Search results for: data standardization
4977 Short-Term Load Forecasting Based on Variational Mode Decomposition and Least Square Support Vector Machine
Authors: Jiangyong Liu, Xiangxiang Xu, Bote Luo, Xiaoxue Luo, Jiang Zhu, Lingzhi Yi
Abstract:
To address the problems of non-linearity and high randomness of the original power load sequence causing the degradation of power load forecasting accuracy, a short-term load forecasting method is proposed. The method is based on the least square support vector machine (LSSVM) optimized by an improved sparrow search algorithm combined with the variational mode decomposition proposed in this paper. The application of the variational mode decomposition technique decomposes the raw power load data into a series of intrinsic mode functions components, which can reduce the complexity and instability of the raw data while overcoming modal confounding; the proposed improved sparrow search algorithm can solve the problem of difficult selection of learning parameters in the LSSVM. Finally, through comparison experiments, the results show that the method can effectively improve prediction accuracy.
Keywords: Load forecasting, variational mode decomposition, improved sparrow search algorithm, least square support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 724976 Sanitary Measures in Piggeries, Awareness and Risk Factors of African Swine Fever in Benue State, Nigeria
Authors: A. Asambe
Abstract:
A study was conducted to determine the level of compliance with sanitary measures in piggeries, and awareness and risk factors of African swine fever in Benue State, Nigeria. Questionnaires were distributed to 74 respondents consisting of piggery owners and attendants in different piggeries across 12 LGAs to collect data for this study. Sanitary measures in piggeries were observed to be generally very poor, though respondents admitted being aware of ASF. Piggeries located within a 1 km radius of a slaughter slab (OR=9.2, 95% CI - 3.0-28.8), piggeries near refuse dump sites (OR=3.0, 95% CI - 1.0-9.5) and piggeries where farm workers wear their work clothes outside of the piggery premises (OR=0.2, 95% CI - 0.1-0.7) showed higher chances of ASFV infection and were significantly associated (p < 0.0001), (p < 0.05) and (p < 0.01), and were identified as potential risk factors. The study concluded that pigs in Benue State are still at risk of an ASF outbreak. Proper sanitary and hygienic practices is advocated and emphasized in piggeries, while routine surveillance for ASFV antibodies in pigs in Benue State is strongly recommended to provide a reliable reference data base to plan for the prevention of any devastating ASF outbreak.
Keywords: African swine fever, awareness, piggery, risk factors, sanitary measures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9954975 A Mixed Expert Evaluation System and Dynamic Interval-Valued Hesitant Fuzzy Selection Approach
Authors: Hossein Gitinavard, Mohammad Hossein Fazel Zarandi
Abstract:
In the last decades, concerns about the environmental issues lead to professional and academic efforts on green supplier selection problems. In this sake, one of the main issues in evaluating the green supplier selection problems, which could increase the uncertainty, is the preferences of the experts' judgments about the candidate green suppliers. Therefore, preparing an expert system to evaluate the problem based on the historical data and the experts' knowledge can be sensible. This study provides an expert evaluation system to assess the candidate green suppliers under selected criteria in a multi-period approach. In addition, a ranking approach under interval-valued hesitant fuzzy set (IVHFS) environment is proposed to select the most appropriate green supplier in planning horizon. In the proposed ranking approach, the IVHFS and the last aggregation approach are considered to margin the errors and to prevent data loss, respectively. Hence, a comparative analysis is provided based on an illustrative example to show the feasibility of the proposed approach.Keywords: Green supplier selection, expert system, ranking approach, interval-valued hesitant fuzzy setting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14304974 Automatic Map Simplification for Visualization on Mobile Devices
Authors: Hang Yu
Abstract:
The visualization of geographic information on mobile devices has become popular as the widespread use of mobile Internet. The mobility of these devices brings about much convenience to people-s life. By the add-on location-based services of the devices, people can have an access to timely information relevant to their tasks. However, visual analysis of geographic data on mobile devices presents several challenges due to the small display and restricted computing resources. These limitations on the screen size and resources may impair the usability aspects of the visualization applications. In this paper, a variable-scale visualization method is proposed to handle the challenge of small mobile display. By merging multiple scales of information into a single image, the viewer is able to focus on the interesting region, while having a good grasp of the surrounding context. This is essentially visualizing the map through a fisheye lens. However, the fisheye lens induces undesirable geometric distortion in the peripheral, which renders the information meaningless. The proposed solution is to apply map generalization that removes excessive information around the peripheral and an automatic smoothing process to correct the distortion while keeping the local topology consistent. The proposed method is applied on both artificial and real geographical data for evaluation.
