Search results for: State space model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9905

Search results for: State space model

7505 Unconstrained Arabic Online Handwritten Words Segmentation using New HMM State Design

Authors: Randa Ibrahim Elanwar, Mohsen Rashwan, Samia Mashali

Abstract:

In this paper we propose a segmentation system for unconstrained Arabic online handwriting. An essential problem addressed by analytical-based word recognition system. The system is composed of two-stages the first is a newly special designed hidden Markov model (HMM) and the second is a rules based stage. In our system, handwritten words are broken up into characters by simultaneous segmentation-recognition using HMMs of unique design trained using online features most of which are novel. The HMM output characters boundaries represent the proposed segmentation points (PSP) which are then validated by rules-based post stage without any contextual information help to solve different segmentation errors. The HMM has been designed and tested using a self collected dataset (OHASD) [1]. Most errors cases are cured and remarkable segmentation enhancement is achieved. Very promising word and character segmentation rates are obtained regarding the unconstrained Arabic handwriting difficulty and not using context help.

Keywords: Arabic, Hidden Markov Models, online handwriting, word segmentation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836
7504 Design and Analysis of Flexible Slider Crank Mechanism

Authors: Thanh-Phong Dao, Shyh-Chour Huang

Abstract:

This study presents the optimal design and formulation of a kinematic model of a flexible slider crank mechanism. The objective of the proposed innovative design is to take extra advantage of the compliant mechanism and maximize the fatigue life by applying the Taguchi method. A formulated kinematic model is developed using a pseudo-rigid-body model (PRBM). By means of mathematic models, the kinematic behaviors of the flexible slider crank mechanism are captured using MATLAB software. Finite element analysis (FEA) is used to show the stress distribution. The results show that the optimal shape of the flexible hinge includes a force of 8.5N, a width of 9mm and a thickness of 1.1mm. Analysis of variance shows that the thickness of the proposed hinge is the most significant parameter, with an F test of 15.5. Finally, a prototype is manufactured to prepare for testing the kinematic and dynamic behaviors.

Keywords: Kinematic behavior, fatigue life, pseudo-rigid-body model, flexible slider crank mechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5131
7503 A Quantum Algorithm of Constructing Image Histogram

Authors: Yi Zhang, Kai Lu, Ying-hui Gao, Mo Wang

Abstract:

Histogram plays an important statistical role in digital image processing. However, the existing quantum image models are deficient to do this kind of image statistical processing because different gray scales are not distinguishable. In this paper, a novel quantum image representation model is proposed firstly in which the pixels with different gray scales can be distinguished and operated simultaneously. Based on the new model, a fast quantum algorithm of constructing histogram for quantum image is designed. Performance comparison reveals that the new quantum algorithm could achieve an approximately quadratic speedup than the classical counterpart. The proposed quantum model and algorithm have significant meanings for the future researches of quantum image processing.

Keywords: Quantum Image Representation, Quantum Algorithm, Image Histogram.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2356
7502 Robust Image Transmission Over Time-varying Channels using Hierarchical Joint Source Channel Coding

Authors: Hatem. Elmeddeb, Noureddine, Hamdi, Ammar. Bouallègue

Abstract:

In this paper, a joint source-channel coding (JSCC) scheme for time-varying channels is presented. The proposed scheme uses hierarchical framework for both source encoder and transmission via QAM modulation. Hierarchical joint source channel codes with hierarchical QAM constellations are designed to track the channel variations which yields to a higher throughput by adapting certain parameters of the receiver to the channel variation. We consider the problem of still image transmission over time-varying channels with channel state information (CSI) available at 1) receiver only and 2) both transmitter and receiver being informed about the state of the channel. We describe an algorithm that optimizes hierarchical source codebooks by minimizing the distortion due to source quantizer and channel impairments. Simulation results, based on image representation, show that, the proposed hierarchical system outperforms the conventional schemes based on a single-modulator and channel optimized source coding.

