Search results for: learning community
94 A Corporate Social Responsibility Project to Improve the Democratization of Scientific Education in Brazil
Authors: Denise Levy
Abstract:
Nuclear technology is part of our everyday life and its beneficial applications help to improve the quality of our lives. Nevertheless, in Brazil, most often the media and social networks tend to associate radiation to nuclear weapons and major accidents, and there is still great misunderstanding about the peaceful applications of nuclear science. The Educational Portal Radioatividades (Radioactivities) is a corporate social responsibility initiative that takes advantage of the growing impact of Internet to offer high quality scientific information for teachers and students throughout Brazil. This web-based initiative focusses on the positive applications of nuclear technology, presenting the several contributions of ionizing radiation in different contexts, such as nuclear medicine, agriculture techniques, food safety and electric power generation, proving nuclear technology as part of modern life and a must to improve the quality of our lifestyle. This educational project aims to contribute for democratization of scientific education and social inclusion, approaching society to scientific knowledge, promoting critical thinking and inspiring further reflections. The website offers a wide variety of ludic activities such as curiosities, interactive exercises and short courses. Moreover, teachers are offered free web-based material with full instructions to be developed in class. Since year 2013, the project has been developed and improved according to a comprehensive study about the realistic scenario of ICTs infrastructure in Brazilian schools and in full compliance with the best e-learning national and international recommendations.
Keywords: Information and communication technologies, nuclear technology, science communication, society and education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 122093 Disability Diversity Management: A Case Study of the Banking Sector in the KSA
Authors: Nada Azhar
Abstract:
This paper is drawn from a wider study of the management of gender, age and disability diversity in the banking sector in the Kingdom of Saudi Arabia (KSA), which aims to develop a framework for diversity management (DM) in this sector. The paper focuses on the management of disability diversity. The purpose of the paper is to assist in understanding disability DM in the banking sector in KSA and to make suggestions for its enhancement. Hence, it contributes to filling a research gap, as there is a dearth of literature on disability DM, in KSA in general, and in the banking sector specifically. Discrimination against people with disabilities is a social issue that has not been entirely overcome in any society. However, in KSA, Islam informs almost every aspect of daily life including work, and Islam is against discrimination. Hence, in KSA, there are regulations to accommodate people with disabilities; however, employers are still free not to hire job applicants with disabilities specifically because of their condition. Indeed, disabled people are almost entirely absent from the labour market. There are 12 Saudi-owned or part-Saudi-owned banks in KSA and two managers from each of these were interviewed, making a total of 24. The interviews aimed to investigate empirically the understanding of managers in the banking sector in KSA of diversity management, including disability DM, in the banking sector. The interview data were analysed using thematic analysis. Two interviewees stated that banks used the employment of people with disabilities to enhance their corporate image, while five expressed the opinion that disabled employees could contribute to the bank provided they did not have to deal with customers face-to-face. Nine of the interviewees perceived that disabled employees could be of value to the bank for their own sake, not only in ‘behind the scenes’ roles. Another two interviewees mentioned that employing disabled people could be part of the bank’s community service programme and one thought it would be part of the bank’s Saudisation efforts. The remaining five interviewees did not know how disabled people could contribute to the bank. The findings show that disability DM in the banking sector in KSA is a relatively new concept, and is not yet well understood. In the light of the findings, in order to achieve the purpose of the paper, the following suggestions were made for the enhancement of disability DM in the banking sector in KSA. A change in attitudes towards disabled people is necessary. Such a change in the workplace can only be achieved if a top-down approach is taken to the integration of disabled people. Hence, it is suggested that management and employees follow a course in disability awareness. Further, a diversity officer in the HR department could enhance the integration of disabled people into the banking workforce. It is also suggested that greater government support is required through closely monitored and enforced anti-discrimination legislation. Moreover, flexible working arrangements such as part-time work would facilitate the employment of disabled people and benefit other groups of employees.
Keywords: Banking, disability, diversity management, Kingdom of Saudi Arabia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 392492 Development of an Ensemble Classification Model Based on Hybrid Filter-Wrapper Feature Selection for Email Phishing Detection
Authors: R. B. Ibrahim, M. S. Argungu, I. M. Mungadi
Abstract:
It is obvious in this present time, internet has become an indispensable part of human life since its inception. The Internet has provided diverse opportunities to make life so easy for human beings, through the adoption of various channels. Among these channels are email, internet banking, video conferencing, and the like. Email is one of the easiest means of communication hugely accepted among individuals and organizations globally. But over decades the security integrity of this platform has been challenged with malicious activities like Phishing. Email phishing is designed by phishers to fool the recipient into handing over sensitive personal information such as passwords, credit card numbers, account credentials, social security numbers, etc. This activity has caused a lot of financial damage to email users globally which has resulted in bankruptcy, sudden death of victims, and other health-related sicknesses. Although many methods have been proposed to detect email phishing, in this research, the results of multiple machine-learning methods for predicting email phishing have been compared with the use of filter-wrapper feature selection. It is worth noting that all three models performed substantially but one outperformed the other. The dataset used for these models is obtained from Kaggle online data repository, while three classifiers: decision tree, Naïve Bayes, and Logistic regression are ensemble (Bagging) respectively. Results from the study show that the Decision Tree (CART) bagging ensemble recorded the highest accuracy of 98.13% using PEF (Phishing Essential Features). This result further demonstrates the dependability of the proposed model.
