Search results for: adaptive fuzzy neural inference
180 Analysis of Feature Space for a 2d/3d Vision based Emotion Recognition Method
Authors: Robert Niese, Ayoub Al-Hamadi, Bernd Michaelis
Abstract:
In modern human computer interaction systems (HCI), emotion recognition is becoming an imperative characteristic. The quest for effective and reliable emotion recognition in HCI has resulted in a need for better face detection, feature extraction and classification. In this paper we present results of feature space analysis after briefly explaining our fully automatic vision based emotion recognition method. We demonstrate the compactness of the feature space and show how the 2d/3d based method achieves superior features for the purpose of emotion classification. Also it is exposed that through feature normalization a widely person independent feature space is created. As a consequence, the classifier architecture has only a minor influence on the classification result. This is particularly elucidated with the help of confusion matrices. For this purpose advanced classification algorithms, such as Support Vector Machines and Artificial Neural Networks are employed, as well as the simple k- Nearest Neighbor classifier.Keywords: Facial expression analysis, Feature extraction, Image processing, Pattern Recognition, Application.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1923179 Differential Protection for Power Transformer Using Wavelet Transform and PNN
Authors: S. Sendilkumar, B. L. Mathur, Joseph Henry
Abstract:
A new approach for protection of power transformer is presented using a time-frequency transform known as Wavelet transform. Different operating conditions such as inrush, Normal, load, External fault and internal fault current are sampled and processed to obtain wavelet coefficients. Different Operating conditions provide variation in wavelet coefficients. Features like energy and Standard deviation are calculated using Parsevals theorem. These features are used as inputs to PNN (Probabilistic neural network) for fault classification. The proposed algorithm provides more accurate results even in the presence of noise inputs and accurately identifies inrush and fault currents. Overall classification accuracy of the proposed method is found to be 96.45%. Simulation of the fault (with and without noise) was done using MATLAB AND SIMULINK software taking 2 cycles of data window (40 m sec) containing 800 samples. The algorithm was evaluated by using 10 % Gaussian white noise.Keywords: Power Transformer, differential Protection, internalfault, inrush current, Wavelet Energy, Db9.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3131178 A Web Oriented Spread Spectrum Watermarking Procedure for MPEG-2 Videos
Authors: Franco Frattolillo
Abstract:
In the last decade digital watermarking procedures have become increasingly applied to implement the copyright protection of multimedia digital contents distributed on the Internet. To this end, it is worth noting that a lot of watermarking procedures for images and videos proposed in literature are based on spread spectrum techniques. However, some scepticism about the robustness and security of such watermarking procedures has arisen because of some documented attacks which claim to render the inserted watermarks undetectable. On the other hand, web content providers wish to exploit watermarking procedures characterized by flexible and efficient implementations and which can be easily integrated in their existing web services frameworks or platforms. This paper presents how a simple spread spectrum watermarking procedure for MPEG-2 videos can be modified to be exploited in web contexts. To this end, the proposed procedure has been made secure and robust against some well-known and dangerous attacks. Furthermore, its basic scheme has been optimized by making the insertion procedure adaptive with respect to the terminals used to open the videos and the network transactions carried out to deliver them to buyers. Finally, two different implementations of the procedure have been developed: the former is a high performance parallel implementation, whereas the latter is a portable Java and XML based implementation. Thus, the paper demonstrates that a simple spread spectrum watermarking procedure, with limited and appropriate modifications to the embedding scheme, can still represent a valid alternative to many other well-known and more recent watermarking procedures proposed in literature.Keywords: Copyright protection, digital watermarking, intellectual property protection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1511177 Microservices-Based Provisioning and Control of Network Services for Heterogeneous Networks
Authors: Shameemraj M. Nadaf, Sipra Behera, Hemant K. Rath, Garima Mishra, Raja Mukhopadhyay, Sumanta Patro
Abstract:
Microservices architecture has been widely embraced for rapid, frequent, and reliable delivery of complex applications. It enables organizations to evolve their technology stack in various domains. Today, the networking domain is flooded with plethora of devices and software solutions which address different functionalities ranging from elementary operations, viz., switching, routing, firewall etc., to complex analytics and insights based intelligent services. In this paper, we attempt to bring in the microservices based approach for agile and adaptive delivery of network services for any underlying networking technology. We discuss the life cycle management of each individual microservice and a distributed control approach with emphasis for dynamic provisioning, management, and orchestration in an automated fashion which can provide seamless operations in large scale networks. We have conducted validations of the system in lab testbed comprising of Traditional/Legacy and Software Defined Wireless Local Area networks.