Keywords: Channel-optimized VQ (COVQ), joint optimization, QAM, hierarchical systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425
7501 Application of MADM in Identifying the Transmission Rate of Dengue fever: A Case Study of Shah Alam, Malaysia

Authors: Nuraini Yusoff, Harun Budin, Salemah Ismail

Abstract:

Identifying parameters in an epidemic model is one of the important aspect of modeling. In this paper, we suggest a method to identify the transmission rate by using the multistage Adomian decomposition method. As a case study, we use the data of the reported dengue fever cases in the city of Shah Alam, Malaysia. The result obtained fairly represents the actual situation. However, in the SIR model, this method serves as an alternative in parameter identification and enables us to make necessary analysis for a smaller interval.

Keywords: dengue fever, multistage Adomian decomposition method, Shah Alam, SIR model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2191
7500 Comparison of Developed Statokinesigram and Marker Data Signals by Model Approach

Authors: Boris Barbolyas, Kristina Buckova, Tomas Volensky, Cyril Belavy, Ladislav Dedik

Abstract:

Background: Based on statokinezigram, the human balance control is often studied. Approach to human postural reaction analysis is based on a combination of stabilometry output signal with retroreflective marker data signal processing, analysis, and understanding, in this study. The study shows another original application of Method of Developed Statokinesigram Trajectory (MDST), too. Methods: In this study, the participants maintained quiet bipedal standing for 10 s on stabilometry platform. Consequently, bilateral vibration stimuli to Achilles tendons in 20 s interval was applied. Vibration stimuli caused that human postural system took the new pseudo-steady state. Vibration frequencies were 20, 60 and 80 Hz. Participant's body segments - head, shoulders, hips, knees, ankles and little fingers were marked by 12 retroreflective markers. Markers positions were scanned by six cameras system BTS SMART DX. Registration of their postural reaction lasted 60 s. Sampling frequency was 100 Hz. For measured data processing were used Method of Developed Statokinesigram Trajectory. Regression analysis of developed statokinesigram trajectory (DST) data and retroreflective marker developed trajectory (DMT) data were used to find out which marker trajectories most correlate with stabilometry platform output signals. Scaling coefficients (λ) between DST and DMT by linear regression analysis were evaluated, too. Results: Scaling coefficients for marker trajectories were identified for all body segments. Head markers trajectories reached maximal value and ankle markers trajectories had a minimal value of scaling coefficient. Hips, knees and ankles markers were approximately symmetrical in the meaning of scaling coefficient. Notable differences of scaling coefficient were detected in head and shoulders markers trajectories which were not symmetrical. The model of postural system behavior was identified by MDST. Conclusion: Value of scaling factor identifies which body segment is predisposed to postural instability. Hypothetically, if statokinesigram represents overall human postural system response to vibration stimuli, then markers data represented particular postural responses. It can be assumed that cumulative sum of particular marker postural responses is equal to statokinesigram.

Keywords: Center of pressure (CoP), a method of developed statokinesigram trajectory (MDST), a model of postural system behavior, retroreflective marker data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 762
7499 Proposal of a Model Supporting Decision-Making Based On Multi-Objective Optimization Analysis on Information Security Risk Treatment

Authors: Ritsuko Kawasaki (Aiba), Takeshi Hiromatsu

Abstract:

Management is required to understand all information security risks within an organization, and to make decisions on which information security risks should be treated in what level by allocating how much amount of cost. However, such decision-making is not usually easy, because various measures for risk treatment must be selected with the suitable application levels. In addition, some measures may have objectives conflicting with each other. It also makes the selection difficult. Moreover, risks generally have trends and it also should be considered in risk treatment. Therefore, this paper provides the extension of the model proposed in the previous study. The original model supports the selection of measures by applying a combination of weighted average method and goal programming method for multi-objective analysis to find an optimal solution. The extended model includes the notion of weights to the risks, and the larger weight means the priority of the risk.