Keywords: Ensemble, hybrid, filter-wrapper, phishing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19391 Exploring SL Writing and SL Sensitivity during Writing Tasks: Poor and Advanced Writing in a Context of Second Language Other than English
Authors: S. Figueiredo, M. Alves Martins, C. Silva, C. Simões
Abstract:
This study integrates a larger research empirical project that examines second language (SL) learners’ profiles and valid procedures to perform complete and diagnostic assessment in schools. 102 learners of Portuguese as a SL aged 7 and 17 years speakers of distinct home languages were assessed in several linguistic tasks. In this article, we focused on writing performance in the specific task of narrative essay composition. The written outputs were measured using the score in six components adapted from an English SL assessment context (Alberta Education): linguistic vocabulary, grammar, syntax, strategy, socio-linguistic, and discourse. The writing processes and strategies in Portuguese language used by different immigrant students were analysed to determine features and diversity of deficits on authentic texts performed by SL writers. Differentiated performance was based on the diversity of the following variables: grades, previous schooling, home language, instruction in first language, and exposure to Portuguese as Second Language. Indo-Aryan languages speakers showed low writing scores compared to their peers and the type of language and respective cognitive mapping (such as Mandarin and Arabic) was the predictor, not linguistic distance. Home language instruction should also be prominently considered in further research to understand specificities of cognitive academic profile in a Romance languages learning context. Additionally, this study also examined the teachers’ representations that will be here addressed to understand educational implications of second language teaching in psychological distress of different minorities in schools of specific host countries.Keywords: Second language, writing assessment, home language, immigrant students, Portuguese language.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 196190 International Tourists’ Travel Motivation by Push-Pull Factors and the Decision Making for Selecting Thailand as Destination Choice
Authors: Siripen Yiamjanya, Kevin Wongleedee
Abstract:
This research paper aims to identify travel motivation by push and pull factors that affected decision making of international tourists in selecting Thailand as their destination choice. A total of 200 international tourists who traveled to Thailand during January and February, 2014 were used as the sample in this study. A questionnaire was employed as a tool in collecting the data, conducted in Bangkok. The list consisted of 30 attributes representing both psychological factors as “push- based factors” and destination factors as “pull-based factors”. Mean and standard deviation were used in order to find the top ten travel motives that were important determinants in the respondents’ decision making process to select Thailand as their destination choice. The finding revealed the top ten travel motivations influencing international tourists to select Thailand as their destination choice included [i] getting experience in foreign land; [ii] Thai food; [iii] learning new culture; [iv] relaxing in foreign land; [v] wanting to learn new things; [vi] being interested in Thai culture, and traditional markets; [vii] escaping from same daily life; [viii] enjoying activities; [ix] adventure; and [x] good weather. Classification of push- based and pull- based motives suggested that getting experience in foreign land was the most important push motive for international tourists to travel, while Thai food portrayed its highest significance as pull motive. Discussion and suggestions were also made for tourism industry of Thailand.
Keywords: Decision Making, Destination Choice, International Tourist, Pull Factor, Push Factor, Thailand, Travel Motivation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639889 Amelioration of Cardiac Arrythmias Classification Performance Using Artificial Neural Network, Adaptive Neuro-Fuzzy and Fuzzy Inference Systems Classifiers
Authors: Alexandre Boum, Salomon Madinatou
Abstract:
This paper aims at bringing a scientific contribution to the cardiac arrhythmia biomedical diagnosis systems; more precisely to the study of the amelioration of cardiac arrhythmia classification performance using artificial neural network, adaptive neuro-fuzzy and fuzzy inference systems classifiers. The purpose of this amelioration is to enable cardiologists to make reliable diagnosis through automatic cardiac arrhythmia analyzes and classifications based on high confidence classifiers. In this study, six classes of the most commonly encountered arrhythmias are considered: the Right Bundle Branch Block, the Left Bundle Branch Block, the Ventricular Extrasystole, the Auricular Extrasystole, the Atrial Fibrillation and the Normal Cardiac rate beat. From the electrocardiogram (ECG) extracted parameters, we constructed a matrix (360x360) serving as an input data sample for the classifiers based on neural networks and a matrix (1x6) for the classifier based on fuzzy logic. By varying three parameters (the quality of the neural network learning, the data size and the quality of the input parameters) the automatic classification permitted us to obtain the following performances: in terms of correct classification rate, 83.6% was obtained using the fuzzy logic based classifier, 99.7% using the neural network based classifier and 99.8% for the adaptive neuro-fuzzy based classifier. These results are based on signals containing at least 360 cardiac cycles. Based on the comparative analysis of the aforementioned three arrhythmia classifiers, the classifiers based on neural networks exhibit a better performance.
Keywords: Adaptive neuro-fuzzy, artificial neural network, cardiac arrythmias, fuzzy inference systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 71988 On the Perceived Awareness of Physical Education Teachers on Adoptable ICTs for PE
Authors: Tholokuhle T. Ntshakala, Seraphin D. Eyono Obono
Abstract:
Nations are still finding it quite difficult to win mega sport competitions despite the major contribution of sport to society in terms of social and economic development, personal health, and in education. Even though the world of sports has been transformed into a huge global economy, it is important to note that the first step of sport is usually its introduction to children at school through physical education or PE. In other words, nations who do not win mega sport competitions also suffer from a weak and neglected PE system. This problem of the neglect of PE systems is the main motivation of this research aimed at examining the factors affecting the perceived awareness of physical education teachers on the ICTs that are adoptable for the teaching and learning of physical education. Two types of research objectives will materialize this aim: relevant theories will be identified in relation to the analysis of the perceived ICT awareness of PE teachers and subsequent models will be compiled and designed from existing literature; the empirical testing of such theories and models will also be achieved through the survey of PE teachers from the Camperdown magisterial district of the KwaZulu-Natal province of South Africa. The main hypothesis at the heart of this study is the relationship between the demographics of PE teachers, their behavior both as individuals and as social entities, and their perceived awareness of the ICTs that are adoptable for PE, as postulated by existing literature; except that this study categorizes human behavior under performance expectancy, computer attitude, and social influence. This hypothesis was partially confirmed by the survey conducted by this research in the sense that performance expectancy and teachers’ age, gender, computer usage, and class size were found to be the only factors affecting their awareness of ICTs for physical education.
Keywords: Human Behavior, ICT Awareness, Physical Education, Teachers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 196087 Revitalisation of Indigenous Food in Africa through Print and Electronic Media
Authors: Adebisi. Elizabeth, Banjo
Abstract:
Language and culture are interwoven that they cannot be separated, for the knowledge of a language cannot be complete without having the culture of the language. Indigenous food is a cultural aspect of any language that is expected to be acquired by all the speakers of the language. Indigenous food is known to be vital right from early years, which is also attributed to the healthy living of the ancient people. However it is discovered that the indigenous food is almost being replaced by fast food products such as Indomie noodles, Spaghetti and Macaroni to the extent that majority of the young folks prefer the eating of the fast foods and cannot prepare the indigenous foods which are good for growth and healthy living of people. Therefore, there is need to revitalize and re-educate people on the indigenous food which is an aspect of inter-cultural education of any language to prevent it from being forgotten or neglected.
