
�
Abstract—In this paper, we describe the use of formal methods

to model malware behaviour. The modelling of harmful behaviour
rests upon syntactic structures that represent malicious procedures
inside malware. The malicious activities are modelled by a formal
grammar, where API calls’ components are the terminals and the set
of API calls used in combination to achieve a goal are designated
non-terminals. The combination of different non-terminals in various
ways and tiers make up the attack vectors that are used by harmful
software. Based on these syntactic structures a parser can be
generated which takes execution traces as input for pattern
recognition.

Keywords—Malware behaviour, modelling, parsing, search,
pattern matching.

I. INTRODUCTION

HE daily increase of new malware is a major challenge
for antivirus companies. Malware writers use generating

engines, which use encryption or metamorphic methods to
produce myriads of variants of code – each version having a
different binary appearance, while the procedures executed by
the binary as well as the goal of the malware remains the
same. Through these obfuscation techniques, the malware
attempts to stay undetected by antivirus software and their
signatures. This confronts malware analysts with an ever-
increasing number of new samples of suspicious code
demanding laborious inspection.

Malware analysis is a very time-consuming activity
requiring a lot of domain-specific knowledge and intelligence.
Therefore it is hard – probably impossible – to keep up with
the growing number of new suspicious samples. Automating
this procedure would be a great advantage in the battle against
the dark sides of the information society. However, as the
analysis process is a rather unstructured undertaking relying
heavily on the experience and personal skills of the analyst,
automating it – even only in parts – is a big challenge.

Automating behavioural analysis of suspicious code
samples is a promising way of tackling this challenge. The
way harmful programs modify the operating system and
resources is called ‘malware behaviour’. Malware manipulates
an operating system by executing machine instructions, the
most important of them those, which invoke application
programming interface (API) functions. Such behaviour is
independent of the actual representation or appearance of the
code. In other words, behavioural analysis focuses on the
semantics of a code sample, not on its syntactic guise.

H. Dornhackl, K. Kadletz, R. Luh, and P. Tavolato are with the
Department of Information Security, University of Applied Sciences St.
Pölten, Matthias-Corvinus-Straße 15, 3100 Austria (phone: +43/2742/313 228
- 634; e-mail: hermann.dornhackl@fhstp.ac.at, konstanin.kadletz@fhstp.ac.at,
robert.luh@fhstp.ac.at, paul.tavolato@fhstp.ac.at).

The task of a malware analyst is not only to learn about the
behaviour of a sample but also to estimate its maliciousness
and ultimately decide whether it is malware or not. To
automate this intrinsically intelligent task we have to solve the
following problems:
1. Define elementary tasks that are constituents of malicious

behaviour of code.
2. Define a mapping between these tasks and possible

execution traces of code.
3. Having defined the code patterns a pattern-matching

program can be created to locate malicious behaviour.
The definition of elementary tasks is described in [15]. This

paper concentrates on step 2 and 3 of the above list.
Regarding step 2, we first have to decide on how we will

represent the execution traces, the low-level behaviour, of the
code. As mentioned above, the most significant activities
executed are the system calls. Therefore, we restrict our
analysis to system calls ignoring all other machine instructions
in the trace. It is important to keep in mind that a single call
must be considered safe, but certain combinations of calls can
constitute one of the high-level elementary tasks defined in
step 1 and therefore be dangerous for the user and the
operating system.

We have to record all API calls executed by a code sample;
these traces are the basis for subsequent pattern extraction.
The patterns must be defined in a way so they can be
processed automatically. One possibility is the use of formal
languages to describe the structural layout of the patterns.

A parser based on the grammar describing malicious
behaviour can perform pattern recognition (step 3). The
execution trace of a suspicious code sample is used as input.
The parser checks whether the input is generated by the rules
of one of the behaviour patterns. If the parsing succeeds, this
indicates malicious behaviour.