Keywords: Information security risk treatment, Selection of risk measures, Risk acceptanceand Multi-objective optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721
7498 Second Order Admissibilities in Multi-parameter Logistic Regression Model

Authors: Chie Obayashi, Hidekazu Tanaka, Yoshiji Takagi

Abstract:

In multi-parameter family of distributions, conditions for a modified maximum likelihood estimator to be second order admissible are given. Applying these results to the multi-parameter logistic regression model, it is shown that the maximum likelihood estimator is always second order inadmissible. Also, conditions for the Berkson estimator to be second order admissible are given.

Keywords: Berkson estimator, modified maximum likelihood estimator, Multi-parameter logistic regression model, second order admissibility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
7497 Currency Exchange Rate Forecasts Using Quantile Regression

Authors: Yuzhi Cai

Abstract:

In this paper, we discuss a Bayesian approach to quantile autoregressive (QAR) time series model estimation and forecasting. Together with a combining forecasts technique, we then predict USD to GBP currency exchange rates. Combined forecasts contain all the information captured by the fitted QAR models at different quantile levels and are therefore better than those obtained from individual models. Our results show that an unequally weighted combining method performs better than other forecasting methodology. We found that a median AR model can perform well in point forecasting when the predictive density functions are symmetric. However, in practice, using the median AR model alone may involve the loss of information about the data captured by other QAR models. We recommend that combined forecasts should be used whenever possible.

Keywords: Exchange rate, quantile regression, combining forecasts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777
7496 Verification Process of Cylindrical Contact Force Models for Internal Contact Modeling

Authors: Cândida M. Pereira, Amílcar L. Ramalho, Jorge A. Ambrósio

Abstract:

In the numerical solution of the forward dynamics of a multibody system, the positions and velocities of the bodies in the system are obtained first. With the information of the system state variables at each time step, the internal and external forces acting on the system are obtained by appropriate contact force models if the continuous contact method is used instead of a discrete contact method. The local deformation of the bodies in contact, represented by penetration, is used to compute the contact force. The ability and suitability with current cylindrical contact force models to describe the contact between bodies with cylindrical geometries with particular focus on internal contacting geometries involving low clearances and high loads simultaneously is discussed in this paper. A comparative assessment of the performance of each model under analysis for different contact conditions, in particular for very different penetration and clearance values, is presented. It is demonstrated that some models represent a rough approximation to describe the conformal contact between cylindrical geometries because contact forces are underestimated.

Keywords: Clearance joints, Contact mechanics, Contact dynamics, Internal cylindrical contact, Multibody dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2321
7495 Agent-based Simulation for Blood Glucose Control in Diabetic Patients

Authors: Sh. Yasini, M. B. Naghibi-Sistani, A. Karimpour

Abstract:

This paper employs a new approach to regulate the blood glucose level of type I diabetic patient under an intensive insulin treatment. The closed-loop control scheme incorporates expert knowledge about treatment by using reinforcement learning theory to maintain the normoglycemic average of 80 mg/dl and the normal condition for free plasma insulin concentration in severe initial state. The insulin delivery rate is obtained off-line by using Qlearning algorithm, without requiring an explicit model of the environment dynamics. The implementation of the insulin delivery rate, therefore, requires simple function evaluation and minimal online computations. Controller performance is assessed in terms of its ability to reject the effect of meal disturbance and to overcome the variability in the glucose-insulin dynamics from patient to patient. Computer simulations are used to evaluate the effectiveness of the proposed technique and to show its superiority in controlling hyperglycemia over other existing algorithms

Keywords: Insulin Delivery rate, Q-learning algorithm, Reinforcement learning, Type I diabetes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2200
7494 Decision Support System for Farm Management

Authors: Manpreet Singh, Parvinder Singh, Sumitter Bir Singh

Abstract:

The emergence of information technology has resulted in an ever-increasing demand to use computers for the efficient management and dissemination of information. Keeping in view the strong need of farmers to collect important and updated information for interactive, flexible and quick decision-making, a model of Decision Support System for Farm Management is developed. The paper discusses the use of Internet technology for the farmers to take decisions. A model is developed for the farmers to access online interactive and flexible information for their farm management. The workflow of the model is presented highlighting the information transfer between different modules.