Keywords: Microservices architecture, software defined wireless networks, traditional wireless networks, automation, orchestration, intelligent networks, network analytics, seamless management, single pane control, fine-grain control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 890176 Forms of Social Quality Mobilization in Suburban Communities of a Changing World
Authors: Supannee Chaiumporn
Abstract:
This article is to introduce the meaning and form of social quality moving process as indicated by members of two suburb communities with different social and cultural contexts. The form of social quality moving process is very significant for the community and social development, because it will make the people living together with sustainable happiness. This is a qualitative study involving 30 key-informants from two suburb communities. Data were collected though key-informant interviews, and analyzed using logical content description and descriptive statistics. This research found that on the social quality component, the people in both communities stressed the procedure for social qualitymaking. This includes the generousness, sharing and assisting among people in the communities. These practices helped making people to live together with sustainable happiness. Living as a family or appear to be a family is the major social characteristic of these two communities. This research also found that form of social quality’s moving process of both communities stress relation of human and nature; “nature overpower humans” paradigm and influence of religious doctrine that emphasizes relations among humans. Both criteria make the form of social’s moving process simple, adaptive to nature and caring for opinion sharing and understanding among each other before action. This form of social quality’s moving process is composed of 4 steps; (1) awareness building, (2) motivation to change, (3) participation from every party which is concerned (4) self-reliance.Keywords: Social quality, form of social quality moving process, happiness, different social and cultural context.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589175 Energy Loss at Drops using Neuro Solutions
Authors: Farzin Salmasi
Abstract:
Energy dissipation in drops has been investigated by physical models. After determination of effective parameters on the phenomenon, three drops with different heights have been constructed from Plexiglas. They have been installed in two existing flumes in the hydraulic laboratory. Several runs of physical models have been undertaken to measured required parameters for determination of the energy dissipation. Results showed that the energy dissipation in drops depend on the drop height and discharge. Predicted relative energy dissipations varied from 10.0% to 94.3%. This work has also indicated that the energy loss at drop is mainly due to the mixing of the jet with the pool behind the jet that causes air bubble entrainment in the flow. Statistical model has been developed to predict the energy dissipation in vertical drops denotes nonlinear correlation between effective parameters. Further an artificial neural networks (ANNs) approach was used in this paper to develop an explicit procedure for calculating energy loss at drops using NeuroSolutions. Trained network was able to predict the response with R2 and RMSE 0.977 and 0.0085 respectively. The performance of ANN was found effective when compared to regression equations in predicting the energy loss.Keywords: Air bubble, drop, energy loss, hydraulic jump, NeuroSolutions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644174 Support Vector Machines Approach for Detecting the Mean Shifts in Hotelling-s T2 Control Chart with Sensitizing Rules
Authors: Tai-Yue Wang, Hui-Min Chiang, Su-Ni Hsieh, Yu-Min Chiang
Abstract:
In many industries, control charts is one of the most frequently used tools for quality management. Hotelling-s T2 is used widely in multivariate control chart. However, it has little defect when detecting small or medium process shifts. The use of supplementary sensitizing rules can improve the performance of detection. This study applied sensitizing rules for Hotelling-s T2 control chart to improve the performance of detection. Support vector machines (SVM) classifier to identify the characteristic or group of characteristics that are responsible for the signal and to classify the magnitude of the mean shifts. The experimental results demonstrate that the support vector machines (SVM) classifier can effectively identify the characteristic or group of characteristics that caused the process mean shifts and the magnitude of the shifts.Keywords: Hotelling's T2 control chart, Neural networks, Sensitizing rules, Support vector machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872173 Validation of an EEG Classification Procedure Aimed at Physiological Interpretation
Authors: M. Guillard, M. Philippe, F. Laurent, J. Martinerie, J. P. Lachaux, G. Florence
Abstract:
One approach to assess neural networks underlying the cognitive processes is to study Electroencephalography (EEG). It is relevant to detect various mental states and characterize the physiological changes that help to discriminate two situations. That is why an EEG (amplitude, synchrony) classification procedure is described, validated. The two situations are "eyes closed" and "eyes opened" in order to study the "alpha blocking response" phenomenon in the occipital area. The good classification rate between the two situations is 92.1 % (SD = 3.5%) The spatial distribution of a part of amplitude features that helps to discriminate the two situations are located in the occipital regions that permit to validate the localization method. Moreover amplitude features in frontal areas, "short distant" synchrony in frontal areas and "long distant" synchrony between frontal and occipital area also help to discriminate between the two situations. This procedure will be used for mental fatigue detection.