II.RELATED WORK

The first attempt to formalize malware was proposed by
Cohen [1] in 1987. He demonstrated in his work that there is
no single algorithm that flawlessly detects all possible
malware; Filiol [2] demanded a theoretical and formal
treatment of malware. But there were only few contributions
to this topic since. A paper written by Kramer and Bradfield
[3] suggests a very abstract model for the definition of
malware based on modal logics. Application of this model to
real world problems is still far away (because of performance
considerations among others). In [4], the problem of
polymorphic malware is described and some analogies to
techniques used in compiler construction are drawn.

The approach to model malware behaviour based on formal
methods is rarely found in the scientific literature. In [5],

H. Dornhackl, K. Kadletz, R. Luh, P. Tavolato

Automatic Intelligent Analysis of Malware Behaviour

T

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:8, No:4, 2014

690International Scholarly and Scientific Research & Innovation 8(4) 2014 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:8

, N
o:

4,
 2

01
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
02

59
9.

pd
f

attributed grammars are used to describe malware in general;
in [6], a special variant of Lambda calculus is used. In [7],
formal languages are used to describe traces generated by a
dynamic analysis of code samples; these traces are then
compared to predefined reference patterns. The authors do not
provide any information about how these patterns were
constructed.

Bayer did important work in the area of behavioural
analysis of malware as did Moser, Kruegel and Kirda [8], [9].
Kirda and Kruegel [10] describe dynamic methods to analyze
a large number of code samples. Interpretation of the output
with respect to the behaviour of the samples is discussed in
these papers and others: Christodorescu, Jha and Kruegel [11]
specify a formalism and an algorithm to find malicious
behaviour. All these methods, especially when they rely on
statistical data, have problems with false-positives.
Fukushima, Sakai, Hori and Sakurai [14] try to distinguish
between malicious and benign code based on statistical
analysis of the execution traces. Luh and Tavolato [13] use a
dual approach for determining the potential danger of a
sample: The decision is made based not only on malicious
activities but also on benign activities of a sample’s behaviour.

For reasons of practical importance, this paper concentrates
on malware for Microsoft Windows systems. Due to the huge
amount of possible different behaviour patterns, we focus on
malware autostart capabilities in this work.

III. MAPPING TASKS TO TRACES

As stated above, the ultimate goal is the definition of a
mapping of elementary tasks to execution traces through the
use of formal grammars. For every task, we define a grammar
that generates all possible execution traces resulting in the
accomplishment of this task. The alphabet of each of the
grammars is a subset of the set of all API calls. First, when a
binary file is started, all instructions along a certain execution
path are executed. This path depends on the program’s logic
and does not necessarily imply that every instruction present
in the code is actually executed. The operating system version
and installed software influence the execution trace thus
leading to differing results.

Binary files execute machine instructions. We focus on one
type of instruction only: the API calls. These contain bundled
functionality provided by external files or libraries and are
responsible for an application’s interaction with the operating
system. Monitoring the execution yields in (very long)
sequences of OS-level system calls. These sequences define
various subtasks of the behaviour of the code samples under
scrutiny. Consequently, they are the basic source for finding
patterns that describe malicious activities.

To get a representative set of samples we executed and
monitored a collection of about 1400 malware samples and
collected their traces. Prerequisite for this step was a safe
execution environment with the possibility to monitor all
performed API calls.

First we had to identify sequences of API calls that modify
the operating system with malicious intent. These sequences
provide a detailed view on the different strategies malware

uses to modify and infect the operating system. Because there
is a huge number of different approaches to achieve the same
malign goal, all possible strategies have to be part of the
grammar. As every approach can be implemented in many
different ways, profound knowledge of system internals and a
good insight into the programming techniques used by
malware writers is required. Therefore, an exhaustive
enumeration of these sequences is not possible.

 Defining the grammar can be accomplished either by
analyzing traces of known malware and deriving patterns
thereof or by defining the patterns manually. The benefit of
the latter approach is that the modelling of malware behaviour
is not influenced by outside factors apart from the analyst’s
knowledge of popular programming procedures. Using the
monitored calls, on the other hand, covers a bulk of typical
behaviour exhibited by malware in the wild. In our work we
have applied a combined solution.