Keywords: Decision Support System, dissemination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3022
7493 Development of Rock Engineering System-Based Models for Tunneling Progress Analysis and Evaluation: Case Study of Tailrace Tunnel of Azad Power Plant Project

Authors: S. Golmohammadi, M. Noorian Bidgoli

Abstract:

Tunneling progress is a key parameter in the blasting method of tunneling. Taking measures to enhance tunneling advance can limit the progress distance without a supporting system, subsequently reducing or eliminating the risk of damage. This paper focuses on modeling tunneling progress using three main groups of parameters (tunneling geometry, blasting pattern, and rock mass specifications) based on the Rock Engineering Systems (RES) methodology. In the proposed models, four main effective parameters on tunneling progress are considered as inputs (RMR, Q-system, Specific charge of blasting, Area), with progress as the output. Data from 86 blasts conducted at the tailrace tunnel in the Azad Dam, western Iran, were used to evaluate the progress value for each blast. The results indicated that, for the 86 blasts, the progress of the estimated model aligns mostly with the measured progress. This paper presents a method for building the interaction matrix (statistical base) of the RES model. Additionally, a comparison was made between the results of the new RES-based model and a Multi-Linear Regression (MLR) analysis model. In the RES-based model, the effective parameters are RMR (35.62%), Q (28.6%), q (specific charge of blasting) (20.35%), and A (15.42%), respectively, whereas for MLR analysis, the main parameters are RMR, Q (system), q, and A. These findings confirm the superior performance of the RES-based model over the other proposed models.

Keywords: Rock Engineering Systems, tunneling progress, Multi Linear Regression, Specific charge of blasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 141
7492 Implementation of the Personal Emergency Response System

Authors: Ah-young Jeon, In-cheol Kim, Jae-hee Jung, Soo-young Ye, Jae-hyung Kim, Ki-gon Nam, Seoung-wan Baik, Jung-hoon Ro, Gye-rok Jeon

Abstract:

The aged are faced with increasing risk for falls. The aged have the easily fragile bones than others. When falls have occurred, it is important to detect this emergency state because such events often lead to more serious illness or even death. A implementation of PDA system, for detection of emergency situation, was developed using 3-axis accelerometer in this paper as follows. The signals were acquired from the 3-axis accelerometer, and then transmitted to the PDA through Bluetooth module. This system can classify the human activity, and also detect the emergency state like falls. When the fall occurs, the system generates the alarm on the PDA. If a subject does not respond to the alarm, the system determines whether the current situation is an emergency state or not, and then sends some information to the emergency center in the case of urgent situation. Three different studies were conducted on 12 experimental subjects, with results indicating a good accuracy. The first study was performed to detect the posture change of human daily activity. The second study was performed to detect the correct direction of fall. The third study was conducted to check the classification of the daily physical activity. Each test was lasted at least 1 min. in third study. The output of acceleration signal was compared and evaluated by changing a various posture after attaching a 3-axis accelerometer module on the chest. The newly developed system has some important features such as portability, convenience and low cost. One of the main advantages of this system is that it is available at home healthcare environment. Another important feature lies in low cost to manufacture device. The implemented system can detect the fall accurately, so will be widely used in emergency situation.

