malware autostart capabilities in this work. 

III. MAPPING TASKS TO TRACES

As stated above, the ultimate goal is the definition of a 
mapping of elementary tasks to execution traces through the 
use of formal grammars. For every task, we define a grammar 
that generates all possible execution traces resulting in the 
accomplishment of this task. The alphabet of each of the 
grammars is a subset of the set of all API calls. First, when a 
binary file is started, all instructions along a certain execution 
path are executed. This path depends on the program’s logic 
and does not necessarily imply that every instruction present 
in the code is actually executed. The operating system version 
and installed software influence the execution trace thus 
leading to differing results. 

Binary files execute machine instructions. We focus on one 
type of instruction only: the API calls. These contain bundled 
functionality provided by external files or libraries and are 
responsible for an application’s interaction with the operating 
system. Monitoring the execution yields in (very long) 
sequences of OS-level system calls. These sequences define 
various subtasks of the behaviour of the code samples under 
scrutiny. Consequently, they are the basic source for finding 
patterns that describe malicious activities. 

To get a representative set of samples we executed and 
monitored a collection of about 1400 malware samples and 
collected their traces. Prerequisite for this step was a safe 
execution environment with the possibility to monitor all 
performed API calls. 

First we had to identify sequences of API calls that modify 
the operating system with malicious intent. These sequences 
provide a detailed view on the different strategies malware 

uses to modify and infect the operating system. Because there 
is a huge number of different approaches to achieve the same 
malign goal, all possible strategies have to be part of the 
grammar. As every approach can be implemented in many 
different ways, profound knowledge of system internals and a 
good insight into the programming techniques used by 
malware writers is required. Therefore, an exhaustive 
enumeration of these sequences is not possible.  

 Defining the grammar can be accomplished either by 
analyzing traces of known malware and deriving patterns 
thereof or by defining the patterns manually. The benefit of 
the latter approach is that the modelling of malware behaviour 
is not influenced by outside factors apart from the analyst’s 
knowledge of popular programming procedures. Using the 
monitored calls, on the other hand, covers a bulk of typical 
behaviour exhibited by malware in the wild. In our work we 
have applied a combined solution. 

We used a virtual environment with the virtualization 
solution “Oracle Virtual Box” [19] and the monitoring Tool 
“Rohitab API Monitor v2” [16] installed on a Microsoft 
Windows 7 operating system. The captured calls are either 
Win32 API calls or Window native calls. 

Fig. 1 shows the structure of a call beginning with the name 
of the library containing the called function followed by the 
name of the call itself. Every call may have a list of given 
parameters starting with a left parenthesis followed of 
parameters which are separated by comma and ending with a 
right parenthesis. An optional return value completes the line. 
The parameter’s trailing asterisk symbolizes that it can occur 
zero or several times. The single parts of the input file 
surrounded by angle brackets are terminals in sense of the 
grammar. 

<binary-file> <api-call-name> ( [<parameter>* [,]] ) 
[<return-value>]  

Fig. 1 Structure for a monitored API call 

A pattern of these calls with malicious intention is called an 
approach – a means of the malware to achieve its detrimental 
goal. Fig. 2 gives an example of such a call.  

kernel32.dll RegOpenKeyExA (HKEY_CURRENT_USER, 
"SOFTWARE\Microsoft\Windows\CurrentVersion\ 
Policies\Explorer\Run", 0, 
KEY_ENUMERATE_SUB_KEYS | 
KEY_QUERY_VALUE | READ_CONTROL, 0x0012fd34 ) 
ERROR_FILE_NOT_FOUND 2 = The system cannot find 
the file specified.  
ADVAPI32.dll NtOpenKey ( 0x0012fd34, 
KEY_ENUMERATE_SUB_KEYS | 
KEY_QUERY_VALUE | READ_CONTROL,  0x0012fb94 ) 
STATUS_OBJECT_NAME_NOT_FOUND 

Fig. 2 Examples for an API trace 

To illustrate the grammatical definition of a specific 
behaviour pattern we chose an activity often used by malware 
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to start itself automatically at system boot (subsequently called 
“autostart behaviour” for brevity). 

In general, autostart behaviour can be generated by specific 
changes in the file system, by altering configuration data, by 
using the system’s autorun functionality, or by modifying the 
registry.  

In order to make the example more accessible we restricted 
the exemplary modelling process to the most important of 
these possibilities, namely the modification of the registry. 
Bayer [18] showed that, out of more than 900,000 malware 
samples, 35.8% were changing the autostart entries in the 
registry to resume operation after a restart of the system. 

Information about which registry keys and values are 
modified can only be found by looking at the parameters of 
the API calls. Therefore, detailed inspection of all relevant 
API calls able to modify autostart behaviour is necessary. 