We used a virtual environment with the virtualization
solution “Oracle Virtual Box” [19] and the monitoring Tool
“Rohitab API Monitor v2” [16] installed on a Microsoft
Windows 7 operating system. The captured calls are either
Win32 API calls or Window native calls.

Fig. 1 shows the structure of a call beginning with the name
of the library containing the called function followed by the
name of the call itself. Every call may have a list of given
parameters starting with a left parenthesis followed of
parameters which are separated by comma and ending with a
right parenthesis. An optional return value completes the line.
The parameter’s trailing asterisk symbolizes that it can occur
zero or several times. The single parts of the input file
surrounded by angle brackets are terminals in sense of the
grammar.

<binary-file> <api-call-name> ([<parameter>* [,]])
[<return-value>]

Fig. 1 Structure for a monitored API call

A pattern of these calls with malicious intention is called an
approach – a means of the malware to achieve its detrimental
goal. Fig. 2 gives an example of such a call.

kernel32.dll RegOpenKeyExA (HKEY_CURRENT_USER,
"SOFTWARE\Microsoft\Windows\CurrentVersion\
Policies\Explorer\Run", 0,
KEY_ENUMERATE_SUB_KEYS |
KEY_QUERY_VALUE | READ_CONTROL, 0x0012fd34)
ERROR_FILE_NOT_FOUND 2 = The system cannot find
the file specified.
ADVAPI32.dll NtOpenKey (0x0012fd34,
KEY_ENUMERATE_SUB_KEYS |
KEY_QUERY_VALUE | READ_CONTROL, 0x0012fb94)
STATUS_OBJECT_NAME_NOT_FOUND

Fig. 2 Examples for an API trace

To illustrate the grammatical definition of a specific
behaviour pattern we chose an activity often used by malware

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:8, No:4, 2014

691International Scholarly and Scientific Research & Innovation 8(4) 2014 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:8

, N
o:

4,
 2

01
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
02

59
9.

pd
f

to start itself automatically at system boot (subsequently called
“autostart behaviour” for brevity).

In general, autostart behaviour can be generated by specific
changes in the file system, by altering configuration data, by
using the system’s autorun functionality, or by modifying the
registry.

In order to make the example more accessible we restricted
the exemplary modelling process to the most important of
these possibilities, namely the modification of the registry.
Bayer [18] showed that, out of more than 900,000 malware
samples, 35.8% were changing the autostart entries in the
registry to resume operation after a restart of the system.

Information about which registry keys and values are
modified can only be found by looking at the parameters of
the API calls. Therefore, detailed inspection of all relevant
API calls able to modify autostart behaviour is necessary.

The Microsoft system documentation yields 84 different so-
called “autostart locations” in the registry. Many of them exist
only for compatibility reasons to older versions of the
operating systems and programs. The locations are specific
registry keys that are used by programs for automatic start.
Autostart behaviour can be defined by the activity of starting
the malware program either during system startup, upon user
logon or triggered by specific user actions.

Next we had to examine which API calls can be used to
access and manipulate registry entries. To implement the
program’s autostart functionality a new registry key and value
must be added or an existing registry key and value must be
manipulated. Before making changes to a registry key, one has
to open or to create it. Executing a “create” API call for an
existing registry key will lead to an implicit open of the key.
Closing or flushing the entry is done in most cases but is not
unconditionally necessary.

Some API calls have identical functionality and can
therefore be substituted for each other since they will result in
the same changes in the registry. Therefore, we had to
consider which calls can be substituted by others and how
their exact sequence looks like. Many of the calls exist in
different versions for ANSI (suffix “A”) and for Unicode
(suffix “W”) encoding of string parameters while others offer
extended functionality (suffix “Ex”). Beside the calls from the
Win32 API there exist, among others, so-called native calls
(prefix “Nt”) from the Native Kernel API. Win32 API calls
are usually translated into native calls, so the corresponding
native call usually closely follows the respective Win32 API
call in the trace. Between these calls an arbitrary number of
other calls (which do not manipulate the registry directly) may
appear and must be neglected.