Keywords: Alarm System, Ambulatory monitoring, Emergency detection, Classification of activity, and 3-axis accelerometer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
7491 Model-Based Person Tracking Through Networked Cameras

Authors: Kyoung-Mi Lee, Youn-Mi Lee

Abstract:

This paper proposes a way to track persons by making use of multiple non-overlapping cameras. Tracking persons on multiple non-overlapping cameras enables data communication among cameras through the network connection between a camera and a computer, while at the same time transferring human feature data captured by a camera to another camera that is connected via the network. To track persons with a camera and send the tracking data to another camera, the proposed system uses a hierarchical human model that comprises a head, a torso, and legs. The feature data of the person being modeled are transferred to the server, after which the server sends the feature data of the human model to the cameras connected over the network. This enables a camera that captures a person's movement entering its vision to keep tracking the recognized person with the use of the feature data transferred from the server.

Keywords: Person tracking, human model, networked cameras, vision-based surveillance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
7490 Using Time-Series NDVI to Model Land Cover Change: A Case Study in the Berg River Catchment Area, Western Cape, South Africa

Authors: A. S. Adesuyi, Z. Munch

Abstract:

This study investigates the use of a time-series of MODIS NDVI data to identify agricultural land cover change on an annual time step (2007 - 2012) and characterize the trend. Following an ISODATA classification of the MODIS imagery to selectively mask areas not agriculture or semi-natural, NDVI signatures were created to identify areas cereals and vineyards with the aid of ancillary, pictometry and field sample data for 2010. The NDVI signature curve and training samples were used to create a decision tree model in WEKA 3.6.9 using decision tree classifier (J48) algorithm; Model 1 including ISODATA classification and Model 2 not. These two models were then used to classify all data for the study area for 2010, producing land cover maps with classification accuracies of 77% and 80% for Model 1 and 2 respectively. Model 2 was subsequently used to create land cover classification and change detection maps for all other years. Subtle changes and areas of consistency (unchanged) were observed in the agricultural classes and crop practices. Over the years as predicted by the land cover classification. Forty one percent of the catchment comprised of cereals with 35% possibly following a crop rotation system. Vineyards largely remained constant with only one percent conversion to vineyard from other land cover classes.

Keywords: Change detection, Land cover, NDVI, time-series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2291
7489 Application of Advanced Remote Sensing Data in Mineral Exploration in the Vicinity of Heavy Dense Forest Cover Area of Jharkhand and Odisha State Mining Area

Authors: Hemant Kumar, R. N. K. Sharma, A. P. Krishna

Abstract:

The study has been carried out on the Saranda in Jharkhand and a part of Odisha state. Geospatial data of Hyperion, a remote sensing satellite, have been used. This study has used a wide variety of patterns related to image processing to enhance and extract the mining class of Fe and Mn ores.Landsat-8, OLI sensor data have also been used to correctly explore related minerals. In this way, various processes have been applied to increase the mineralogy class and comparative evaluation with related frequency done. The Hyperion dataset for hyperspectral remote sensing has been specifically verified as an effective tool for mineral or rock information extraction within the band range of shortwave infrared used. The abundant spatial and spectral information contained in hyperspectral images enables the differentiation of different objects of any object into targeted applications for exploration such as exploration detection, mining.

Keywords: Hyperion, hyperspectral, sensor, Landsat-8.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 622
7488 An Agent-Based Approach to Immune Modelling: Priming Individual Response

Authors: Dimitri Perrin, Heather J. Ruskin, Martin Crane

Abstract:

This study focuses on examining why the range of experience with respect to HIV infection is so diverse, especially in regard to the latency period. An agent-based approach in modelling the infection is used to extract high-level behaviour which cannot be obtained analytically from the set of interaction rules at the cellular level. A prototype model encompasses local variation in baseline properties, contributing to the individual disease experience, and is included in a network which mimics the chain of lymph nodes. The model also accounts for stochastic events such as viral mutations. The size and complexity of the model require major computational effort and parallelisation methods are used.