Keywords: Classification, EEG Synchrony, alpha, resting situation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1456172 Touristification of Industrial Waterfronts: The Rocks and Darling Harbour
Authors: Ece Kaya
Abstract:
Industrial heritage reflects the traces of an industrial past that have contributed to the economic development of a country. This heritage should be included within the scope of preservation to remind of and to connect the city and its inhabitants to the past. Through adaptive conservation, industrial heritage can be reintroduced into contemporary urban life, with suitable functions and unique identities sustained. The conservation of industrial heritage should protect the material fabric of such heritage and maintain its cultural significance. Emphasising the historical and cultural significance of industrial areas, this research argues that industrial heritage is primarily impacted by political and economic thinking rather than by informed heritage and conservation issues. Waterfront redevelopment projects create similar landscapes around the world, transforming industrial identities and cultural significances. In the case of The Rocks and Darling Harbour, the goal of redevelopment was the creation of employment opportunities, and the provision of places to work, live and shop, through tourism promoted by the NSW State Government. The two case study areas were pivotal to the European industrial development of Sydney. Sydney Cove was one of the largest commercial wharves used to handle cargo in Australia. This paper argues, together with many historians, planners and heritage experts, that these areas have not received the due diligence deserved in regards to their significance to the industrial history of Sydney and modern Australia.
Keywords: Industrial heritage, post-industrial city, transformation of waterfronts, tourism, consumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1341171 Multivariable Control of Smart Timoshenko Beam Structures Using POF Technique
Authors: T.C. Manjunath, B. Bandyopadhyay
Abstract:
Active Vibration Control (AVC) is an important problem in structures. One of the ways to tackle this problem is to make the structure smart, adaptive and self-controlling. The objective of active vibration control is to reduce the vibration of a system by automatic modification of the system-s structural response. This paper features the modeling and design of a Periodic Output Feedback (POF) control technique for the active vibration control of a flexible Timoshenko cantilever beam for a multivariable case with 2 inputs and 2 outputs by retaining the first 2 dominant vibratory modes using the smart structure concept. The entire structure is modeled in state space form using the concept of piezoelectric theory, Timoshenko beam theory, Finite Element Method (FEM) and the state space techniques. Simulations are performed in MATLAB. The effect of placing the sensor / actuator at 2 finite element locations along the length of the beam is observed. The open loop responses, closed loop responses and the tip displacements with and without the controller are obtained and the performance of the smart system is evaluated for active vibration control.Keywords: Smart structure, Timoshenko theory, Euler-Bernoulli theory, Periodic output feedback control, Finite Element Method, State space model, Vibration control, Multivariable system, Linear Matrix Inequality
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2319170 A Predictive Rehabilitation Software for Cerebral Palsy Patients
Authors: J. Bouchard, B. Prosperi, G. Bavre, M. Daudé, E. Jeandupeux
Abstract:
Young patients suffering from Cerebral Palsy are facing difficult choices concerning heavy surgeries. Diagnosis settled by surgeons can be complex and on the other hand decision for patient about getting or not such a surgery involves important reflection effort. Proposed software combining prediction for surgeries and post surgery kinematic values, and from 3D model representing the patient is an innovative tool helpful for both patients and medicine professionals. Beginning with analysis and classification of kinematics values from Data Base extracted from gait analysis in 3 separated clusters, it is possible to determine close similarity between patients. Prediction surgery best adapted to improve a patient gait is then determined by operating a suitable preconditioned neural network. Finally, patient 3D modeling based on kinematic values analysis, is animated thanks to post surgery kinematic vectors characterizing the closest patient selected from patients clustering.