Altogether there are more than hundred system calls that are
related to accessing the registry; for the sake of simplicity we
restrict our example to the following 17 calls which are used
to open, create, or set registry keys.

a) Open a registry key
RegOpenKeyA
RegOpenKeyW
RegOpenKeyExA
RegOpenKeyExW

NtOpenKey
b) Create a registry key

RegCreateKeyA
RegCreateKeyW
RegCreateKeyExA
RegCreateKeyExW
NtCreateKey

c) Set registry value
RegSetValueA
RegSetValueW
RegSetValueExA
RegSetValueExW
NtSetValueKey

d) Close a registry key
RegCloseKey
NtClose

There are further calls that can be used to manipulate entries
in the registry. One scenario could be to remove the autostart
of antivirus software with “delete” API calls.

Bayer [18] showed that the majority of all malware uses the
registry key

“HKEY_LOCAL_MACHINE\Software\Microsoft\Windos\
CurrentVersion\Run”

to gain autostart functionality. The reason for is that this key is
also available in most of the older versions of Windows. All
contained subkeys are sequentially processed and executed;
but they are not executed if the operating system is started in
“safe mode” unless the subkey has an asterisk (*) prefix.
There is an equivalent registry key in the user-dependent
section of the registry

“HKEY_CURRENT_USER\Software\Microsoft\Windows\
CurrentVersion\Run”

with the difference that programs registered here are only
started for the user logged in.

The dual approach of manual construction and monitoring
malware behaviour resulted in 7 general patterns. The patterns
are partly overlapping in their functionality. Examples for this
overlapping are the interdependent calls for “open” and “set”.
The manipulation with “set” depends on an opened registry
key. Such coherences can be modelled once and reused in the
grammar. Another example is the recurring sequences of
Win32 API and native API calls that belong together. Such
repeating micro-patterns can be abstracted to “non-terminals”
in terms of the formal grammar.

The non-terminal “create” in Fig. 3 is used in other non-
terminals in the grammar. This helps to describe complex
behaviour patterns of malware in a concise way (Fig. 4).

To create a simple and clear grammar we have excluded the
“comment problem” here: The real trace contains a lot of
additional system calls which are not relevant with respect to
autostart behaviour. It would be straightforward to augment
the grammar with rules to skip these calls.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:8, No:4, 2014

692International Scholarly and Scientific Research & Innovation 8(4) 2014 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:8

, N
o:

4,
 2

01
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
02

59
9.

pd
f

Fig. 3 Win32 API call followed by native API call to create a
registry key

Fig. 4 Simple grammar rule

The context-free grammar defining simplified autostart
behaviour can be given as follows (assuming task T stands for
autostart behaviour):

Gt = (SCt, Vt, Pt, T)

where SCt, a subset of SC (the set of all system calls), is the
set of terminal symbols, Vt is the set of non-terminals, Pt is the
set of production rules and T is the start symbol.

SCt = {RegOpenKeyA, RegOpenKeyW, RegOpenKeyExA,
RegOpenKeyExW, NtOpenKey, RegCreateKeyA,
RegCreateKeyW, RegCreateKeyExA, RegCreateKeyExW,
NtCreateKey, RegCloseKey, NtClose, RegSetValueA,
RegSetValueW, RegSetValueExA, RegSetValueExW,
NtSetValueKey}

