
 

 

  
Abstract—Many systems in the natural world exhibit chaos or 

non-linear behavior, the complexity of which is so great that they 
appear to be random. Identification of chaos in experimental data is 
essential for characterizing the system and for analyzing the 
predictability of the data under analysis. The Lyapunov exponents 
provide a quantitative measure of the sensitivity to initial conditions 
and are the most useful dynamical diagnostic for chaotic systems. 
However, it is difficult to accurately estimate the Lyapunov 
exponents of chaotic signals which are corrupted by a random noise. 
In this work, a method for estimation of Lyapunov exponents from 
noisy time series using unscented transformation is proposed. The 
proposed methodology was validated using time series obtained from 
known chaotic maps. In this paper, the objective of the work, the 
proposed methodology and validation results are discussed in detail. 
 

Keywords—Lyapunov exponents, unscented transformation, 
chaos theory, neural networks.  

I. INTRODUCTION 
HE discovery of chaotic behavior in deterministic 
dynamical systems has opened new perspectives for the 

design and analysis of time series [1], [2]. Methods for 
analyzing experimental or observational data for evidence of 
chaos have been applied to data in such diverse fields as 
physics, geology, astronomy, neurobiology, ecology and 
economics [3]. Deterministic chaos and fractal structure in 
dynamical systems are among the most important nonlinear 
paradigms [4].  

The Lyapunov exponent, which measures the average rate 
of divergence or convergence of two nearby trajectories, is a 
useful measure of the stability of a dynamic system. Positivity 
of the Lyapunov exponent is an operational definition of 
chaos, Negative exponents indicate mean reverting behaviour, 
and the value zero is characteristic of cyclic behavior [5], [6]. 

The calculation of Lyapunov exponents for systems whose 
dynamical equations are known is straightforward. However, 
these methods cannot be applied directly to a set of 
measurement data [7]. The two common approaches for 
computing the Lyapunov exponents from output time series 
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are geometrical and Jacobian approaches. In geometrical 
approach, Lyapunov exponents are calculated based on the 
long term evolution of an infinitesimal sphere of initial 
conditions [8]. On the other hand, in the Jacobian approach, 
local Jacobian matrices are estimated and the long term 
product of matrices is computed [7]-[9]. 

Eventhough there are several algorithms for estimation of 
Lyapunov exponents from experimental time series, most of 
them are usually unreliable except for long and noise-free time 
series [10]. The first algorithms for estimation of non-negative 
Lyapunov exponents from an experimental time series were 
presented by Wolf et al [11]. Rosenstein et al [10] have 
introduced a robust method for calculating the Lyapunov 
exponents of a time series using a simple measure of 
exponential divergence and by utilizing all the available data. 
Sano and Sawada [9] proposed a method to determine the 
spectrum of Lyapunov exponents from the observed time 
series of a single variable. 

To obtain the Lyapunov exponent from observed data, 
Eckmann and Ruelle [12] and Eckmann et al [13] proposed a 
method based on nonparametric regression. Ataei et al [7] 
have estimated the Lyapunov exponents of a chaotic time 
series using a global polynomial model fitting to the given 
data followed by a Jacobian approach. McCaffrey et al [3] 
described procedures for estimating the Lyapunov exponents 
of time series data using different modeling approaches 
namely, thin-plate splines, radial basis functions and 
projection pursuit. While any nonparametric regression 
estimator can be employed in the Jacobian method, one of the 
most widely used approaches is the Lyapunov exponent 
estimator based on neural networks proposed by Nychka et al 
[14].  

The estimation of Lyapunov exponents of a chaotic time 
series with a significant random noise is difficult. Most of the 
biological and economic systems are subjected to random 
perturbations and are observed over a limited period of time. 
In such time series, the dynamic information is limited by 
sample size and masked by noise. The Lyapunov exponents of 
stochastic systems were estimated by Nychka et. al. [14] and 
have concluded that to certain extent it is possible to identify 
chaotic dynamics in short noisy systems using thin plate 
splines.  

In this paper, a method based on unscented transformation 
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and unscented Kalman filter based Artificial Neural Networks 
(ANN) is proposed for estimation of Lyapunov exponents of 
chaotic time series corrupted by a random noise. Further, the 
performance of the proposed method is analyzed using the 
time series obtained from well known chaotic maps. 