Keywords: Cerebral Palsy, Clustering, Crouch Gait, 3-D Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2007169 The Wavelet-Based DFT: A New Interpretation, Extensions and Applications
Authors: Abdulnasir Hossen, Ulrich Heute
Abstract:
In 1990 [1] the subband-DFT (SB-DFT) technique was proposed. This technique used the Hadamard filters in the decomposition step to split the input sequence into low- and highpass sequences. In the next step, either two DFTs are needed on both bands to compute the full-band DFT or one DFT on one of the two bands to compute an approximate DFT. A combination network with correction factors was to be applied after the DFTs. Another approach was proposed in 1997 [2] for using a special discrete wavelet transform (DWT) to compute the discrete Fourier transform (DFT). In the first step of the algorithm, the input sequence is decomposed in a similar manner to the SB-DFT into two sequences using wavelet decomposition with Haar filters. The second step is to perform DFTs on both bands to obtain the full-band DFT or to obtain a fast approximate DFT by implementing pruning at both input and output sides. In this paper, the wavelet-based DFT (W-DFT) with Haar filters is interpreted as SB-DFT with Hadamard filters. The only difference is in a constant factor in the combination network. This result is very important to complete the analysis of the W-DFT, since all the results concerning the accuracy and approximation errors in the SB-DFT are applicable. An application example in spectral analysis is given for both SB-DFT and W-DFT (with different filters). The adaptive capability of the SB-DFT is included in the W-DFT algorithm to select the band of most energy as the band to be computed. Finally, the W-DFT is extended to the two-dimensional case. An application in image transformation is given using two different types of wavelet filters.
Keywords: Image Transform, Spectral Analysis, Sub-Band DFT, Wavelet DFT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669168 Identifying Autism Spectrum Disorder Using Optimization-Based Clustering
Authors: Sharifah Mousli, Sona Taheri, Jiayuan He
Abstract:
Autism spectrum disorder (ASD) is a complex developmental condition involving persistent difficulties with social communication, restricted interests, and repetitive behavior. The challenges associated with ASD can interfere with an affected individual’s ability to function in social, academic, and employment settings. Although there is no effective medication known to treat ASD, to our best knowledge, early intervention can significantly improve an affected individual’s overall development. Hence, an accurate diagnosis of ASD at an early phase is essential. The use of machine learning approaches improves and speeds up the diagnosis of ASD. In this paper, we focus on the application of unsupervised clustering methods in ASD, as a large volume of ASD data generated through hospitals, therapy centers, and mobile applications has no pre-existing labels. We conduct a comparative analysis using seven clustering approaches, such as K-means, agglomerative hierarchical, model-based, fuzzy-C-means, affinity propagation, self organizing maps, linear vector quantisation – as well as the recently developed optimization-based clustering (COMSEP-Clust) approach. We evaluate the performances of the clustering methods extensively on real-world ASD datasets encompassing different age groups: toddlers, children, adolescents, and adults. Our experimental results suggest that the COMSEP-Clust approach outperforms the other seven methods in recognizing ASD with well-separated clusters.
Keywords: Autism spectrum disorder, clustering, optimization, unsupervised machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 415167 Application of Generalized Autoregressive Score Model to Stock Returns
Authors: Katleho Daniel Makatjane, Diteboho Lawrence Xaba, Ntebogang Dinah Moroke
Abstract:
The current study investigates the behaviour of time-varying parameters that are based on the score function of the predictive model density at time t. The mechanism to update the parameters over time is the scaled score of the likelihood function. The results revealed that there is high persistence of time-varying, as the location parameter is higher and the skewness parameter implied the departure of scale parameter from the normality with the unconditional parameter as 1.5. The results also revealed that there is a perseverance of the leptokurtic behaviour in stock returns which implies the returns are heavily tailed. Prior to model estimation, the White Neural Network test exposed that the stock price can be modelled by a GAS model. Finally, we proposed further researches specifically to model the existence of time-varying parameters with a more detailed model that encounters the heavy tail distribution of the series and computes the risk measure associated with the returns.