Vt = {T, OPEN-CREATE-CLOSE, OPEN-CREATE, OPEN-
SET-CLOSE, OPEN, CREATE, CLOSE, SET}

Pt = {
T => OPEN-CREATE-CLOSE OPEN-SET-CLOSE

OPEN-CREATE-CLOSE => OPEN-CREATE CLOSE |
OPEN-CREATE

OPEN-CREATE => OPEN CREATE | CREATE

OPEN-SET-CLOSE => OPEN SET CLOSE | OPEN SET

OPEN => RegOpenKeyA NtOpenKey | RegOpenKeyW
NtOpenKey | RegOpenKeyExA NtOpenKey |
RegOpenKeyExW NtOpenKey

CREATE => RegCreateKeyExA NtCreateKey |
RegCreateKeyExW NtCreateKey | RegCreateKeyA
NtCreateKey | RegCreateKeyW NtCreateKey

CLOSE => RegCloseKey NtClose

SET => RegSetValueExA NtSetValueKey | RegSetValueExW
NtSetValueKey | RegSetValueA NtSetValueKey |
RegSetValueW NtSetValueKey
}

This grammar describes specific syntactic patterns in a
trace. Implementing a parser for this grammar will provide an
efficient way of automatically matching such patterns. There
is one major drawback with this solution: Since API calls are
used as terminal symbols an evaluation of parameters for
semantic validation is not possible. One solution to this
problem is a further breakdown of the terminals to a lower
abstraction level. For a call all elements of a call shown in Fig.
1 (library, API call, brackets, commas, parameters, and return
value) must be used as terminal symbols of the grammar. This
results in a detailed evaluation of all existing parameters and
possible data types of every used API call. This would
improve the semantic validity of the grammar considerably.
Such a detailed breakdown is described in [12].

IV. PARSING

Having defined the grammar mapping malicious behaviour
to execution traces it is easy to develop a parser to match such
behaviour in arbitrary execution traces. The parser was build
using the tools lex for lexical analysis and yacc for syntactic
analysis. Additionally, we implemented the semantic
evaluation of call parameters in yacc using yacc actions. There
are two possible solutions to solve the mentioned “comment
problem”: One possibility would be the prefiltering of input
data by excluding all superfluous calls. This method is simple
but inefficient and was therefore rejected. We implemented a
more sophisticated solution by using the error handling
features in yacc.

For lex regular expressions describing the input tokens were
developed. See Fig. 5 as an example.

[A-Za-z0-9]+[.]{1}[A-Za-z0-9]{3}
yylval.string=strdup(yytext); return DLL;

Fig. 5 Example for the token DLL

Before applying the grammar rules described above some
low-level grammar rules for yacc based on the given lex
tokens are built representing a single line of the input. All
basic yacc rules for the registry API calls look similar to the

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:8, No:4, 2014

693International Scholarly and Scientific Research & Innovation 8(4) 2014 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:8

, N
o:

4,
 2

01
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
02

59
9.

pd
f

“open” API call in Fig. 6.

DLL OPENKEYWINAPI '(' param_registry_handle ','
param_registry_key ',' ADDRESS ')' return_value new_line

Fig. 6 Example for yacc a rule

The uppercase strings in Fig. 6 represent the tokens
delivered by lex and the lowercase strings are non-terminal
symbols from the context-free grammar. The low-level rules
also introduce a more abstract tier to distinguish between
standard API calls and the extended versions of them which is
important as they usually have different numbers of
parameters.

Based on these low-level rules the implementation of the
high level grammar rules representing the 7 general patterns of
autostart behaviour is straightforward.

V.CONCLUSION AND FURTHER WORK

Tests with the parser proved the viability of this approach to
behavioural analysis of suspicious code. For a specific
behaviour often found in malware (autostart registration) a
context-free grammar was developed. The parser for this
grammar was implemented using common parser generation
tools. With this parser execution traces of programs at the
level of API and system calls can be parsed to automatically
detect behaviour patterns.