Keywords: Map simplification, visualization, mobile devices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14424973 A Beacon Based Priority Routing Scheme for Solar Power Plants in WSNs
Authors: Ki-Sung Park, Dae-Hee Lee, Dae-Ho Won, Yeon-Mo Yang
Abstract:
Solar power plants(SPPs) have shown a lot of good outcomes in providing a various functions depending on industrial expectations by deploying ad-hoc networking with helps of light loaded and battery powered sensor nodes. In particular, it is strongly requested to develop an algorithm to deriver the sensing data from the end node of solar power plants to the sink node on time. In this paper, based on the above observation we have proposed an IEEE802.15.4 based self routing scheme for solar power plants. The proposed beacon based priority routing Algorithm (BPRA) scheme utilizes beacon periods in sending message with embedding the high priority data and thus provides high quality of service(QoS) in the given criteria. The performance measures are the packet Throughput, delivery, latency, total energy consumption. Simulation results under TinyOS Simulator(TOSSIM) have shown the proposed scheme outcome the conventional Ad hoc On-Demand Distance Vector(AODV) Routing in solar power plants.Keywords: Solar Power Plants(SPPs), Self routing, Quality of Service(QoS), WPANs, WSNs, TinyOS, TOSSIM, IEEE802.15.4
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21814972 Contributory Factors to Diabetes Dietary Regimen Non Adherence in Adults with Diabetes
Authors: Okolie Uchenna, Ehiemere Ijeoma, Ezenduka Pauline, Ogbu Sylvester
Abstract:
A cross sectional survey design was used to collect data from 370 diabetic patients. Two instruments were used in obtaining data; in-depth interview guide and researchers- developed questionnaire. Fisher's exact test was used to investigate association between the identified factors and nonadherence. Factors identified were: socio-demographic factors such as: gender, age, marital status, educational level and occupation; psychosocial obstacles such as: non-affordability of prescribed diet, frustration due to the restriction, limited spousal support, feelings of deprivation, feeling that temptation is inevitable, difficulty in adhering in social gatherings and difficulty in revealing to host that one is diabetic; health care providers obstacles were: poor attitude of health workers, irregular diabetes education in clinics , limited number of nutrition education sessions/ inability of the patients to estimate the desired quantity of food, no reminder post cards or phone calls about upcoming patient appointments and delayed start of appointment / time wasting in clinics.Keywords: Behavior change, diabetes mellitus, dietarymanagement, diet adherence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34434971 Monthly River Flow Prediction Using a Nonlinear Prediction Method
Authors: N. H. Adenan, M. S. M. Noorani
Abstract:
River flow prediction is an essential tool to ensure proper management of water resources and the optimal distribution of water to consumers. This study presents an analysis and prediction by using nonlinear prediction method with monthly river flow data for Tanjung Tualang from 1976 to 2006. Nonlinear prediction method involves the reconstruction of phase space and local linear approximation approach. The reconstruction of phase space involves the reconstruction of one-dimension (the observed 287 months of data) in a multidimensional phase space to reveal the dynamics of the system. The revenue of phase space reconstruction is used to predict the next 72 months. A comparison of prediction performance based on correlation coefficient (CC) and root mean square error (RMSE) was employed to compare prediction performance for the nonlinear prediction method, ARIMA and SVM. Prediction performance comparisons show that the prediction results using the nonlinear prediction method are better than ARIMA and SVM. Therefore, the results of this study could be used to develop an efficient water management system to optimize the allocation of water resources.
Keywords: River flow, nonlinear prediction method, phase space, local linear approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19694970 Curbing Cybercrime by Application of Internet Users’ Identification System (IUIS) in Nigeria
Authors: K. Alese Boniface, K. Adu Michael
Abstract:
Cybercrime is now becoming a big challenge in Nigeria apart from the traditional crime. Inability to identify perpetrators is one of the reasons for the growing menace. This paper proposes a design for monitoring internet users’ activities in order to curbing cybercrime. It requires redefining the operations of Internet Service Providers (ISPs) which will now mandate users to be authenticated before accessing the internet. In implementing this work which can be adapted to a larger scale, a virtual router application is developed and configured to mimic a real router device. A sign-up portal is developed to allow users to register with the ISP. The portal asks for identification information which will include bio-data and government issued identification data like National Identity Card number, et cetera. A unique username and password are chosen by the user to enable access to the internet which will be used to reference him to an Internet Protocol Address (IP Address) of any system he uses on the internet and thereby associating him to any criminal act related to that IP address at that particular time. Questions such as “What happen when another user knows the password and uses it to commit crime?” and other pertinent issues are addressed.