Keywords: Generalized autoregressive score model, stock returns, time-varying.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1034166 Effective Traffic Lights Recognition Method for Real Time Driving Assistance Systemin the Daytime
Authors: Hyun-Koo Kim, Ju H. Park, Ho-Youl Jung
Abstract:
This paper presents an effective traffic lights recognition method at the daytime. First, Potential Traffic Lights Detector (PTLD) use whole color source of YCbCr channel image and make each binary image of green and red traffic lights. After PTLD step, Shape Filter (SF) use to remove noise such as traffic sign, street tree, vehicle, and building. At this time, noise removal properties consist of information of blobs of binary image; length, area, area of boundary box, etc. Finally, after an intermediate association step witch goal is to define relevant candidates region from the previously detected traffic lights, Adaptive Multi-class Classifier (AMC) is executed. The classification method uses Haar-like feature and Adaboost algorithm. For simulation, we are implemented through Intel Core CPU with 2.80 GHz and 4 GB RAM and tested in the urban and rural roads. Through the test, we are compared with our method and standard object-recognition learning processes and proved that it reached up to 94 % of detection rate which is better than the results achieved with cascade classifiers. Computation time of our proposed method is 15 ms.Keywords: Traffic Light Detection, Multi-class Classification, Driving Assistance System, Haar-like Feature, Color SegmentationMethod, Shape Filter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2780165 Evaluation of Robust Feature Descriptors for Texture Classification
Authors: Jia-Hong Lee, Mei-Yi Wu, Hsien-Tsung Kuo
Abstract:
Texture is an important characteristic in real and synthetic scenes. Texture analysis plays a critical role in inspecting surfaces and provides important techniques in a variety of applications. Although several descriptors have been presented to extract texture features, the development of object recognition is still a difficult task due to the complex aspects of texture. Recently, many robust and scaling-invariant image features such as SIFT, SURF and ORB have been successfully used in image retrieval and object recognition. In this paper, we have tried to compare the performance for texture classification using these feature descriptors with k-means clustering. Different classifiers including K-NN, Naive Bayes, Back Propagation Neural Network , Decision Tree and Kstar were applied in three texture image sets - UIUCTex, KTH-TIPS and Brodatz, respectively. Experimental results reveal SIFTS as the best average accuracy rate holder in UIUCTex, KTH-TIPS and SURF is advantaged in Brodatz texture set. BP neuro network works best in the test set classification among all used classifiers.Keywords: Texture classification, texture descriptor, SIFT, SURF, ORB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600164 Unscented Transformation for Estimating the Lyapunov Exponents of Chaotic Time Series Corrupted by Random Noise
Authors: K. Kamalanand, P. Mannar Jawahar
Abstract:
Many systems in the natural world exhibit chaos or non-linear behavior, the complexity of which is so great that they appear to be random. Identification of chaos in experimental data is essential for characterizing the system and for analyzing the predictability of the data under analysis. The Lyapunov exponents provide a quantitative measure of the sensitivity to initial conditions and are the most useful dynamical diagnostic for chaotic systems. However, it is difficult to accurately estimate the Lyapunov exponents of chaotic signals which are corrupted by a random noise. In this work, a method for estimation of Lyapunov exponents from noisy time series using unscented transformation is proposed. The proposed methodology was validated using time series obtained from known chaotic maps. In this paper, the objective of the work, the proposed methodology and validation results are discussed in detail.
Keywords: Lyapunov exponents, unscented transformation, chaos theory, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1988163 Comparative Dynamic Performance of Load Frequency Control of Nonlinear Interconnected Hydro-Thermal System Using Intelligent Techniques
Authors: Banaja Mohanty, Prakash Kumar Hota
Abstract:
This paper demonstrates dynamic performance evaluation of load frequency control (LFC) with different intelligent techniques. All non-linearities and physical constraints have been considered in simulation studies such as governor dead band (GDB), generation rate constraint (GRC) and boiler dynamics. The conventional integral time absolute error has been considered as objective function. The design problem is formulated as an optimisation problem and particle swarm optimisation (PSO), bacterial foraging optimisation algorithm (BFOA) and differential evolution (DE) are employed to search optimal controller parameters. The superiority of the proposed approach has been shown by comparing the results with published fuzzy logic control (FLC) for the same interconnected power system. The comparison is done using various performance measures like overshoot, undershoot, settling time and standard error criteria of frequency and tie-line power deviation following a step load perturbation (SLP). It is noticed that, the dynamic performance of proposed controller is better than FLC. Further, robustness analysis is carried out by varying the time constants of speed governor, turbine, tie-line power in the range of +40% to -40% to demonstrate the robustness of the proposed DE optimized PID controller.Keywords: Automatic generation control, governor dead band, generation rate constraint, differential evolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1060162 Innovative Entrepreneurship in Tourism Business: An International Comparative Study of Key Drivers
Authors: Mohammed Gamil Montasser, Angelo Battaglia
Abstract:
Entrepreneurship is mostly related to the beginning of organization. In growing business organizations, entrepreneurship expands its conceptualization. It reveals itself through new business creation in the active organization, through renewal, change, innovation, creation and development of current organization, through breaking and changing of established rules inside or outside the organization and becomes more flexible, adaptive and competitive, also improving effectiveness of organization activity. Therefore, the topic of entrepreneurship, relates the creation of firms to personal / individual characteristics of the entrepreneurs and their social context. This paper is an empirical study, which aims to address these two gaps in the literature. For this endeavor, we use the latest available data from the Global Entrepreneurship Monitor (GEM) project. This data set is widely regarded as a unique source of information about entrepreneurial activity, as well as the aspirations and attitudes of individuals across a wide number of countries and territories worldwide. This paper tries to contribute to fill this gap, by exploring the key drivers of innovative entrepreneurship in the tourism sector. Our findings are consistent with the existing literature in terms of the individual characteristics of entrepreneurs, but quite surprisingly we find an inverted U-shape relation between human development and innovative entrepreneurship in tourism sector. It has been revealed that tourism entrepreneurs are less likely to have innovative products, compared with entrepreneurs in medium developed countries.