Keywords: HIV, Immune modelling, Agent-based system, individual response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1273
7487 A Subtractive Clustering Based Approach for Early Prediction of Fault Proneness in Software Modules

Authors: Ramandeep S. Sidhu, Sunil Khullar, Parvinder S. Sandhu, R. P. S. Bedi, Kiranbir Kaur

Abstract:

In this paper, subtractive clustering based fuzzy inference system approach is used for early detection of faults in the function oriented software systems. This approach has been tested with real time defect datasets of NASA software projects named as PC1 and CM1. Both the code based model and joined model (combination of the requirement and code based metrics) of the datasets are used for training and testing of the proposed approach. The performance of the models is recorded in terms of Accuracy, MAE and RMSE values. The performance of the proposed approach is better in case of Joined Model. As evidenced from the results obtained it can be concluded that Clustering and fuzzy logic together provide a simple yet powerful means to model the earlier detection of faults in the function oriented software systems.

Keywords: Subtractive clustering, fuzzy inference system, fault proneness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2580
7486 Analyzing the Factors Influencing Exclusive Breastfeeding Using the Generalized Poisson Regression Model

Authors: Cheika Jahangeer, Naushad Mamode Khan, Maleika Heenaye-Mamode Khan

Abstract:

Exclusive breastfeeding is the feeding of a baby on no other milk apart from breast milk. Exclusive breastfeeding during the first 6 months of life is of fundamental importance because it supports optimal growth and development during infancy and reduces the risk of obliterating diseases and problems. Moreover, in developed countries, exclusive breastfeeding has decreased the incidence and/or severity of diarrhea, lower respiratory infection and urinary tract infection. In this paper, we study the factors that influence exclusive breastfeeding and use the Generalized Poisson regression model to analyze the practices of exclusive breastfeeding in Mauritius. We develop two sets of quasi-likelihood equations (QLE)to estimate the parameters.

Keywords: Exclusive breastfeeding, Regression model, Quasilikelihood.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801
7485 Experimental Evaluation of Methane Adsorptionon Granular Activated Carbon (GAC) and Determination of Model Isotherm

Authors: M. Delavar, A.A. Ghoreyshi, M. Jahanshahi, M. Irannejad

Abstract:

This study investigates the capacity of granular activated carbon (GAC) for the storage of methane through the equilibrium adsorption. An experimental apparatus consist of a dual adsorption vessel was set up for the measurement of equilibrium adsorption of methane on GAC using volumetric technique (pressure decay). Experimental isotherms of methane adsorption were determined by the measurement of equilibrium uptake of methane in different pressures (0-50 bar) and temperatures (285.15-328.15°K). The experimental data was fitted to Freundlich and Langmuir equations to determine the model isotherm. The results show that the experimental data is equally well fitted by the both model isotherms. Using the experimental data obtained in different temperatures the isosteric heat of methane adsorption was also calculated by the Clausius-Clapeyron equation from the Sips isotherm model. Results of isosteric heat of adsorption show that decreasing temperature or increasing methane uptake by GAC decrease the isosteric heat of methane adsorption.

Keywords: Methane adsorption, Activated carbon, Modelisotherm, Isosteric heat

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2479
7484 A Spatial Information Network Traffic Prediction Method Based on Hybrid Model

Authors: Jingling Li, Yi Zhang, Wei Liang, Tao Cui, Jun Li

Abstract:

Compared with terrestrial network, the traffic of spatial information network has both self-similarity and short correlation characteristics. By studying its traffic prediction method, the resource utilization of spatial information network can be improved, and the method can provide an important basis for traffic planning of a spatial information network. In this paper, considering the accuracy and complexity of the algorithm, the spatial information network traffic is decomposed into approximate component with long correlation and detail component with short correlation, and a time series hybrid prediction model based on wavelet decomposition is proposed to predict the spatial network traffic. Firstly, the original traffic data are decomposed to approximate components and detail components by using wavelet decomposition algorithm. According to the autocorrelation and partial correlation smearing and truncation characteristics of each component, the corresponding model (AR/MA/ARMA) of each detail component can be directly established, while the type of approximate component modeling can be established by ARIMA model after smoothing. Finally, the prediction results of the multiple models are fitted to obtain the prediction results of the original data. The method not only considers the self-similarity of a spatial information network, but also takes into account the short correlation caused by network burst information, which is verified by using the measured data of a certain back bone network released by the MAWI working group in 2018. Compared with the typical time series model, the predicted data of hybrid model is closer to the real traffic data and has a smaller relative root means square error, which is more suitable for a spatial information network.