Keywords: Cybercrime, Sign-up Portal, Internet Service Provider (ISP), Internet Protocol Address (IP address).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22514969 Enhancing Spatial Interpolation: A Multi-Layer Inverse Distance Weighting Model for Complex Regression and Classification Tasks in Spatial Data Analysis
Authors: Yakin Hajlaoui, Richard Labib, Jean-Franc¸ois Plante, Michel Gamache
Abstract:
This study presents the Multi-Layer Inverse Distance Weighting Model (ML-IDW), inspired by the mathematical formulation of both multi-layer neural networks (ML-NNs) and Inverse Distance Weighting model (IDW). ML-IDW leverages ML-NNs’ processing capabilities, characterized by compositions of learnable non-linear functions applied to input features, and incorporates IDW’s ability to learn anisotropic spatial dependencies, presenting a promising solution for nonlinear spatial interpolation and learning from complex spatial data. We employ gradient descent and backpropagation to train ML-IDW. The performance of the proposed model is compared against conventional spatial interpolation models such as Kriging and standard IDW on regression and classification tasks using simulated spatial datasets of varying complexity. Our results highlight the efficacy of ML-IDW, particularly in handling complex spatial dataset, exhibiting lower mean square error in regression and higher F1 score in classification.
Keywords: Deep Learning, Multi-Layer Neural Networks, Gradient Descent, Spatial Interpolation, Inverse Distance Weighting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 614968 Wireless Sensor Network to Help Low Incomes Farmers to Face Drought Impacts
Authors: Fantazi Walid, Ezzedine Tahar, Bargaoui Zoubeida
Abstract:
This research presents the main ideas to implement an intelligent system composed by communicating wireless sensors measuring environmental data linked to drought indicators (such as air temperature, soil moisture , etc...). On the other hand, the setting up of a spatio temporal database communicating with a Web mapping application for a monitoring in real time in activity 24:00 /day, 7 days/week is proposed to allow the screening of the drought parameters time evolution and their extraction. Thus this system helps detecting surfaces touched by the phenomenon of drought. Spatio-temporal conceptual models seek to answer the users who need to manage soil water content for irrigating or fertilizing or other activities pursuing crop yield augmentation. Effectively, spatiotemporal conceptual models enable users to obtain a diagram of readable and easy data to apprehend. Based on socio-economic information, it helps identifying people impacted by the phenomena with the corresponding severity especially that this information is accessible by farmers and stakeholders themselves. The study will be applied in Siliana watershed Northern Tunisia.Keywords: WSN, database spatio-temporal, GIS, web-mapping, indicator of drought.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24514967 Motion-Based Detection and Tracking of Multiple Pedestrians
Authors: A. Harras, A. Tsuji, K. Terada
Abstract:
Tracking of moving people has gained a matter of great importance due to rapid technological advancements in the field of computer vision. The objective of this study is to design a motion based detection and tracking multiple walking pedestrians randomly in different directions. In our proposed method, Gaussian mixture model (GMM) is used to determine moving persons in image sequences. It reacts to changes that take place in the scene like different illumination; moving objects start and stop often, etc. Background noise in the scene is eliminated through applying morphological operations and the motions of tracked people which is determined by using the Kalman filter. The Kalman filter is applied to predict the tracked location in each frame and to determine the likelihood of each detection. We used a benchmark data set for the evaluation based on a side wall stationary camera. The actual scenes from the data set are taken on a street including up to eight people in front of the camera in different two scenes, the duration is 53 and 35 seconds, respectively. In the case of walking pedestrians in close proximity, the proposed method has achieved the detection ratio of 87%, and the tracking ratio is 77 % successfully. When they are deferred from each other, the detection ratio is increased to 90% and the tracking ratio is also increased to 79%.