African foods are many, but this study focused on Nigerian food using some Yoruba dishes as a case study. Examples of Yoruba dishes are pounded yam and melon with vegetable and dried fish soup, beans pudding (moin moin) and pap (eko), water yam pudding with fish and meat (ikokore) and many more. The ingredients needed for the preparation of these indigenous foods contain some basic food nutrients which will be analyzed and their nutritional importance to human bodies will also be discussed.
The process of re- awakening the education of indigenous food to the present and up-coming generation should be via print and electronic media in form of advertisements on posters, billboards, calendars and in rhymes on television programs, radio presentations, video tapes and CD–ROM apart from classroom teaching and learning. Indigenous food is a panacea to healthy living and longevity, a prevention of diseases and a means of accelerated healing of the body through natural foods.
Keywords: Indigenous food, print and electronic media, nutritional values, re-awakening education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 220286 Primary School Teachers’ Conceptual and Procedural Knowledge of Rational Number and Its Effects on Pupils’ Achievement in Rational Numbers
Authors: R. M. Kashim
Abstract:
The study investigated primary school teachers’ conceptual and procedural knowledge of rational numbers and its effects on pupil’s achievement in rational numbers. Specifically, primary school teachers’ level of conceptual knowledge about rational numbers, primary school teachers’ level of procedural knowledge about rational numbers, and the effects of teachers conceptual and procedural knowledge on their pupils understanding of rational numbers in primary schools is investigated. The study was carried out in Bauchi metropolis in the Bauchi state of Nigeria. The design of the study was a multi-stage design. The first stage was a descriptive design. The second stage involves a pre-test, post-test only quasi-experimental design. Two instruments were used for the data collection in the study. These were Conceptual and Procedural knowledge test (CPKT) and Rational number achievement test (RAT), the population of the study comprises of three (3) mathematics teachers’ holders of Nigerian Certificate in Education (NCE) teaching primary six and 210 pupils in their intact classes were used for the study. The data collected were analyzed using mean, standard deviation, analysis of variance, analysis of covariance and t- test. The findings indicated that the pupils taught rational number by a teacher that has high conceptual and procedural knowledge understand and perform better than the pupil taught by a teacher who has low conceptual and procedural knowledge of rational number. It is, therefore, recommended that teachers in primary schools should be encouraged to enrich their conceptual knowledge of rational numbers. Also, the superiority performance of teachers in procedural knowledge in rational number should not become an obstruction of understanding. Teachers Conceptual and procedural knowledge of rational numbers should be balanced so that primary school pupils will have a view of better teaching and learning of rational number in our contemporary schools.Keywords: Achievement, conceptual knowledge, procedural knowledge, rational numbers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 89285 The Global Children’s Challenge Program: Pedometer Step Count in an Australian School
Authors: D. Hilton
Abstract:
The importance and significance of this research is based upon the fundamental knowledge reported in the scientific literature that physical activity is inversely associated with obesity. In addition, it is recognized there is a global epidemic of sedentariness while at the same time it is known that morbidity and mortality are associated with physical inactivity and as a result of overweight or obesity. Hence this small study in school students is an important area of research in our community. An application submitted in 2005 for the inaugural Public Health Education Research Trust [PHERT] Post Graduate Research Scholarship scheme organized by the Public Health Association of Australia [PHAA] was awarded 3rd place within Australia. The author and title was: D. Hilton, Methods to increase physical activity in school aged children [literature review, a trial using pedometers and a policy paper]. Third place is a good result, however this did not secure funding for the project, as only first place received $5000 funding. Some years later within Australia, a program commenced called the Global Children's Challenge [GCC]. Given details of the 2005 award above were included an application submission prepared for Parkhill Primary School [PPS] which is located in Victoria, Australia was successful. As a result, an excited combined grade 3/ 4 class at the school [27 students] in 2012 became recipients of these free pedometers. Ambassadors for the program were Mrs Catherine Freeman [OAM], Olympic Gold Medalist – Sydney 2000 [400 meters], while another ambassador was Mr Colin Jackson [CBE] who is a Welsh former sprint and hurdling athlete. In terms of PPS and other schools involved in 2012, website details show that the event started on 19th Sep 2012 and students were to wear the pedometer every day for 50 days [at home and at school] aiming for the recommended 15,000 steps/day recording steps taken in a booklet provided. After the finish, an analysis of the average step count for this school showed that the average steps taken / day was 14, 003 [however only a small percentage of students returned the booklets and units] as unfortunately the dates for the program coincided with school holidays so some students either forgot or misplaced the units / booklets. Unfortunately funding for this program ceased in 2013, however the lasting impact of the trial on student’s knowledge and awareness remains and in fact becomes a good grounding for students in how to monitor basic daily physical activity using a method that is easy, fun, low cost and readily accessible.Keywords: Walking, exercise, physical activity [motor activity].
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143684 Factors Affecting Students’ Performance in Chemistry: Case Study in Zanzibar Secondary Schools
Authors: Ahmed A. Hassan, Hassan I. Ali, Abdallah A. Salum, Asia M. Kassim, Yussuf N. Elmoge, Ali A. Amour
Abstract:
The purpose of this study was to investigate the performance of chemistry in Zanzibar Secondary Schools. It was conducted in all regions of Zanzibar in public and private secondary schools and Ministry of Education officials. The objective of the study included finding out causes of poor performance in chemistry. Views, opinions, and suggestions of teachers and students to improve performance of chemistry and a descriptive survey was adopted for the study. 45 teachers and 200 students were randomly sampled from 15 secondary schools in Zanzibar and ten Ministry of Education officials were purposively sampled for the study. Questionnaires and open-ended interview schedules were the main instruments used in obtaining relevant data from respondents. Data collected from the field was analyzed both qualitatively and quantitatively. Qualitative analysis involved content analysis of the responses obtained through interviews and quantitative analysis involved generation of tables, frequencies and percentages. The results revealed that there were shortages of trained teachers, lack of proficiency in the language of instruction (English) and major facilities like laboratories and books. These led to poor delivery of subject matter and consequently resulting in poor performance. Based on the findings, this study recommends that provision of trained, competent, and effective teachers as vital aspects to be considered. Government through Ministry of Education should put effort to stalk libraries and equip laboratories with modern books and instruments. In addition, the ministry should strengthen teachers’ training and encourage use of instructional media in class and make conducive learning environment to both teachers and students.