The Microsoft system documentation yields 84 different so-
called “autostart locations” in the registry. Many of them exist 
only for compatibility reasons to older versions of the 
operating systems and programs. The locations are specific 
registry keys that are used by programs for automatic start. 
Autostart behaviour can be defined by the activity of starting 
the malware program either during system startup, upon user 
logon or triggered by specific user actions.  

Next we had to examine which API calls can be used to 
access and manipulate registry entries. To implement the 
program’s autostart functionality a new registry key and value 
must be added or an existing registry key and value must be 
manipulated. Before making changes to a registry key, one has 
to open or to create it. Executing a “create” API call for an 
existing registry key will lead to an implicit open of the key. 
Closing or flushing the entry is done in most cases but is not 
unconditionally necessary.  

Some API calls have identical functionality and can 
therefore be substituted for each other since they will result in 
the same changes in the registry. Therefore, we had to 
consider which calls can be substituted by others and how 
their exact sequence looks like. Many of the calls exist in 
different versions for ANSI (suffix “A”) and for Unicode 
(suffix “W”) encoding of string parameters while others offer 
extended functionality (suffix “Ex”). Beside the calls from the 
Win32 API there exist, among others, so-called native calls 
(prefix “Nt”) from the Native Kernel API. Win32 API calls 
are usually translated into native calls, so the corresponding 
native call usually closely follows the respective Win32 API 
call in the trace. Between these calls an arbitrary number of 
other calls (which do not manipulate the registry directly) may 
appear and must be neglected. 

Altogether there are more than hundred system calls that are 
related to accessing the registry; for the sake of simplicity we 
restrict our example to the following 17 calls which are used 
to open, create, or set registry keys. 

a) Open a registry key 
RegOpenKeyA 
RegOpenKeyW 
RegOpenKeyExA 
RegOpenKeyExW 

NtOpenKey 
b) Create a registry key 

RegCreateKeyA 
RegCreateKeyW 
RegCreateKeyExA 
RegCreateKeyExW 
NtCreateKey 

c) Set registry value 
RegSetValueA 
RegSetValueW 
RegSetValueExA 
RegSetValueExW 
NtSetValueKey 

d) Close a registry key 
RegCloseKey 
NtClose 

There are further calls that can be used to manipulate entries 
in the registry. One scenario could be to remove the autostart 
of antivirus software with “delete” API calls.  

Bayer [18] showed that the majority of all malware uses the 
registry key  

“HKEY_LOCAL_MACHINE\Software\Microsoft\Windos\
CurrentVersion\Run”  

to gain autostart functionality. The reason for is that this key is 
also available in most of the older versions of Windows. All 
contained subkeys are sequentially processed and executed; 
but they are not executed if the operating system is started in 
“safe mode” unless the subkey has an asterisk (*) prefix. 
There is an equivalent registry key in the user-dependent 
section of the registry  

“HKEY_CURRENT_USER\Software\Microsoft\Windows\
CurrentVersion\Run”  

with the difference that programs registered here are only 
started for the user logged in. 

The dual approach of manual construction and monitoring 
malware behaviour resulted in 7 general patterns. The patterns 
are partly overlapping in their functionality. Examples for this 
overlapping are the interdependent calls for “open” and “set”. 
The manipulation with “set” depends on an opened registry 
key. Such coherences can be modelled once and reused in the 
grammar. Another example is the recurring sequences of 
Win32 API and native API calls that belong together. Such 
repeating micro-patterns can be abstracted to “non-terminals” 
in terms of the formal grammar. 

The non-terminal “create” in Fig. 3 is used in other non-
terminals in the grammar. This helps to describe complex 
behaviour patterns of malware in a concise way (Fig. 4).  

To create a simple and clear grammar we have excluded the 
“comment problem” here: The real trace contains a lot of 
additional system calls which are not relevant with respect to 
autostart behaviour. It would be straightforward to augment 
the grammar with rules to skip these calls.  
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Fig. 3 Win32 API call followed by native API call to create a  
registry key 

Fig. 4 Simple grammar rule 

The context-free grammar defining simplified autostart 
behaviour can be given as follows (assuming task T stands for 
autostart behaviour): 

Gt = (SCt, Vt, Pt, T) 

where SCt, a subset of SC (the set of all system calls), is the 
set of terminal symbols, Vt is the set of non-terminals, Pt is the 
set of production rules and T is the start symbol. 