Keywords: Automatic detection, tracking, pedestrians.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8334966 A Few Descriptive and Optimization Issues on the Material Flow at a Research-Academic Institution: The Role of Simulation
Authors: D. R. Delgado Sobrino, P. Košťál, J. Oravcová
Abstract:
Lately, significant work in the area of Intelligent Manufacturing has become public and mainly applied within the frame of industrial purposes. Special efforts have been made in the implementation of new technologies, management and control systems, among many others which have all evolved the field. Aware of all this and due to the scope of new projects and the need of turning the existing flexible ideas into more autonomous and intelligent ones, i.e.: Intelligent Manufacturing, the present paper emerges with the main aim of contributing to the design and analysis of the material flow in either systems, cells or work stations under this new “intelligent" denomination. For this, besides offering a conceptual basis in some of the key points to be taken into account and some general principles to consider in the design and analysis of the material flow, also some tips on how to define other possible alternative material flow scenarios and a classification of the states a system, cell or workstation are offered as well. All this is done with the intentions of relating it with the use of simulation tools, for which these have been briefly addressed with a special focus on the Witness simulation package. For a better comprehension, the previous elements are supported by a detailed layout, other figures and a few expressions which could help obtaining necessary data. Such data and others will be used in the future, when simulating the scenarios in the search of the best material flow configurations.Keywords: Flexible/Intelligent Manufacturing System/Cell (F/IMS/C), material flow/design/configuration (MF/D/C), workstation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16184965 The Behavior and Satisfaction of Tourists Affecting the Sustainable Tourism at the Amphawa Floating Market in Samut Songkhram Province
Authors: Chanpen Meenakorn
Abstract:
This research aims to study; (1) behavior of the tourists affecting the satisfaction level of tourism at the Amphawa floating market in Samut Songkhram province, (2) to study the satisfaction level of tourism at the Amphawa floating market. The research method will use quantitative research; data was collected by questionnaires distributed to the tourist who visits the Amphawa floating market for 480 samples. Data was analyzed by SPSS software to process descriptive statistic including frequency, percentage, mean, standard deviation and inferential statistic is t-test, F-test, and chi-square. The results showed that the behavior of tourists had known tourist attractions in the province comes from the mouth of relatives and friends suggested that he come here before and the reasons to visit is to want to pay homage to the various temples for the frequency to visit travel an average of 2-4 times and the satisfaction of the tourists in the province found that the satisfaction level of tourists in the province at the significant level of the place, convenient and services have a high level of satisfaction.Keywords: Amphawa floating market behavior of the tourists, satisfaction level, sustainable tourism, Samut Songkhram province.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12254964 Characteristics of E-waste Recycling Systems in Japan and China
Authors: Bi Bo, Kayoko Yamamoto
Abstract:
This study aims to identify processes, current situations, and issues of recycling systems for four home appliances, namely, air conditioners, television receivers, refrigerators, and washing machines, among e-wastes in China and Japan for understanding and comparison of their characteristics. In accordance with results of a literature search, review of information disclosed online, and questionnaire survey conducted, conclusions of the study boil down to: (1)The results show that in Japan most of the home appliances mentioned above have been collected through home appliance recycling tickets, resulting in an issue of “requiring some effort" in treatment and recycling stages, and most plants have contracted out their e-waste recycling. (2)It is found out that advantages of the recycling system in Japan include easiness to monitor concrete data and thorough environmental friendliness ensured while its disadvantages include illegal dumping and export. It becomes apparent that advantages of the recycling system in China include a high reuse rate, low treatment cost, and fewer illegal dumping while its disadvantages include less safe reused products, environmental pollution caused by e-waste treatment, illegal import, and difficulty in obtaining data.Keywords: E-waste, Recycling Systems, Home Appliances, Japan and China.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 48404963 Fuzzy Population-Based Meta-Heuristic Approaches for Attribute Reduction in Rough Set Theory
Authors: Mafarja Majdi, Salwani Abdullah, Najmeh S. Jaddi
Abstract:
One of the global combinatorial optimization problems in machine learning is feature selection. It concerned with removing the irrelevant, noisy, and redundant data, along with keeping the original meaning of the original data. Attribute reduction in rough set theory is an important feature selection method. Since attribute reduction is an NP-hard problem, it is necessary to investigate fast and effective approximate algorithms. In this paper, we proposed two feature selection mechanisms based on memetic algorithms (MAs) which combine the genetic algorithm with a fuzzy record to record travel algorithm and a fuzzy controlled great deluge algorithm, to identify a good balance between local search and genetic search. In order to verify the proposed approaches, numerical experiments are carried out on thirteen datasets. The results show that the MAs approaches are efficient in solving attribute reduction problems when compared with other meta-heuristic approaches.Keywords: Rough Set Theory, Attribute Reduction, Fuzzy Logic, Memetic Algorithms, Record to Record Algorithm, Great Deluge Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19434962 The Effect of Job Motivation, Work Environment and Leadership on Organizational Citizenship Behavior, Job Satisfaction and Public Service Quality in Magetan, East Java,Indonesia