Keywords: Zanzibar, secondary schools, chemistry, science, performance and factors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 730183 The COVID-19 Pandemic: Lessons Learned in Promoting Student Internationalisation
Authors: David Cobham
Abstract:
In higher education, a great degree of importance is placed on the internationalisation of the student experience. This is seen as a valuable contributor to elements such as building confidence, broadening knowledge, creating networks, and connections and enhancing employability for current students who will become the next generation of managers in technology and business. The COVID-19 pandemic has affected all areas of people’s lives. The limitations of travel coupled with the fears and concerns generated by the health risks have dramatically reduced the opportunity for students to engage with this agenda. Institutions of higher education have been required to rethink fundamental aspects of their business model from recruitment and enrolment, through learning approaches, assessment methods and the pathway to employment. This paper presents a case study which focuses on student mobility and how the physical experience of being in another country either to study, to work, to volunteer or to gain cultural and social enhancement has of necessity been replaced by alternative approaches. It considers trans-national education as an alternative to physical study overseas, virtual mobility and internships as an alternative to international work experience and adopting collaborative on-line projects as an alternative to in-person encounters. The paper concludes that although these elements have been adopted to address the current situation, the lessons learnt and the feedback gained suggests that they have contributed successfully in new and sometimes unexpected ways, and that they will persist beyond the present to become part of the "new normal" for the future. That being the case, senior leaders of institutions of higher education will be required to revisit their international plans and to rewrite their international strategies to take account of and build upon these changes.
Keywords: Trans-national education, internationalisation, higher education management, virtual mobility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 98082 Clustering for Detection of Population Groups at Risk from Anticholinergic Medication
Authors: Amirali Shirazibeheshti, Tarik Radwan, Alireza Ettefaghian, Farbod Khanizadeh, George Wilson, Cristina Luca
Abstract:
Anticholinergic medication has been associated with events such as falls, delirium, and cognitive impairment in older patients. To further assess this, anticholinergic burden scores have been developed to quantify risk. A risk model based on clustering was deployed in a healthcare management system to cluster patients into multiple risk groups according to anticholinergic burden scores of multiple medicines prescribed to patients to facilitate clinical decision-making. To do so, anticholinergic burden scores of drugs were extracted from the literature which categorizes the risk on a scale of 1 to 3. Given the patients’ prescription data on the healthcare database, a weighted anticholinergic risk score was derived per patient based on the prescription of multiple anticholinergic drugs. This study was conducted on 300,000 records of patients currently registered with a major regional UK-based healthcare provider. The weighted risk scores were used as inputs to an unsupervised learning algorithm (mean-shift clustering) that groups patients into clusters that represent different levels of anticholinergic risk. This work evaluates the association between the average risk score and measures of socioeconomic status (index of multiple deprivation) and health (index of health and disability). The clustering identifies a group of 15 patients at the highest risk from multiple anticholinergic medication. Our findings show that this group of patients is located within more deprived areas of London compared to the population of other risk groups. Furthermore, the prescription of anticholinergic medicines is more skewed to female than male patients, suggesting that females are more at risk from this kind of multiple medication. The risk may be monitored and controlled in a healthcare management system that is well-equipped with tools implementing appropriate techniques of artificial intelligence.
Keywords: Anticholinergic medication, socioeconomic status, deprivation, clustering, risk analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 108481 Modelling and Dimension Analysis of a Multipurpose Convertible Laptop Table Using Autodesk Fusion 360
Authors: Nitesh Pandey, Manish Kumar, Pankaj Gupta, Amit Kumar Srivastava
Abstract:
The convertible table is a versatile and adaptable item designed to provide numerous solutions in one. The design incorporates numerous features that offer both ease and functionality. The description of the versatile convertible table in this overview encompasses a range of features that can be tailored to accommodate various user requirements. With its changeable functionality, this piece can easily transform into a workstation, dining table, or coffee table to suit various needs. Significantly, this multipurpose convertible laptop table includes a specific section for electronic devices such as computers and tablets, offering convenience for remote workers and online learners. In addition, providing storage space for essential equipment promotes a tidy workspace by facilitating the organization of many items. The integrated flash system offers supplementary illumination for dimly lit surroundings, while the cooling fans prevent the table's surface from overheating in hot weather or during prolonged laptop usage, making it an optimal and superior choice for laptop users. In order to cater to the needs of students, painters, and other individuals who require writing tools on a regular basis, a pencil and pen stand is included, hence enhancing the versatility of the table. The scissor lift mechanism allows for easy modifications in height, making it convenient to customize usage and providing the option of using it as a standing desk. Overall, this convertible table exemplifies its ability to adapt, its user-friendly nature, and its usefulness in a wide range of situations and settings.
Keywords: Furniture design, laptop stand, study table, learning tool, furniture manufacturing, contemporary design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18280 Sentiment Analysis of Fake Health News Using Naive Bayes Classification Models
Authors: Danielle Shackley, Yetunde Folajimi
Abstract:
As more people turn to the internet seeking health related information, there is more risk of finding false, inaccurate, or dangerous information. Sentiment analysis is a natural language processing technique that assigns polarity scores of text, ranging from positive, neutral and negative. In this research, we evaluate the weight of a sentiment analysis feature added to fake health news classification models. The dataset consists of existing reliably labeled health article headlines that were supplemented with health information collected about COVID-19 from social media sources. We started with data preprocessing, tested out various vectorization methods such as Count and TFIDF vectorization. We implemented 3 Naive Bayes classifier models, including Bernoulli, Multinomial and Complement. To test the weight of the sentiment analysis feature on the dataset, we created benchmark Naive Bayes classification models without sentiment analysis, and those same models were reproduced and the feature was added. We evaluated using the precision and accuracy scores. The Bernoulli initial model performed with 90% precision and 75.2% accuracy, while the model supplemented with sentiment labels performed with 90.4% precision and stayed constant at 75.2% accuracy. Our results show that the addition of sentiment analysis did not improve model precision by a wide margin; while there was no evidence of improvement in accuracy, we had a 1.9% improvement margin of the precision score with the Complement model. Future expansion of this work could include replicating the experiment process, and substituting the Naive Bayes for a deep learning neural network model.