II. METHODOLOGY 
The proposed methodology for estimation of Lyapunov 

exponents from chaotic time series corrupted by random noise 
is described in Fig. 1. The first step of the proposed method is 
to develop a dynamic model from the measured time series. 
The generated model can be any nonlinear model and: 

a. The generated model can be discontinuous  
b. The generated model need not be differentiable 
The next step is to apply the UKF algorithm to the 

measured time series using the developed model.  Hence, a 
filtered estimate of the states is obtained. The estimated states 
are simultaneously used to develop a dynamic ANN model. 
Further, the Jacobian matrix of the developed ANN model is 
computed and the Lyapunov exponents of the noisy time 
series are obtained from the Jacobian matrix. 

 

 
Fig. 1 Block diagram of the proposed methodology 

 

A. The Unscented Kalman Filter 
The unscented Kalman filter is founded on the intuition that 

it is easier to approximate a probability distribution than it is 
to approximate an arbitrary nonlinear function [15]. The 
sigma points are chosen so that their mean and covariance to 
be exactly 1

a
kx −  and 1kP − . Each sigma point is then 

propagated through the nonlinearity yielding in the end a 
cloud of transformed points. The new estimated mean and 
covariance are then computed based on their statistics. This 
process is called unscented transformation. The unscented 

transformation is a method for calculating the statistics of a 
random variable which undergoes a nonlinear transformation 
[16]. 

Consider the following nonlinear system, described by the 
difference equation and the observation model with additive 
noise:  

 

( )1 1k k kx f x w− −= +              (1) 

( )k k kz h x v= +                 (2) 

 
The initial state 0x  is a random vector with known mean 

[ ]0 0E xμ = and covariance ( )( )0 0 0 0 0

TP E x xμ μ= − −⎡ ⎤⎣ ⎦ .  

1. Selection of Sigma Points 
Let 1kX −  be a set of 2 1n +  sigma points (where n is the 

dimension of the state space) and their associated weights: 
 

( ){ }1 1, 0...2j j
k kX x W j n− −= =          (3) 

 
Consider the following selection of sigma points, selection 

that incorporates higher order information in the selected 
points:  

 
0

1 1
a

k kx x− −=                      (4) 
01 1W− < <                  (5) 

1 1 101
i a
k k k

i

nx x P
W− − −

⎛ ⎞
= + ⎜ ⎟⎜ ⎟−⎝ ⎠

 for all 1...i n=   (6) 

1 1 101
i n a
k k k

i

nx x P
W

+
− − −

⎛ ⎞
= − ⎜ ⎟⎜ ⎟−⎝ ⎠

 for all 1...i n=   (7) 

01
2

j WW
n

−
=  for all 1...2j n=          (8) 

 
where the weights must obey the condition: 
 

2

0
1

n
j

j
W

=

=∑                   (9) 

 

and 101 k

i

n P
W −

⎛ ⎞
⎜ ⎟⎜ ⎟−⎝ ⎠

is the row or column of the matrix 

square root of 101 k
n P
W −−

. 0W  controls the position of 

sigma points: 0 0W ≥ points tend to move further from the 

origin, 0 0W ≤  points tend to be closer to the origin. 
2. Model Forecast Step 

The Each sigma point is propagated through the nonlinear 
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process model: 
 

( ),
1

f j j
k kx f x −=                 (10) 

 
The transformed points are used to compute the mean and 

covariance of the forecast value of xk. 
 

2
,

0

n
f j f j

k k
j

x W x
=

= ∑                (11) 

( )( )
2

, ,
1

0

n Tf j f j f f j f
k k k k k k

j
P W x x x x Q −

=

= − − +∑    (12) 

 
We propagate then the sigma points through the nonlinear 

observation model: 
 

( ),
1 1

f j j
k kz h x− −=                 (13) 

 
With the resulted transformed observations, their mean and 

covariance (innovation covariance) is computed: 
 

2
,

1 1
0

n
f j f j

k k
j

z W z− −
=

= ∑                (14) 

( ) ( )( )
2

, ,
1 1 1 1 1

0

n Tf j f j f f j f
k k k k k k

j
Cov z W z z z z R− − − − −

=

= − − +∑%   

                      (15) 
The cross covariance between f

kx%  and 1
f

kz −%  is: 
 

( ) ( )( )
2

, ,
1 1 1

0
,

n Tf f j f j f f j f
k k k k k k

j
Cov x z W x x z z− − −

=

= − −∑% %    

                      (16) 