Authors: Budiyanto, Hening Widi Oetomo
Abstract:
Magetan area is going to be the object of this research which is located in East Java, Indonesia. The data were obtained from 270 civil servants working at the Magetan District government. The data were analyzed using the Structural Equation Modeling with Partial Least Square program. The research showed the following findings: (1) job motivation variable has a positive and significant effect on organizational citizenship behavior (OCB); (2) work environment has positive and significant effect on OCB; (3) leadership variable has positive and significant effect on OCB; (4) job motivation variable has no significant effect on job satisfaction; (5) work environment variable has no significant effect on job satisfaction; (6) leadership variable has no significant effect on job satisfaction; (7) OCB is positively and significantly associated with job satisfaction; (8) job satisfaction variable is positively and significantly correlated with quality of public service at the Magetan District government.Keywords: Job Satisfaction, Leadership, OrganizationalCitizenship Behavior (OCB), Quality of Public Service
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39124961 Seed-Based Region Growing (SBRG) vs Adaptive Network-Based Inference System (ANFIS) vs Fuzzyc-Means (FCM): Brain Abnormalities Segmentation
Authors: Shafaf Ibrahim, Noor Elaiza Abdul Khalid, Mazani Manaf
Abstract:
Segmentation of Magnetic Resonance Imaging (MRI) images is the most challenging problems in medical imaging. This paper compares the performances of Seed-Based Region Growing (SBRG), Adaptive Network-Based Fuzzy Inference System (ANFIS) and Fuzzy c-Means (FCM) in brain abnormalities segmentation. Controlled experimental data is used, which designed in such a way that prior knowledge of the size of the abnormalities are known. This is done by cutting various sizes of abnormalities and pasting it onto normal brain tissues. The normal tissues or the background are divided into three different categories. The segmentation is done with fifty seven data of each category. The knowledge of the size of the abnormalities by the number of pixels are then compared with segmentation results of three techniques proposed. It was proven that the ANFIS returns the best segmentation performances in light abnormalities, whereas the SBRG on the other hand performed well in dark abnormalities segmentation.
Keywords: Seed-Based Region Growing (SBRG), Adaptive Network-Based Fuzzy Inference System (ANFIS), Fuzzy c-Means (FCM), Brain segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23134960 Application of Mutual Information based Least dependent Component Analysis (MILCA) for Removal of Ocular Artifacts from Electroencephalogram
Authors: V Krishnaveni, S Jayaraman, K Ramadoss
Abstract:
The electrical potentials generated during eye movements and blinks are one of the main sources of artifacts in Electroencephalogram (EEG) recording and can propagate much across the scalp, masking and distorting brain signals. In recent times, signal separation algorithms are used widely for removing artifacts from the observed EEG data. In this paper, a recently introduced signal separation algorithm Mutual Information based Least dependent Component Analysis (MILCA) is employed to separate ocular artifacts from EEG. The aim of MILCA is to minimize the Mutual Information (MI) between the independent components (estimated sources) under a pure rotation. Performance of this algorithm is compared with eleven popular algorithms (Infomax, Extended Infomax, Fast ICA, SOBI, TDSEP, JADE, OGWE, MS-ICA, SHIBBS, Kernel-ICA, and RADICAL) for the actual independence and uniqueness of the estimated source components obtained for different sets of EEG data with ocular artifacts by using a reliable MI Estimator. Results show that MILCA is best in separating the ocular artifacts and EEG and is recommended for further analysis.
Keywords: Electroencephalogram, Ocular Artifacts (OA), Independent Component Analysis (ICA), Mutual Information (MI), Mutual Information based Least dependent Component Analysis(MILCA)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21994959 The Corporate Vision Effect on Rajabhat University Brand Building in Thailand
Authors: Pisit Potjanajaruwit
Abstract:
This study aims to (1) investigate the corporate vision factor influencing Rajabhat University brand building in Thailand and (2) explore influences of brand building upon Rajabhat University stakeholders’ loyalty, and the research method will use mixed methods to conduct qualitative research with the quantitative research. The qualitative will approach by Indebt-interview the executive of Rathanagosin Rajabhat University group for 6 key informants and the quantitative data was collected by questionnaires distributed to stakeholder including instructors, staff, students and parents of the Rathanagosin Rajabhat University group for 400 sampling were selected by multi-stage sampling method. Data was analyzed by Structural Equation Modeling: SEM and also provide the focus group interview for confirming the model. Findings corporate vision had a direct and positive influence on Rajabhat University brand building were showed direct and positive influence on stakeholder’s loyalty and stakeholder’s loyalty was indirectly influenced by corporate vision through Rajabhat University brand building.