Keywords: Sentiment analysis, Naive Bayes model, natural language processing, topic analysis, fake health news classification model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50879 CBIR Using Multi-Resolution Transform for Brain Tumour Detection and Stages Identification
Authors: H. Benjamin Fredrick David, R. Balasubramanian, A. Anbarasa Pandian
Abstract:
Image retrieval is the most interesting technique which is being used today in our digital world. CBIR, commonly expanded as Content Based Image Retrieval is an image processing technique which identifies the relevant images and retrieves them based on the patterns that are extracted from the digital images. In this paper, two research works have been presented using CBIR. The first work provides an automated and interactive approach to the analysis of CBIR techniques. CBIR works on the principle of supervised machine learning which involves feature selection followed by training and testing phase applied on a classifier in order to perform prediction. By using feature extraction, the image transforms such as Contourlet, Ridgelet and Shearlet could be utilized to retrieve the texture features from the images. The features extracted are used to train and build a classifier using the classification algorithms such as Naïve Bayes, K-Nearest Neighbour and Multi-class Support Vector Machine. Further the testing phase involves prediction which predicts the new input image using the trained classifier and label them from one of the four classes namely 1- Normal brain, 2- Benign tumour, 3- Malignant tumour and 4- Severe tumour. The second research work includes developing a tool which is used for tumour stage identification using the best feature extraction and classifier identified from the first work. Finally, the tool will be used to predict tumour stage and provide suggestions based on the stage of tumour identified by the system. This paper presents these two approaches which is a contribution to the medical field for giving better retrieval performance and for tumour stages identification.
Keywords: Brain tumour detection, content based image retrieval, classification of tumours, image retrieval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 78278 Artificial Intelligent in Optimization of Steel Moment Frame Structures: A Review
Authors: Mohsen Soori, Fooad Karimi Ghaleh Jough
Abstract:
The integration of Artificial Intelligence (AI) techniques in the optimization of steel moment frame structures represents a transformative approach to enhance the design, analysis, and performance of these critical engineering systems. The review encompasses a wide spectrum of AI methods, including machine learning algorithms, evolutionary algorithms, neural networks, and optimization techniques, applied to address various challenges in the field. The synthesis of research findings highlights the interdisciplinary nature of AI applications in structural engineering, emphasizing the synergy between domain expertise and advanced computational methodologies. This synthesis aims to serve as a valuable resource for researchers, practitioners, and policymakers seeking a comprehensive understanding of the state-of-the-art in AI-driven optimization for steel moment frame structures. The paper commences with an overview of the fundamental principles governing steel moment frame structures and identifies the key optimization objectives, such as efficiency of structures. Subsequently, it delves into the application of AI in the conceptual design phase, where algorithms aid in generating innovative structural configurations and optimizing material utilization. The review also explores the use of AI for real-time structural health monitoring and predictive maintenance, contributing to the long-term sustainability and reliability of steel moment frame structures. Furthermore, the paper investigates how AI-driven algorithms facilitate the calibration of structural models, enabling accurate prediction of dynamic responses and seismic performance. Thus, by reviewing and analyzing the recent achievements in applications artificial intelligent in optimization of steel moment frame structures, the process of designing, analysis, and performance of the structures can be analyzed and modified.
Keywords: Artificial Intelligent, optimization process, steel moment frame, structural engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30177 Hands-off Parking: Deep Learning Gesture-Based System for Individuals with Mobility Needs
Authors: Javier Romera, Alberto Justo, Ignacio Fidalgo, Javier Araluce, Joshué Pérez
Abstract:
Nowadays, individuals with mobility needs face a significant challenge when docking vehicles. In many cases, after parking, they encounter insufficient space to exit, leading to two undesired outcomes: either avoiding parking in that spot or settling for improperly placed vehicles. To address this issue, this paper presents a parking control system employing gestural teleoperation. The system comprises three main phases: capturing body markers, interpreting gestures, and transmitting orders to the vehicle. The initial phase is centered around the MediaPipe framework, a versatile tool optimized for real-time gesture recognition. MediaPipe excels at detecting and tracing body markers, with a special emphasis on hand gestures. Hands detection is done by generating 21 reference points for each hand. Subsequently, after data capture, the project employs the MultiPerceptron Layer (MPL) for in-depth gesture classification. This tandem of MediaPipe’s extraction prowess and MPL’s analytical capability ensures that human gestures are translated into actionable commands with high precision. Furthermore, the system has been trained and validated within a built-in dataset. To prove the domain adaptation, a framework based on the Robot Operating System 2 (ROS2), as a communication backbone, alongside CARLA Simulator, is used. Following successful simulations, the system is transitioned to a real-world platform, marking a significant milestone in the project. This real-vehicle implementation verifies the practicality and efficiency of the system beyond theoretical constructs.
Keywords: Gesture detection, MediaPipe, MultiLayer Perceptron Layer, Robot Operating System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15776 Dimensionality Reduction in Modal Analysis for Structural Health Monitoring
Authors: Elia Favarelli, Enrico Testi, Andrea Giorgetti
Abstract:
Autonomous structural health monitoring (SHM) of many structures and bridges became a topic of paramount importance for maintenance purposes and safety reasons. This paper proposes a set of machine learning (ML) tools to perform automatic feature selection and detection of anomalies in a bridge from vibrational data and compare different feature extraction schemes to increase the accuracy and reduce the amount of data collected. As a case study, the Z-24 bridge is considered because of the extensive database of accelerometric data in both standard and damaged conditions. The proposed framework starts from the first four fundamental frequencies extracted through operational modal analysis (OMA) and clustering, followed by time-domain filtering (tracking). The fundamental frequencies extracted are then fed to a dimensionality reduction block implemented through two different approaches: feature selection (intelligent multiplexer) that tries to estimate the most reliable frequencies based on the evaluation of some statistical features (i.e., entropy, variance, kurtosis), and feature extraction (auto-associative neural network (ANN)) that combine the fundamental frequencies to extract new damage sensitive features in a low dimensional feature space. Finally, one-class classification (OCC) algorithms perform anomaly detection, trained with standard condition points, and tested with normal and anomaly ones. In particular, principal component analysis (PCA), kernel principal component analysis (KPCA), and autoassociative neural network (ANN) are presented and their performance are compared. It is also shown that, by evaluating the correct features, the anomaly can be detected with accuracy and an F1 score greater than 95%.