Keywords: GEM, human development, innovative entrepreneurship, occupational choice, tourism business, U-shape relation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697161 Suitable Die Shaping for a Rectangular Shape Bottle by Application of FEM and AI Technique
Authors: N. Ploysook, R. Rugsaj, C. Suvanjumrat
Abstract:
The characteristic requirement for producing rectangular shape bottles was a uniform thickness of the plastic bottle wall. Die shaping was a good technique which controlled the wall thickness of bottles. An advance technology which was the finite element method (FEM) for blowing parison to be a rectangular shape bottle was conducted to reduce waste plastic from a trial and error method of a die shaping and parison control method. The artificial intelligent (AI) comprised of artificial neural network and genetic algorithm was selected to optimize the die gap shape from the FEM results. The application of AI technique could optimize the suitable die gap shape for the parison blow molding which did not depend on the parison control method to produce rectangular bottles with the uniform wall. Particularly, this application can be used with cheap blow molding machines without a parison controller therefore it will reduce cost of production in the bottle blow molding process.
Keywords: AI, bottle, die shaping, FEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2620160 Suspended Matter Model on Alsat-1 Image by MLP Network and Mathematical Morphology: Prototypes by K-Means
Authors: S. Loumi, H. Merrad, F. Alilat, B. Sansal
Abstract:
In this article, we propose a methodology for the characterization of the suspended matter along Algiers-s bay. An approach by multi layers perceptron (MLP) with training by back propagation of the gradient optimized by the algorithm of Levenberg Marquardt (LM) is used. The accent was put on the choice of the components of the base of training where a comparative study made for four methods: Random and three alternatives of classification by K-Means. The samples are taken from suspended matter image, obtained by analytical model based on polynomial regression by taking account of in situ measurements. The mask which selects the zone of interest (water in our case) was carried out by using a multi spectral classification by ISODATA algorithm. To improve the result of classification, a cleaning of this mask was carried out using the tools of mathematical morphology. The results of this study presented in the forms of curves, tables and of images show the founded good of our methodology.Keywords: Classification K-means, mathematical morphology, neural network MLP, remote sensing, suspended particulate matter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523159 Automatic Motion Trajectory Analysis for Dual Human Interaction Using Video Sequences
Authors: Yuan-Hsiang Chang, Pin-Chi Lin, Li-Der Jeng
Abstract:
Advance in techniques of image and video processing has enabled the development of intelligent video surveillance systems. This study was aimed to automatically detect moving human objects and to analyze events of dual human interaction in a surveillance scene. Our system was developed in four major steps: image preprocessing, human object detection, human object tracking, and motion trajectory analysis. The adaptive background subtraction and image processing techniques were used to detect and track moving human objects. To solve the occlusion problem during the interaction, the Kalman filter was used to retain a complete trajectory for each human object. Finally, the motion trajectory analysis was developed to distinguish between the interaction and non-interaction events based on derivatives of trajectories related to the speed of the moving objects. Using a database of 60 video sequences, our system could achieve the classification accuracy of 80% in interaction events and 95% in non-interaction events, respectively. In summary, we have explored the idea to investigate a system for the automatic classification of events for interaction and non-interaction events using surveillance cameras. Ultimately, this system could be incorporated in an intelligent surveillance system for the detection and/or classification of abnormal or criminal events (e.g., theft, snatch, fighting, etc.).
Keywords: Motion detection, motion tracking, trajectory analysis, video surveillance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1730158 Proffering a Brand New Methodology to Resource Discovery in Grid based on Economic Criteria Using Learning Automata
Authors: Ali Sarhadi, Mohammad Reza Meybodi, Ali Yousefi
Abstract:
Resource discovery is one of the chief services of a grid. A new approach to discover the provenances in grid through learning automata has been propounded in this article. The objective of the aforementioned resource-discovery service is to select the resource based upon the user-s applications and the mercantile yardsticks that is to say opting for an originator which can accomplish the user-s tasks in the most economic manner. This novel service is submitted in two phases. We proffered an applicationbased categorization by means of an intelligent nerve-prone plexus. The user in question sets his or her application as the input vector of the nerve-prone nexus. The output vector of the aforesaid network limns the appropriateness of any one of the resource for the presented executive procedure. The most scrimping option out of those put forward in the previous stage which can be coped with to fulfill the task in question is picked out. Te resource choice is carried out by means of the presented algorithm based upon the learning automata.