Keywords: Brand building, corporate vision, Rajabhat University, stakeholders’ loyalty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8134958 Quantum Modelling of AgHMoO4, CsHMoO4 and AgCsMoO4 Chemistry in the Field of Nuclear Power Plant Safety
Authors: Mohamad Saab, Sidi Souvi
Abstract:
In a major nuclear accident, the released fission products (FPs) and the structural materials are likely to influence the transport of iodine in the reactor coolant system (RCS) of a pressurized water reactor (PWR). So far, the thermodynamic data on cesium and silver species used to estimate the magnitude of FP release show some discrepancies, data are scarce and not reliable. For this reason, it is crucial to review the thermodynamic values related to cesium and silver materials. To this end, we have used state-of-the-art quantum chemical methods to compute the formation enthalpies and entropies of AgHMoO₄, CsHMoO₄, and AgCsMoO₄ in the gas phase. Different quantum chemical methods have been investigated (DFT and CCSD(T)) in order to predict the geometrical parameters and the energetics including the correlation energy. The geometries were optimized with TPSSh-5%HF method, followed by a single point calculation of the total electronic energies using the CCSD(T) wave function method. We thus propose with a final uncertainty of about 2 kJmol⁻¹ standard enthalpies of formation of AgHMoO₄, CsHMoO₄, and AgCsMoO₄.
Keywords: ASTEC, Accident Source Term Evaluation Code, quantum chemical methods, severe nuclear accident, thermochemical database.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8324957 Support Vector Machine based Intelligent Watermark Decoding for Anticipated Attack
Authors: Syed Fahad Tahir, Asifullah Khan, Abdul Majid, Anwar M. Mirza
Abstract:
In this paper, we present an innovative scheme of blindly extracting message bits from an image distorted by an attack. Support Vector Machine (SVM) is used to nonlinearly classify the bits of the embedded message. Traditionally, a hard decoder is used with the assumption that the underlying modeling of the Discrete Cosine Transform (DCT) coefficients does not appreciably change. In case of an attack, the distribution of the image coefficients is heavily altered. The distribution of the sufficient statistics at the receiving end corresponding to the antipodal signals overlap and a simple hard decoder fails to classify them properly. We are considering message retrieval of antipodal signal as a binary classification problem. Machine learning techniques like SVM is used to retrieve the message, when certain specific class of attacks is most probable. In order to validate SVM based decoding scheme, we have taken Gaussian noise as a test case. We generate a data set using 125 images and 25 different keys. Polynomial kernel of SVM has achieved 100 percent accuracy on test data.Keywords: Bit Correct Ratio (BCR), Grid Search, Intelligent Decoding, Jackknife Technique, Support Vector Machine (SVM), Watermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16774956 Research on Transformer Condition-based Maintenance System using the Method of Fuzzy Comprehensive Evaluation
Authors: Po-Chun Lin, Jyh-Cherng Gu
Abstract:
This study adopted previous fault patterns, results of detection analysis, historical records and data, and experts- experiences to establish fuzzy principles and estimate the failure probability index of components of a power transformer. Considering that actual parameters and limiting conditions of parameters may differ, this study used the standard data of IEC, IEEE, and CIGRE as condition parameters. According to the characteristics of each condition parameter, relative degradation was introduced to reflect the degree of influence of the factors on the transformer condition. The method of fuzzy mathematics was adopted to determine the subordinate function of the transformer condition. The calculation used the Matlab Fuzzy Tool Box to select the condition parameters of coil winding, iron core, bushing, OLTC, insulating oil and other auxiliary components and factors (e.g., load records, performance history, and maintenance records) of the transformer to establish the fuzzy principles. Examples were presented to support the rationality and effectiveness of the evaluation method of power transformer performance conditions, as based on fuzzy comprehensive evaluation.Keywords: Fuzzy, relative degradation degree, condition-basedmaintenance, power transformer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24804955 Social Semantic Web-Based Analytics Approach to Support Lifelong Learning
Authors: Khaled Halimi, Hassina Seridi-Bouchelaghem
Abstract:
The purpose of this paper is to describe how learning analytics approaches based on social semantic web techniques can be applied to enhance the lifelong learning experiences in a connectivist perspective. For this reason, a prototype of a system called SoLearn (Social Learning Environment) that supports this approach. We observed and studied literature related to lifelong learning systems, social semantic web and ontologies, connectivism theory, learning analytics approaches and reviewed implemented systems based on these fields to extract and draw conclusions about necessary features for enhancing the lifelong learning process. The semantic analytics of learning can be used for viewing, studying and analysing the massive data generated by learners, which helps them to understand through recommendations, charts and figures their learning and behaviour, and to detect where they have weaknesses or limitations. This paper emphasises that implementing a learning analytics approach based on social semantic web representations can enhance the learning process. From one hand, the analysis process leverages the meaning expressed by semantics presented in the ontology (relationships between concepts). From the other hand, the analysis process exploits the discovery of new knowledge by means of inferring mechanism of the semantic web.