3. Data Assimilation Step 
Assume that the estimate has the following form: 
 

( )1
a f f
k k k k kx x K z z −= + −            (17) 

 
The gain kK  is given by: 
 

( ) ( )1
1 1,f f f

k k k kK Cov x z Cov z−
− −= % % %         (18) 

 
The posterior covariance is updated using 
 

 ( )1
f f T

k k k k kP P K Cov z K−= − %                    (19) 

B. Neural Network Training using UKF 
The parameter estimation problem involves learning a 

nonlinear mapping yk=G(xk,w), where w corresponds to a set 

of unknown parameters. In the considered methodology, G(.) 
is the neural network and w is the set of weights to be 
estimated. The unscented Kalman filter can be used to 
estimate the weights of the network using the following set of 
equations [16], [17].  

1. Initialization: 

[ ]0ŵ E w=                  (20) 

( )( )0 0 0ˆ ˆ TPw E w w w w⎡ ⎤= − −⎣ ⎦          (21) 

  For { }1,..., ,k ∈ ∞  

2. Time update and sigma point calculation: 
 1ˆ ˆk kw w−

−=                  (22) 

 1 1
r

wk wk kP P R−
− −= +              (23) 

| 1 ˆ ˆ ˆ
k kk k k k w k wW w w P w Pγ γ− − − − −

−
⎡ ⎤= + −⎣ ⎦

  (24) 

 | 1 | 1,k k k k kD G x W− −⎡ ⎤= ⎣ ⎦            (25) 

 ( )ˆ ˆ,k k kd G x w−=               (26) 

3. Measurement update equations: 

( )
2

, | 1 , | 1
0

ˆ ˆ
k k

L Tc e
i i k k k i k k k kd d

i
P W D d D d R− −

=

⎡ ⎤ ⎡ ⎤= − − +⎣ ⎦ ⎣ ⎦∑% %   

                     (27) 

( )
2

, | 1 , | 1
0

ˆˆ
k k

L Tc
w d i i k k k i k k k

i
P W W w D d−

− −
=

⎡ ⎤⎡ ⎤= − −⎣ ⎦ ⎣ ⎦∑                                    

(28) 
1

k k d dk k
k w dK P P−=

% %
                     (29) 

( )ˆˆ ˆk k k k kw w K d d−= + −            (30) 

k k d dk k

T
w w k kP P K P K−= =

% %
           (31) 

 

where, ( )Lγ λ= + , λ = composite scaling parameter, 

L =dimension of the state, rR  and eR  are noise covariances.  

C. Calculation of Lyapunov Exponents 
Further, the Lyapunov exponent of the considered time 

series is calculated using the Jacobian approach [7]. Consider 
the discrete dynamical system described in the following 
form: 

 

( )1 , 1, 2,3...k kx F x k−= =
           (32) 

 
where xk is the state vector in the Rm space and F( ) is a 
continuously differentiable nonlinear function. In this case, 
F(.) is the trained neural network. The linearized system for a 
small range around the operational trajectory in the phase 
space can be written as: 
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1 1k k kx J xδ δ− −= , where   1

1 1,...
k

m m
k

x

FJ R k
x

−

×
−

∂
= ∈ =

∂
 

         (33) 
 
where Jk is the Jacobian matrix in point k. Let Yk = Jk-1, Jk-2, 
…, J0, then the following symmetric positive definite matrix 
exists: 
 

( )( )
1

2lim .
T kk k

k x
A Y Y

→
=

             (34) 
 
and the logarithms of its eigenvalues are called the Lyapunov 
exponents. For large value of k, the fundamental solution Yk 
may go to very large values and actually, the calculation of A 
is not possible. Hence, the the QR factorisation algorithm is 
used for approximation of Lyapunov exponents [7]. 

D. Validation of Proposed Method 
The validation of the proposed method was performed 

using chaotic time series obtained from well known chaotic 
maps such as the logistic map [10], tent map [19], sine map 
[20], and Ricker’s map [18], [21]. Also, the Lyapunov 
exponents obtained using the proposed method, were 
compared with the actual values. 