Keywords: Resource discovery, learning automata, neural network, economic policy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1453157 Continual Learning Using Data Generation for Hyperspectral Remote Sensing Scene Classification
Authors: Samiah Alammari, Nassim Ammour
Abstract:
When providing a massive number of tasks successively to a deep learning process, a good performance of the model requires preserving the previous tasks data to retrain the model for each upcoming classification. Otherwise, the model performs poorly due to the catastrophic forgetting phenomenon. To overcome this shortcoming, we developed a successful continual learning deep model for remote sensing hyperspectral image regions classification. The proposed neural network architecture encapsulates two trainable subnetworks. The first module adapts its weights by minimizing the discrimination error between the land-cover classes during the new task learning, and the second module tries to learn how to replicate the data of the previous tasks by discovering the latent data structure of the new task dataset. We conduct experiments on hyperspectral image (HSI) dataset on Indian Pines. The results confirm the capability of the proposed method.
Keywords: Continual learning, data reconstruction, remote sensing, hyperspectral image segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 232156 Relevance Feedback within CBIR Systems
Authors: Mawloud Mosbah, Bachir Boucheham
Abstract:
We present here the results for a comparative study of some techniques, available in the literature, related to the relevance feedback mechanism in the case of a short-term learning. Only one method among those considered here is belonging to the data mining field which is the K-nearest neighbors algorithm (KNN) while the rest of the methods is related purely to the information retrieval field and they fall under the purview of the following three major axes: Shifting query, Feature Weighting and the optimization of the parameters of similarity metric. As a contribution, and in addition to the comparative purpose, we propose a new version of the KNN algorithm referred to as an incremental KNN which is distinct from the original version in the sense that besides the influence of the seeds, the rate of the actual target image is influenced also by the images already rated. The results presented here have been obtained after experiments conducted on the Wang database for one iteration and utilizing color moments on the RGB space. This compact descriptor, Color Moments, is adequate for the efficiency purposes needed in the case of interactive systems. The results obtained allow us to claim that the proposed algorithm proves good results; it even outperforms a wide range of techniques available in the literature.
Keywords: CBIR, Category Search, Relevance Feedback (RFB), Query Point Movement, Standard Rocchio’s Formula, Adaptive Shifting Query, Feature Weighting, Optimization of the Parameters of Similarity Metric, Original KNN, Incremental KNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2342155 Real Time Acquisition and Psychoacoustic Analysis of Brain Wave
Authors: Shweta Singh, Dipali Bansal, Rashima Mahajan
Abstract:
Psychoacoustics has become a potential area of research due to the growing interest of both laypersons and medical and mental health professionals. Non invasive brain computer interface like Electroencephalography (EEG) is widely being used in this field. An attempt has been made in this paper to examine the response of EEG signals to acoustic stimuli further analyzing the brain electrical activity. The real time EEG is acquired for 6 participants using a cost effective and portable EMOTIV EEG neuro headset. EEG data analysis is further done using EMOTIV test bench, EDF browser and EEGLAB (MATLAB Tool) application software platforms. Spectral analysis of acquired neural signals (AF3 channel) using these software platforms are clearly indicative of increased brain activity in various bands. The inferences drawn from such an analysis have significant correlation with subject’s subjective reporting of the experiences. The results suggest that the methodology adopted can further be used to assist patients with sleeping and depressive disorders.
Keywords: OM’ chant, Spectral analysis, EDF Browser, EEGLAB, EMOTIV, Real time Acquisition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3577154 Language Processing of Seniors with Alzheimer’s Disease: From the Perspective of Temporal Parameters
Authors: Lai Yi-Hsiu
Abstract:
The present paper aims to examine the language processing of Chinese-speaking seniors with Alzheimer’s disease (AD) from the perspective of temporal cues. Twenty healthy adults, 17 healthy seniors, and 13 seniors with AD in Taiwan participated in this study to tell stories based on two sets of pictures. Nine temporal cues were fetched and analyzed. Oral productions in Mandarin Chinese were compared and discussed to examine to what extent and in what way these three groups of participants performed with significant differences. Results indicated that the age effects were significant in filled pauses. The dementia effects were significant in mean duration of pauses, empty pauses, filled pauses, lexical pauses, normalized mean duration of filled pauses and lexical pauses. The findings reported in the current paper help characterize the nature of language processing in seniors with or without AD, and contribute to the interactions between the AD neural mechanism and their temporal parameters.