Keywords: Connectivism, data visualization, informal learning, learning analytics, semantic web, social web.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8224954 3D Shape Modelling of Left Ventricle: Towards Correlation of Myocardial Scintigraphy Data and Coronarography Result
Authors: A. Ben Abdallah, H. Essabbah, M. H. Bedoui
Abstract:
The myocardial sintigraphy is an imaging modality which provides functional informations. Whereas, coronarography modality gives useful informations about coronary arteries anatomy. In case of coronary artery disease (CAD), the coronarography can not determine precisely which moderate lesions (artery reduction between 50% and 70%), known as the “gray zone", are haemodynamicaly significant. In this paper, we aim to define the relationship between the location and the degree of the stenosis in coronary arteries and the observed perfusion on the myocardial scintigraphy. This allows us to model the impact evolution of these stenoses in order to justify a coronarography or to avoid it for patients suspected being in the gray zone. Our approach is decomposed in two steps. The first step consists in modelling a coronary artery bed and stenoses of different location and degree. The second step consists in modelling the left ventricle at stress and at rest using the sphercical harmonics model and myocardial scintigraphic data. We use the spherical harmonics descriptors to analyse left ventricle model deformation between stress and rest which permits us to conclude if ever an ischemia exists and to quantify it.
Keywords: Spherical harmonics model, vascular bed, 3D reconstruction, left ventricle, myocardial scintigraphy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17994953 Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT) Parameters for Propane, Ethylene, and Hydrogen under Supercritical Conditions
Authors: Ilke Senol
Abstract:
Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT) equation of state (EOS) is a modified SAFT EOS with three pure component specific parameters: segment number (m), diameter (σ) and energy (ε). These PC-SAFT parameters need to be determined for each component under the conditions of interest by fitting experimental data, such as vapor pressure, density or heat capacity. PC-SAFT parameters for propane, ethylene and hydrogen in supercritical region were successfully estimated by fitting experimental density data available in literature. The regressed PCSAFT parameters were compared with the literature values by means of estimating pure component density and calculating average absolute deviation between the estimated and experimental density values. PC-SAFT parameters available in literature especially for ethylene and hydrogen estimated density in supercritical region reasonably well. However, the regressed PC-SAFT parameters performed better in supercritical region than the PC-SAFT parameters from literature.
Keywords: Equation of state, perturbed-chain, PC-SAFT, super critical.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 70104952 Thermodynamic Modeling of the High Temperature Shift Converter Reactor Using Minimization of Gibbs Free Energy
Authors: H. Zare Aliabadi
Abstract:
The equilibrium chemical reactions taken place in a converter reactor of the Khorasan Petrochemical Ammonia plant was studied using the minimization of Gibbs free energy method. In the minimization of the Gibbs free energy function the Davidon– Fletcher–Powell (DFP) optimization procedure using the penalty terms in the well-defined objective function was used. It should be noted that in the DFP procedure along with the corresponding penalty terms the Hessian matrices for the composition of constituents in the Converter reactor can be excluded. This, in fact, can be considered as the main advantage of the DFP optimization procedure. Also the effect of temperature and pressure on the equilibrium composition of the constituents was investigated. The results obtained in this work were compared with the data collected from the converter reactor of the Khorasan Petrochemical Ammonia plant. It was concluded that the results obtained from the method used in this work are in good agreement with the industrial data. Notably, the algorithm developed in this work, in spite of its simplicity, takes the advantage of short computation and convergence time.