III. RESULTS AND DISCUSSION 
Fig. 2(a) shows the time series obtained from Ricker’s 

population model. The obtained time series along with an 
additive random noise is shown in Fig. 2(b). The states 
estimated using the Extended Kalman Filter for the considered 
time series is shown in Fig. 3(a). It is seen that the UKF 
method can efficiently filter random noises from chaotic time 
series. Further, the states estimated using the neural network 
trained using unscented Kalman filter, is shown in Fig. 3(b). 
Also, it appears that the UKF method is efficient for 
developing dynamic ANN models of chaotic time series. 
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Fig. 2 (a) The actual states of Ricker’s chaotic map, (b) the states of 
the Ricker’s map with additive random noise 

 
Fig. 4 shows the actual states and the states estimated using 

the UKF neural network, at each sampling instants. The error 
between the actual states and estimated states is found to be 
very less. Hence, the high capability of unscented Kalman 
filter for developing neural network models of chaotic time 
series is demonstrated by Fig. 4. 

The actual values of Lyapunov exponents and the values 
obtained using the proposed method are compared in Table I, 
for four different time series obtained from known chaotic 
maps such as logistic map, sine map, tent map and Ricker’s 
map. The values estimated using the proposed method was 
found to be close to the actual values of the Lyapunov 
exponents. The deviation from the actual value was found to 
be higher in the case of the tent map when compared to the 
other time series. 
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Fig 3 (a) The states of Ricker’s map estimated using unscented 
transformation, (b) the states estimated using UKF neural network 
 
The error in estimation of Lyapunov exponents using the 

proposed method is shown as a function of the standard 
deviation of random noise for four different time series in Fig. 
5. It is seen that the estimation error increases with increase in 
the standard deviation of the additive noise. The estimation 
error was found to be higher for the time series obtained from 
tent map and logistic map when compared to the time series 
obtained from other chaotic maps. The error in estimation of 
Lyapunov exponents was found to be less and negligible for 
the chaotic time series obtained from Ricker’s population 
model. Also, for the Ricker’s time series, the estimation error 
was found to remain almost constant with increase in the 
standard deviation of the additive random noise. 

The validation experiments demonstrate that the efficiency 
of the proposed method depends on the standard deviation of 
the random noise and also depends on the type of the chaotic 
time series. 
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Fig. 4 The actual time series obtained from Ricker’s chaotic map and 
the time series estimated using UKF neural network 

 
 
 
 
 
 
 

TABLE I 
THE EXPECTED VALUE OF LYAPUNOV EXPONENTS AND THE VALUES 

ESTIMATED USING THE PROPOSED METHOD 

Time series 

Lyapunov exponents 

Deviation 
Expected value (Reference) Proposed 

method 

Logistic 
map 

0.67 
(Rosenstein et al 1993) 0.66 0.01 

Tent map 0.69 
(Devaney 1989) 0.63 0.06 

Sine map 0.68 
(Strogatz 1994) 0.67 0.01 

Ricker’s 
map 

0.39 
(Ricker 1954) 0.38 0.01 
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Fig 5 The error in estimation of Lyapunov exponents shown as a 

function of the standard deviation of additive random noise for four 
different chaotic time series 

IV. CONCLUSION 
Deterministic chaos appears in variety of fields like 

engineering, biomedical and life sciences, social sciences, and 
physical sciences and recognizing the chaotic behaviour of 
dynamical systems when only output data are available, is an 
important field of research [7]. Distinguishing deterministic 
chaos from random noise has become an important problem in 
many diverse fields such as physiology and economics [21]- 
[23]. 

The Lyapunov exponent is one of the basic quantities for 
characterizing the chaotic behavior of a system. [9]. However, 
the estimation of the Lyapunov exponents of chaotic time 
series corrupted by random noises is difficult [14] and only 
few methods for computing Lyapunov exponents of noisy 
time series are available. Also, most of the existing methods 
for estimating the Lyapunov exponents require relatively time 
series data of high precession but such high quality data 
cannot be obtained in many real-world situations [4]. 

In this work, a method using unscented transformation and 
artificial neural networks is proposed for estimation of the 
Lyapunov exponents of chaotic time series corrupted by a 
random noise. The proposed method was validated using time 
series obtained from well known chaotic maps such as sine 
map, tent map, logistic map and Ricker’s population model. 
The estimated exponents were compared with the actual 
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values of the Lyapunov exponents for the considered time 
series. Results demonstrate that the error in estimation of 
Lyapunov exponents increases with increase in the standard 
deviation of the additive noise. It was also found that the 
estimation error depends on the nature of the chaotic time 
series. Further, the UKF neural network seems to be efficient 
for development of dynamic models of chaotic time series. It 
appears that the proposed methodology can be efficiently used 
for estimation of Lyapunov exponents of chaotic time series 
measurements corrupted by random noises. 
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