SCt = {RegOpenKeyA, RegOpenKeyW, RegOpenKeyExA, 
RegOpenKeyExW, NtOpenKey, RegCreateKeyA, 
RegCreateKeyW, RegCreateKeyExA, RegCreateKeyExW, 
NtCreateKey, RegCloseKey, NtClose, RegSetValueA, 
RegSetValueW, RegSetValueExA, RegSetValueExW, 
NtSetValueKey} 

Vt = {T, OPEN-CREATE-CLOSE, OPEN-CREATE, OPEN-
SET-CLOSE, OPEN, CREATE, CLOSE, SET} 

Pt = { 
T => OPEN-CREATE-CLOSE  OPEN-SET-CLOSE 

OPEN-CREATE-CLOSE => OPEN-CREATE   CLOSE  |  
OPEN-CREATE

OPEN-CREATE => OPEN  CREATE  | CREATE 

OPEN-SET-CLOSE => OPEN  SET  CLOSE  |  OPEN  SET 

OPEN => RegOpenKeyA NtOpenKey | RegOpenKeyW 
NtOpenKey | RegOpenKeyExA NtOpenKey | 
RegOpenKeyExW NtOpenKey 

CREATE => RegCreateKeyExA NtCreateKey | 
RegCreateKeyExW NtCreateKey | RegCreateKeyA 
NtCreateKey | RegCreateKeyW NtCreateKey 

CLOSE => RegCloseKey NtClose 

SET => RegSetValueExA NtSetValueKey | RegSetValueExW 
NtSetValueKey | RegSetValueA NtSetValueKey | 
RegSetValueW NtSetValueKey 
}

This grammar describes specific syntactic patterns in a 
trace. Implementing a parser for this grammar will provide an 
efficient way of automatically matching such patterns. There 
is one major drawback with this solution: Since API calls are 
used as terminal symbols an evaluation of parameters for 
semantic validation is not possible. One solution to this 
problem is a further breakdown of the terminals to a lower 
abstraction level. For a call all elements of a call shown in Fig. 
1 (library, API call, brackets, commas, parameters, and return 
value) must be used as terminal symbols of the grammar. This 
results in a detailed evaluation of all existing parameters and 
possible data types of every used API call. This would 
improve the semantic validity of the grammar considerably. 
Such a detailed breakdown is described in [12]. 

IV. PARSING

Having defined the grammar mapping malicious behaviour 
to execution traces it is easy to develop a parser to match such 
behaviour in arbitrary execution traces. The parser was build 
using the tools lex for lexical analysis and yacc for syntactic 
analysis. Additionally, we implemented the semantic 
evaluation of call parameters in yacc using yacc actions. There 
are two possible solutions to solve the mentioned “comment 
problem”: One possibility would be the prefiltering of input 
data by excluding all superfluous calls. This method is simple 
but inefficient and was therefore rejected. We implemented a 
more sophisticated solution by using the error handling 
features in yacc. 

For lex regular expressions describing the input tokens were 
developed. See Fig. 5 as an example. 

[A-Za-z0-9]+[.]{1}[A-Za-z0-9]{3}  
yylval.string=strdup(yytext); return DLL; 

Fig. 5 Example for the token DLL 

Before applying the grammar rules described above some 
low-level grammar rules for yacc based on the given lex 
tokens are built representing a single line of the input. All 
basic yacc rules for the registry API calls look similar to the 
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“open” API call in Fig. 6.  

DLL OPENKEYWINAPI '(' param_registry_handle ',' 
param_registry_key ',' ADDRESS ')'  return_value new_line 

Fig. 6 Example for yacc a rule 

The uppercase strings in Fig. 6 represent the tokens 
delivered by lex and the lowercase strings are non-terminal 
symbols from the context-free grammar. The low-level rules 
also introduce a more abstract tier to distinguish between 
standard API calls and the extended versions of them which is 
important as they usually have different numbers of 
parameters. 

Based on these low-level rules the implementation of the 
high level grammar rules representing the 7 general patterns of 
autostart behaviour is straightforward.  

V.CONCLUSION AND FURTHER WORK

Tests with the parser proved the viability of this approach to 
behavioural analysis of suspicious code. For a specific 
behaviour often found in malware (autostart registration) a 
context-free grammar was developed. The parser for this 
grammar was implemented using common parser generation 
tools. With this parser execution traces of programs at the 
level of API and system calls can be parsed to automatically 
detect behaviour patterns. 

Extending the grammar to comprise most of the patterns for 
malicious behaviour will certainly be a huge and time-
consuming effort. We are therefore working on algorithms to 
partially automate this process. In [17], an algorithm is 
sketched that deduces regular and context-free grammars from 
a set of valid words of a language. Being heuristic in nature 
these algorithms can only produce approximate solutions to 
the problem as their quality is largely dependent on the 
selection of example words. Hence it is still necessary to 
analyze a larger number of sample traces in order to be able to 
choose the ones that are most suitable as input for the 
algorithm.  
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