Keywords: Anomaly detection, dimensionality reduction, frequencies selection, modal analysis, neural network, structural health monitoring, vibration measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 71975 Applying Resilience Engineering to improve Safety Management in a Construction Site: Design and Validation of a Questionnaire
Authors: M. C. Pardo-Ferreira, J. C. Rubio-Romero, M. Martínez-Rojas
Abstract:
Resilience Engineering is a new paradigm of safety management that proposes to change the way of managing the safety to focus on the things that go well instead of the things that go wrong. Many complex and high-risk sectors such as air traffic control, health care, nuclear power plants, railways or emergencies, have applied this new vision of safety and have obtained very positive results. In the construction sector, safety management continues to be a problem as indicated by the statistics of occupational injuries worldwide. Therefore, it is important to improve safety management in this sector. For this reason, it is proposed to apply Resilience Engineering to the construction sector. The Construction Phase Health and Safety Plan emerges as a key element for the planning of safety management. One of the key tools of Resilience Engineering is the Resilience Assessment Grid that allows measuring the four essential abilities (respond, monitor, learn and anticipate) for resilient performance. The purpose of this paper is to develop a questionnaire based on the Resilience Assessment Grid, specifically on the ability to learn, to assess whether a Construction Phase Health and Safety Plans helps companies in a construction site to implement this ability. The research process was divided into four stages: (i) initial design of a questionnaire, (ii) validation of the content of the questionnaire, (iii) redesign of the questionnaire and (iii) application of the Delphi method. The questionnaire obtained could be used as a tool to help construction companies to evolve from Safety-I to Safety-II. In this way, companies could begin to develop the ability to learn, which will serve as a basis for the development of the other abilities necessary for resilient performance. The following steps in this research are intended to develop other questions that allow evaluating the rest of abilities for resilient performance such as monitoring, learning and anticipating.
Keywords: Resilience engineering, construction sector, resilience assessment grid, construction phase health and safety plan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 101574 An Inclusion Project for Deaf Children into a Northern Italy Contest
Authors: G. Tamanza, A. Bossoni
Abstract:
84 deaf students (from primary school to college) and their families participated in this inclusion project in cooperation with numerous institutions in northern Italy (Brescia-Lombardy). Participants were either congenitally deaf or their deafness was related to other pathologies. This research promoted the integration of deaf students as they pass from primary school to high school to college. Learning methods and processes were studied that focused on encouraging individual autonomy and socialization. The research team and its collaborators included school teachers, speech therapists, psychologists and home tutors, as well as teaching assistants, child neuropsychiatrists and other external authorities involved with deaf persons social inclusion programs. Deaf children and their families were supported, in terms of inclusion, and were made aware of the research team that focused on the Bisogni Educativi Speciali (BES or Special Educational Needs) (L.170/2010 - DM 5669/2011). This project included a diagnostic and evaluative phase as well as an operational one. Results demonstrated that deaf children were highly satisfied and confident; academic performance improved and collaboration in school increased. Deaf children felt that they had access to high school and college. Empowerment for the families of deaf children in terms of networking among local services that deal with the deaf also improved while family satisfaction also improved. We found that teachers and those who gave support to deaf children increased their professional skills. Achieving autonomy, instrumental, communicative and relational abilities were also found to be crucial. Project success was determined by temporal continuity, clear theoretical methodology, strong alliance for the project direction and a resilient team response.
Keywords: Autonomy, inclusion, skills, well-being.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 119173 Ecoliteracy and Pedagogical Praxis in the Multidisciplinary University Greenhouse toward the Food Security Strengthening
Authors: Citlali Aguilera Lira, David Lynch Steinicke, Andrea León Garcia
Abstract:
One of the challenges that higher education faces is to find how to approach the sustainability in an inclusive way to the student within all the different academic areas, how to move the sustainable development from the abstract field to the operational field. This research comes from the ecoliteracy and the pedagogical praxis as tools for rebuilding the teaching processes inside of universities. The purpose is to determine and describe which are the factors involved in the process of learning particularly in the Greenhouse-School Siembra UV. In the Greenhouse-School Siembra UV, of the University of Veracruz, are cultivated vegetables, medicinal plants and small cornfields under the usage of eco-technologies such as hydroponics, Wickingbed and Hugelkultur, which main purpose is the saving of space, labor and natural resources, as well as function as agricultural production alternatives in the urban and periurban zones. The sample was formed with students from different academic areas and who are actively involved in the greenhouse, as well as institutes from the University of Veracruz and governmental and nongovernmental departments. This project comes from a pedagogic praxis approach, from filling the needs that the different professional profiles of the university students have. All this with the purpose of generate a pragmatic dialogue with the sustainability. It also comes from the necessity to understand the factors that intervene in the students’ praxis. In this manner is how the students are the fundamental unit in the sphere of sustainability. As a result, it is observed that those University of Veracruz students who are involved in the Greenhouse-school, Siembra UV, have enriched in different levels the sense of urban and periurban agriculture because of the diverse academic approaches they have and the interaction between them. It is concluded that the ecotechnologies act as fundamental tools for ecoliteracy in society, where it is strengthen the nutritional and food security from a sustainable development approach.Keywords: Farming eco-technologies, food security, multidisciplinary, pedagogical praxis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 162772 Rainfall and Flood Forecast Models for Better Flood Relief Plan of the Mae Sot Municipality
Authors: S. Chuenchooklin, S. Taweepong, U. Pangnakorn
Abstract:
This research was conducted in the Mae Sot Watershed where located in the Moei River Basin at the Upper Salween River Basin in Tak Province, Thailand. The Mae Sot Municipality is the largest urban area in Tak Province and situated in the midstream of the Mae Sot Watershed. It usually faces flash flood problem after heavy rain due to poor flood management has been reported since economic rapidly bloom up in recent years. Its catchment can be classified as ungauged basin with lack of rainfall data and no any stream gaging station was reported. It was attached by most severely flood events in 2013 as the worst studied case for all those communities in this municipality. Moreover, other problems are also faced in this watershed, such shortage water supply for domestic consumption and agriculture utilizations including a deterioration of water quality and landslide as well. The research aimed to increase capability building and strengthening the participation of those local community leaders and related agencies to conduct better water management in urban area was started by mean of the data collection and illustration of the appropriated application of some short period rainfall forecasting model as they aim for better flood relief plan and management through the hydrologic model system and river analysis system programs. The authors intended to apply the global rainfall data via the integrated data viewer (IDV) program from the Unidata with the aim for rainfall forecasting in a short period of 7-10 days in advance during rainy season instead of real time record. The IDV product can be present in an advance period of rainfall with time step of 3-6 hours was introduced to the communities. The result can be used as input data to the hydrologic modeling system model (HEC-HMS) for synthesizing flood hydrographs and use for flood forecasting as well. The authors applied the river analysis system model (HEC-RAS) to present flood flow behaviors in the reach of the Mae Sot stream via the downtown of the Mae Sot City as flood extents as the water surface level at every cross-sectional profiles of the stream. Both models of HMS and RAS were tested in 2013 with observed rainfall and inflow-outflow data from the Mae Sot Dam. The result of HMS showed fit to the observed data at the dam and applied at upstream boundary discharge to RAS in order to simulate flood extents and tested in the field, and the result found satisfying. The product of rainfall from IDV was fair while compared with observed data. However, it is an appropriate tool to use in the ungauged catchment to use with flood hydrograph and river analysis models for future efficient flood relief plan and management.