Extending the grammar to comprise most of the patterns for
malicious behaviour will certainly be a huge and time-
consuming effort. We are therefore working on algorithms to
partially automate this process. In [17], an algorithm is
sketched that deduces regular and context-free grammars from
a set of valid words of a language. Being heuristic in nature
these algorithms can only produce approximate solutions to
the problem as their quality is largely dependent on the
selection of example words. Hence it is still necessary to
analyze a larger number of sample traces in order to be able to
choose the ones that are most suitable as input for the
algorithm.

REFERENCES

[1] Cohen, F.: Computer Viruses: Theory and Experiments. In: Computer
and Security 6/1, 1987, pp. 22-35.

[2] Filiol, E.; Helenius, M; Zanero, S.: Open Problems in Computer
Virology. In: Journal of Computer Virology 1(3-4), 2006, pp. 55-66.

[3] Kramer, S.; Bradfield, J.C.: A General Definition of Malware. In:
Journal in Computer Virology, 6/2, 2010, pp. 105-114.

[4] Jacob, G.; Debar, H; Filiol, E.: Functional polymorphic engines:
formalisation, implementation and use cases. In: Journal in Computer
Virology, 5/3, 2009, pp. 247-261.

[5] Jacob, G.; Debar, H; Filiol, E.: Malware Behavioural Detection by
Attribute-Automata Using Abstraction from Platform and Language. In:
Lecture Notes in Computer Science 2009, Vol. 5758/2009, pp. 81-100.

[6] Jacob, G.; Debar, H; Filiol, E.: Formalization of Malware through
Process Calculi. In: Journal in Computer Virology, 5/3, 2009, pp. 247-
261.

[7] Beaucamps, P.; Gnaedig, I.; Marion, J.: Behaviour Abstraction in
Malware Analysis. In Lecture Notes in Computer Science 2010, Vol.
6418/2010, pp. 168-182.

[8] Bayer, U.; Kirda, E.; Kruegel, C.: Improving the Efficiency of Dynamic
Malware Analysis. 25th Symposium On Applied Computing, Lausanne,
2010.

[9] Bayer, U.; Moser, A.; Kruegel, C.; Kirda, E.: Dynamic Analysis of
Malicious Code. Journal in Computer Virology 2/1, Springer, 2007.

[10] Kirda, E.; Kruegel, C.: Large-Scale Dynamic Malware Analysis. PhD
Dissertation, Technical University of Vienna, 2009.

[11] Christodorescu, M.; Jha, S.; Kruegel, C.: Mining Specifications of
Malicious Behaviour. ESEC/FSE’07, September 3–7, 2007, Cavtat near
Dubrovnik, Croatia, 2007.

[12] Dornhackl, H.: Syntaktische Musterdefinition von ausgewählten
Malwareverhalten und Implementierung eines Parsers. Master thesis, FH
St. Pölten, 2013 (in German).

[13] Luh, R.; Tavolato, P.: Behaviour-based Malware Recognition.
Forschungsforum der österreichischen Fachhochschulen, 2012.

[14] Fukushima, Y.; Sakai, A.; Hori, Y.; Sakurai, K.: A Behaviour Based
Malware Detection Scheme for Avoiding False Positive. Secure
Network Protocols (NPSec), 2010 6th IEEE Workshop on Secure
Network Protocols, 2010.

[15] Dornhackl H., Kadletz K., Luh R., Tavolato P.: Using Formal Methods
for Malware Behaviour Modelling, to be published.

[16] Batra, R.: API Monitor. retrieved from http://www.rohitab.com/
apimonitor, last accessed 2013-10-14.

[17] Gonzalez, C.; Thomason, M.: Syntactic Pattern Recognition. Addison-
Wesley, 1978.

[18] Bayer, U.: Large-Scale Dynamic Malware Analysis. PhD thesis,
Technische Universität Wien, 2009.

[19] Oracle Corporation, Oracle Virtual Box retrieved from
https://www.virtualbox.org, last accessed 2013-10-14.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:8, No:4, 2014

694International Scholarly and Scientific Research & Innovation 8(4) 2014 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:8

, N
o:

4,
 2

01
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
02

59
9.

pd
f