Keywords: Language processing, Alzheimer’s disease, Mandarin Chinese, temporal cues.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1019153 Antioxidant Enzymes and Crude Mitochondria ATPases in the Radicle of Germinating Bean (Vigna unguiculata) Exposed to Different Concentrations of Crude Oil
Authors: Stella O. Olubodun, George E. Eriyamremu
Abstract:
The study examined the effect of Bonny Light whole crude oil (WC) and its water soluble fraction (WSF) on the activities of antioxidant enzymes (catalase (CAT) and superoxide dismutase (SOD)) and crude mitochondria ATPases in the radicle of germinating bean (Vigna unguiculata). The percentage germination, level of lipid peroxidation, antioxidant enzyme and mitochondria Ca2+ and Mg2+ ATPase activities were measured in the radicle of bean after 7, 14 and 21 days post germination. Viable bean seeds were planted in soils contaminated with 10ml, 25ml and 50ml of whole crude oil (WC) and its water soluble fraction (WSF) to obtain 2, 5 and 10% v/w crude oil contamination. There was dose dependent reduction of the number of bean seeds that germinated in the contaminated soils compared with control (p<0.001). The activities of the antioxidant enzymes, as well as, adenosine triphosphatase enzymes, were also significantly (p<0.001) altered in the radicle of the plants grown in contaminated soil compared with the control. Generally, the level of lipid peroxidation was highest after 21 days post germination when compared with control. Stress to germinating bean caused by Bonny Light crude oil or its water soluble fraction resulted in adaptive changes in crude mitochondria ATPases in the radicle.
Keywords: Antioxidant enzymes, Bonny Light crude oil, Radicle, Mitochondria ATPases.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2262152 Integrating Decision Tree and Spatial Cluster Analysis for Landslide Susceptibility Zonation
Authors: Chien-Min Chu, Bor-Wen Tsai, Kang-Tsung Chang
Abstract:
Landslide susceptibility map delineates the potential zones for landslide occurrence. Previous works have applied multivariate methods and neural networks for mapping landslide susceptibility. This study proposed a new approach to integrate decision tree model and spatial cluster statistic for assessing landslide susceptibility spatially. A total of 2057 landslide cells were digitized for developing the landslide decision tree model. The relationships of landslides and instability factors were explicitly represented by using tree graphs in the model. The local Getis-Ord statistics were used to cluster cells with high landslide probability. The analytic result from the local Getis-Ord statistics was classed to create a map of landslide susceptibility zones. The map was validated using new landslide data with 482 cells. Results of validation show an accuracy rate of 86.1% in predicting new landslide occurrence. This indicates that the proposed approach is useful for improving landslide susceptibility mapping.Keywords: Landslide susceptibility Zonation, Decision treemodel, Spatial cluster, Local Getis-Ord statistics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940151 Application of Scientific Metrics to Evaluate Academic Reputation in Different Research Areas
Authors: Cristiano R. Cervi, Renata Galante, José Palazzo M. de Oliveira
Abstract:
In this paper, we address the problem of identifying academic reputation of researchers using scientific metrics in different research areas. Due to the characteristics of each area, researchers can present different behaviors. In previous work, we define Rep-Index that makes use of a profile template to individually identify the reputation of researchers. The Rep-Index is comprehensive and adaptive because involves hole trajectory of the researcher built throughout his career and can be used in different areas and in different contexts. Now, we compare our metric (Rep-Index) with the h-index and the g-index through experiments with researchers in the fields of Economics, Dentistry and Computer Science. We analyze the trajectory of 830 Brazilian researchers from the National Council of Technological and Scientific Development (CNPq), which receive grants research productivity. The grants are aimed at productivity researchers that stand out among their peers, enhancing their scientific normative criteria established by CNPq. Of the 830 researchers, 210 are in the area of Economics, 216 of Dentistry e 404 of Computer Science. The experiments show that our metric is strongly correlated with h-index, g-index and CNPq ranking. We also show good results for our hypothesis that our metric can be used to evaluate research in several areas. We apply our metric (Rep-Index) to compare the behavior of researchers in relation to their h-index and g-index through extensive experiments. The experiments showed that our metric is strongly correlated with h-index, g-index and CNPq ranking.
Keywords: Researcher reputation, profile model, scientific metrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1999