Keywords: Global rainfall, flood forecasting, hydrologic modeling system, river analysis system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 242271 Evaluating the Understanding of the University Students (Basic Sciences and Engineering) about the Numerical Representation of the Average Rate of Change
Authors: Saeid Haghjoo, Ebrahim Reyhani, Fahimeh Kolahdouz
Abstract:
The present study aimed to evaluate the understanding of the students in Tehran universities (Iran) about the numerical representation of the average rate of change based on the Structure of Observed Learning Outcomes (SOLO). In the present descriptive-survey research, the statistical population included undergraduate students (basic sciences and engineering) in the universities of Tehran. The samples were 604 students selected by random multi-stage clustering. The measurement tool was a task whose face and content validity was confirmed by math and mathematics education professors. Using Cronbach's Alpha criterion, the reliability coefficient of the task was obtained 0.95, which verified its reliability. The collected data were analyzed by descriptive statistics and inferential statistics (chi-squared and independent t-tests) under SPSS-24 software. According to the SOLO model in the prestructural, unistructural, and multistructural levels, basic science students had a higher percentage of understanding than that of engineering students, although the outcome was inverse at the relational level. However, there was no significant difference in the average understanding of both groups. The results indicated that students failed to have a proper understanding of the numerical representation of the average rate of change, in addition to missconceptions when using physics formulas in solving the problem. In addition, multiple solutions were derived along with their dominant methods during the qualitative analysis. The current research proposed to focus on the context problems with approximate calculations and numerical representation, using software and connection common relations between math and physics in the teaching process of teachers and professors.
Keywords: Average rate of change, context problems, derivative, numerical representation, SOLO taxonomy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 77670 Improving Fake News Detection Using K-means and Support Vector Machine Approaches
Authors: Kasra Majbouri Yazdi, Adel Majbouri Yazdi, Saeid Khodayi, Jingyu Hou, Wanlei Zhou, Saeed Saedy
Abstract:
Fake news and false information are big challenges of all types of media, especially social media. There is a lot of false information, fake likes, views and duplicated accounts as big social networks such as Facebook and Twitter admitted. Most information appearing on social media is doubtful and in some cases misleading. They need to be detected as soon as possible to avoid a negative impact on society. The dimensions of the fake news datasets are growing rapidly, so to obtain a better result of detecting false information with less computation time and complexity, the dimensions need to be reduced. One of the best techniques of reducing data size is using feature selection method. The aim of this technique is to choose a feature subset from the original set to improve the classification performance. In this paper, a feature selection method is proposed with the integration of K-means clustering and Support Vector Machine (SVM) approaches which work in four steps. First, the similarities between all features are calculated. Then, features are divided into several clusters. Next, the final feature set is selected from all clusters, and finally, fake news is classified based on the final feature subset using the SVM method. The proposed method was evaluated by comparing its performance with other state-of-the-art methods on several specific benchmark datasets and the outcome showed a better classification of false information for our work. The detection performance was improved in two aspects. On the one hand, the detection runtime process decreased, and on the other hand, the classification accuracy increased because of the elimination of redundant features and the reduction of datasets dimensions.
Keywords: Fake news detection, feature selection, support vector machine, K-means clustering, machine learning, social media.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 454769 Evaluation of Pragmatic Information in an English Textbook: Focus on Requests
Authors: Israa A. Qari
Abstract:
Learning to request in a foreign language is a key ability within pragmatics language teaching. This paper examines how requests are taught in English Unlimited Book 3 (Cambridge University Press), an EFL textbook series employed by King Abdulaziz University in Jeddah, Saudi Arabia to teach advanced foundation year students English. The focus of analysis is the evaluation of the request linguistic strategies present in the textbook, frequency of the use of these strategies, and the contextual information provided on the use of these linguistic forms. The researcher collected all the linguistic forms which consisted of the request speech act and divided them into levels employing the CCSARP request coding manual. Findings demonstrated that simple and commonly employed request strategies are introduced. Looking closely at the exercises throughout the chapters, it was noticeable that the book exclusively employed the most direct form of requesting (the imperative) when giving learners instructions: e.g. listen, write, ask, answer, read, look, complete, choose, talk, think, etc. The book also made use of some other request strategies such as ‘hedged performatives’ and ‘query preparatory’. However, it was also found that many strategies were not dealt with in the book, specifically strategies with combined functions (e.g. possibility, ability). On a sociopragmatic level, a strong focus was found to exist on standard situations in which relations between the requester and requestee are clear. In general, contextual information was communicated implicitly only. The textbook did not seem to differentiate between formal and informal request contexts (register) which might consequently impel students to overgeneralize. The paper closes with some recommendations for textbook and curriculum designers. Findings are also contrasted with previous results from similar body of research on EFL requests.