Keywords: Gibbs free energy, converter reactors, Chemical equilibrium
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25794951 Survey of Access Controls in Cloud Computing
Authors: Monirah Alkathiry, Hanan Aljarwan
Abstract:
Cloud computing is one of the most significant technologies that the world deals with, in different sectors with different purposes and capabilities. The cloud faces various challenges in securing data from unauthorized access or modification. Consequently, security risks and levels have greatly increased. Therefore, cloud service providers (CSPs) and users need secure mechanisms that ensure that data are kept secret and safe from any disclosures or exploits. For this reason, CSPs need a number of techniques and technologies to manage and secure access to the cloud services to achieve security goals, such as confidentiality, integrity, identity access management (IAM), etc. Therefore, this paper will review and explore various access controls implemented in a cloud environment that achieve different security purposes. The methodology followed in this survey was conducting an assessment, evaluation, and comparison between those access controls mechanisms and technologies based on different factors, such as the security goals it achieves, usability, and cost-effectiveness. This assessment resulted in the fact that the technology used in an access control affects the security goals it achieves as well as there is no one access control method that achieves all security goals. Consequently, such a comparison would help decision-makers to choose properly the access controls that meet their requirements.Keywords: Access controls, cloud computing, confidentiality, identity and access management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7384950 Nonlinear Analysis of Postural Sway in Multiple Sclerosis
Authors: Hua Cao, Laurent Peyrodie, Olivier Agnani, Cécile Donzé
Abstract:
Multiple Sclerosis (MS) is a disease which affects the central nervous system and causes balance problem. In clinical, this disorder is usually evaluated using static posturography. Some linear or nonlinear measures, extracted from the posturographic data (i.e. center of pressure, COP) recorded during a balance test, has been used to analyze postural control of MS patients. In this study, the trend (TREND) and the sample entropy (SampEn), two nonlinear parameters were chosen to investigate their relationships with the expanded disability status scale (EDSS) score. 40 volunteers with different EDSS scores participated in our experiments with eyes open (EO) and closed (EC). TREND and 2 types of SampEn (SampEn1 and SampEn2) were calculated for each combined COP’s position signal. The results have shown that TREND had a weak negative correlation to EDSS while SampEn2 had a strong positive correlation to EDSS. Compared to TREND and SampEn1, SampEn2 showed a better significant correlation to EDSS and an ability to discriminate the MS patients in the EC case. In addition, the outcome of the study suggests that the multi-dimensional nonlinear analysis could provide some information about the impact of disability progression in MS on dynamics of the COP data.Keywords: Balance, multiple sclerosis, nonlinear analysis, postural sway.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19804949 Applying Multiple Kinect on the Development of a Rapid 3D Mannequin Scan Platform
Authors: Shih-Wen Hsiao, Yi-Cheng Tsao
Abstract:
In the field of reverse engineering and creative industries, applying 3D scanning process to obtain geometric forms of the objects is a mature and common technique. For instance, organic objects such as faces and nonorganic objects such as products could be scanned to acquire the geometric information for further application. However, although the data resolution of 3D scanning device is increasing and there are more and more abundant complementary applications, the penetration rate of 3D scanning for the public is still limited by the relative high price of the devices. On the other hand, Kinect, released by Microsoft, is known for its powerful functions, considerably low price, and complete technology and database support. Therefore, related studies can be done with the applying of Kinect under acceptable cost and data precision. Due to the fact that Kinect utilizes optical mechanism to extracting depth information, limitations are found due to the reason of the straight path of the light. Thus, various angles are required sequentially to obtain the complete 3D information of the object when applying a single Kinect for 3D scanning. The integration process which combines the 3D data from different angles by certain algorithms is also required. This sequential scanning process costs much time and the complex integration process often encounter some technical problems. Therefore, this paper aimed to apply multiple Kinects simultaneously on the field of developing a rapid 3D mannequin scan platform and proposed suggestions on the number and angles of Kinects. In the content, a method of establishing the coordination based on the relation between mannequin and the specifications of Kinect is proposed, and a suggestion of angles and number of Kinects is also described. An experiment of applying multiple Kinect on the scanning of 3D mannequin is constructed by Microsoft API, and the results show that the time required for scanning and technical threshold can be reduced in the industries of fashion and garment design.
Keywords: 3D scan, depth sensor, fashion and garment design, mannequin, multiple kinect sensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22844948 A Multigrid Approach for Three-Dimensional Inverse Heat Conduction Problems
Authors: Jianhua Zhou, Yuwen Zhang
Abstract:
A two-step multigrid approach is proposed to solve the inverse heat conduction problem in a 3-D object under laser irradiation. In the first step, the location of the laser center is estimated using a coarse and uniform grid system. In the second step, the front-surface temperature is recovered in good accuracy using a multiple grid system in which fine mesh is used at laser spot center to capture the drastic temperature rise in this region but coarse mesh is employed in the peripheral region to reduce the total number of sensors required. The effectiveness of the two-step approach and the multiple grid system are demonstrated by the illustrative inverse solutions. If the measurement data for the temperature and heat flux on the back surface do not contain random error, the proposed multigrid approach can yield more accurate inverse solutions. When the back-surface measurement data contain random noise, accurate inverse solutions cannot be obtained if both temperature and heat flux are measured on the back surface.
Keywords: Conduction, inverse problems, conjugated gradient method, laser.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 853