Keywords: EFL, Requests, Saudi, speech acts, textbook evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46668 Nanomaterial Based Electrochemical Sensors for Endocrine Disrupting Compounds
Authors: Gaurav Bhanjana, Ganga Ram Chaudhary, Sandeep Kumar, Neeraj Dilbaghi
Abstract:
Main sources of endocrine disrupting compounds in the ecosystem are hormones, pesticides, phthalates, flame retardants, dioxins, personal-care products, coplanar polychlorinated biphenyls (PCBs), bisphenol A, and parabens. These endocrine disrupting compounds are responsible for learning disabilities, brain development problems, deformations of the body, cancer, reproductive abnormalities in females and decreased sperm count in human males. Although discharge of these chemical compounds into the environment cannot be stopped, yet their amount can be retarded through proper evaluation and detection techniques. The available techniques for determination of these endocrine disrupting compounds mainly include high performance liquid chromatography (HPLC), mass spectroscopy (MS) and gas chromatography-mass spectrometry (GC–MS). These techniques are accurate and reliable but have certain limitations like need of skilled personnel, time consuming, interference and requirement of pretreatment steps. Moreover, these techniques are laboratory bound and sample is required in large amount for analysis. In view of above facts, new methods for detection of endocrine disrupting compounds should be devised that promise high specificity, ultra sensitivity, cost effective, efficient and easy-to-operate procedure. Nowadays, electrochemical sensors/biosensors modified with nanomaterials are gaining high attention among researchers. Bioelement present in this system makes the developed sensors selective towards analyte of interest. Nanomaterials provide large surface area, high electron communication feature, enhanced catalytic activity and possibilities of chemical modifications. In most of the cases, nanomaterials also serve as an electron mediator or electrocatalyst for some analytes.Keywords: Sensors, endocrine disruptors, nanoparticles, electrochemical, microscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 158467 A Face-to-Face Education Support System Capable of Lecture Adaptation and Q&A Assistance Based On Probabilistic Inference
Authors: Yoshitaka Fujiwara, Jun-ichirou Fukushima, Yasunari Maeda
Abstract:
Keys to high-quality face-to-face education are ensuring flexibility in the way lectures are given, and providing care and responsiveness to learners. This paper describes a face-to-face education support system that is designed to raise the satisfaction of learners and reduce the workload on instructors. This system consists of a lecture adaptation assistance part, which assists instructors in adapting teaching content and strategy, and a Q&A assistance part, which provides learners with answers to their questions. The core component of the former part is a “learning achievement map", which is composed of a Bayesian network (BN). From learners- performance in exercises on relevant past lectures, the lecture adaptation assistance part obtains information required to adapt appropriately the presentation of the next lecture. The core component of the Q&A assistance part is a case base, which accumulates cases consisting of questions expected from learners and answers to them. The Q&A assistance part is a case-based search system equipped with a search index which performs probabilistic inference. A prototype face-to-face education support system has been built, which is intended for the teaching of Java programming, and this approach was evaluated using this system. The expected degree of understanding of each learner for a future lecture was derived from his or her performance in exercises on past lectures, and this expected degree of understanding was used to select one of three adaptation levels. A model for determining the adaptation level most suitable for the individual learner has been identified. An experimental case base was built to examine the search performance of the Q&A assistance part, and it was found that the rate of successfully finding an appropriate case was 56%.
Keywords: Bayesian network, face-to-face education, lecture adaptation, Q&A assistance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 136266 Destination Decision Model for Cruising Taxis Based on Embedding Model
Authors: Kazuki Kamada, Haruka Yamashita
Abstract:
In Japan, taxi is one of the popular transportations and taxi industry is one of the big businesses. However, in recent years, there has been a difficult problem of reducing the number of taxi drivers. In the taxi business, mainly three passenger catching methods are applied. One style is "cruising" that drivers catches passengers while driving on a road. Second is "waiting" that waits passengers near by the places with many requirements for taxies such as entrances of hospitals, train stations. The third one is "dispatching" that is allocated based on the contact from the taxi company. Above all, the cruising taxi drivers need the experience and intuition for finding passengers, and it is difficult to decide "the destination for cruising". The strong recommendation system for the cruising taxies supports the new drivers to find passengers, and it can be the solution for the decreasing the number of drivers in the taxi industry. In this research, we propose a method of recommending a destination for cruising taxi drivers. On the other hand, as a machine learning technique, the embedding models that embed the high dimensional data to a low dimensional space is widely used for the data analysis, in order to represent the relationship of the meaning between the data clearly. Taxi drivers have their favorite courses based on their experiences, and the courses are different for each driver. We assume that the course of cruising taxies has meaning such as the course for finding business man passengers (go around the business area of the city of go to main stations) and course for finding traveler passengers (go around the sightseeing places or big hotels), and extract the meaning of their destinations. We analyze the cruising history data of taxis based on the embedding model and propose the recommendation system for passengers. Finally, we demonstrate the recommendation of destinations for cruising taxi drivers based on the real-world data analysis using proposing method.Keywords: Taxi industry, decision making, recommendation system, embedding model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43265 Saving Energy through Scalable Architecture
Authors: John Lamb, Robert Epstein, Vasundhara L. Bhupathi, Sanjeev Kumar Marimekala
Abstract:
In this paper, we focus on the importance of scalable architecture for data centers and buildings in general to help an enterprise achieve environmental sustainability. The scalable architecture helps in many ways, such as adaptability to the business and user requirements, promotes high availability and disaster recovery solutions that are cost effective and low maintenance. The scalable architecture also plays a vital role in three core areas of sustainability: economy, environment, and social, which are also known as the 3 pillars of a sustainability model. If the architecture is scalable, it has many advantages. A few examples are that scalable architecture helps businesses and industries to adapt to changing technology, drive innovation, promote platform independence, and build resilience against natural disasters. Most importantly, having a scalable architecture helps industries bring in cost-effective measures for energy consumption, reduce wastage, increase productivity, and enable a robust environment. It also helps in the reduction of carbon emissions with advanced monitoring and metering capabilities. Scalable architectures help in reducing waste by optimizing the designs to utilize materials efficiently, minimize resources, decrease carbon footprints by using low-impact materials that are environmentally friendly. In this paper we also emphasize the importance of cultural shift towards the reuse and recycling of natural resources for a balanced ecosystem and maintain a circular economy. Also, since all of us are involved in the use of computers, much of the scalable architecture we have studied is related to data centers.
Keywords: Scalable Architectures, Sustainability, Application Design, Disruptive Technology, Machine Learning, Natural Language Processing, AI, Social Media Platform, Cloud Computing, Advanced Networking, Storage Devices, Advanced Monitoring, Metering Infrastructure, Climate change.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 116