Keywords: Spatial Information Network, Traffic prediction, Wavelet decomposition, Time series model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 637
7483 Modelling Conditional Volatility of Saving Rate by a Time-Varying Parameter Model

Authors: Katleho D. Makatjane, Kalebe M. Kalebe

Abstract:

The present paper used time-varying parameters which are based on the score function of a probability density at time t to model volatility of saving rate. We used a scaled likelihood function to update the parameters of the model overtime. Our results revealed high diligence of time-varying since the location parameter is greater than zero. Furthermore, we discovered a leptokurtic condition on saving rate’s distribution. Kapetanios, Shin-Shell Nonlinear Augmented Dickey-Fuller (KSS-NADF) test showed that the saving rate has a nonlinear unit root; therefore, it can be modeled by a generalised autoregressive score (GAS) model. Additionally, value at risk (VaR) and conditional tail expectation (CTE) indicate that 99% of the time people in Lesotho are saving more than spending. This puts the economy in high risk of not expanding. Therefore, the monetary policy committee (MPC) of Lesotho should revise their monetary policies towards this high saving rates risk.

Keywords: Generalized autoregressive score, time-varying, saving rate, Lesotho.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 619
7482 Improved Rare Species Identification Using Focal Loss Based Deep Learning Models

Authors: Chad Goldsworthy, B. Rajeswari Matam

Abstract:

The use of deep learning for species identification in camera trap images has revolutionised our ability to study, conserve and monitor species in a highly efficient and unobtrusive manner, with state-of-the-art models achieving accuracies surpassing the accuracy of manual human classification. The high imbalance of camera trap datasets, however, results in poor accuracies for minority (rare or endangered) species due to their relative insignificance to the overall model accuracy. This paper investigates the use of Focal Loss, in comparison to the traditional Cross Entropy Loss function, to improve the identification of minority species in the “255 Bird Species” dataset from Kaggle. The results show that, although Focal Loss slightly decreased the accuracy of the majority species, it was able to increase the F1-score by 0.06 and improve the identification of the bottom two, five and ten (minority) species by 37.5%, 15.7% and 10.8%, respectively, as well as resulting in an improved overall accuracy of 2.96%.

Keywords: Convolutional neural networks, data imbalance, deep learning, focal loss, species classification, wildlife conservation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419
7481 Utilizing Ontologies Using Ontology Editor for Creating Initial Unified Modeling Language (UML)Object Model

Authors: Waralak Vongdoiwang Siricharoen

Abstract:

One of object oriented software developing problem is the difficulty of searching the appropriate and suitable objects for starting the system. In this work, ontologies appear in the part of supporting the object discovering in the initial of object oriented software developing. There are many researches try to demonstrate that there is a great potential between object model and ontologies. Constructing ontology from object model is called ontology engineering can be done; On the other hand, this research is aiming to support the idea of building object model from ontology is also promising and practical. Ontology classes are available online in any specific areas, which can be searched by semantic search engine. There are also many helping tools to do so; one of them which are used in this research is Protégé ontology editor and Visual Paradigm. To put them together give a great outcome. This research will be shown how it works efficiently with the real case study by using ontology classes in travel/tourism domain area. It needs to combine classes, properties, and relationships from more than two ontologies in order to generate the object model. In this paper presents a simple methodology framework which explains the process of discovering objects. The results show that this framework has great value while there is possible for expansion. Reusing of existing ontologies offers a much cheaper alternative than building new ones from scratch. More ontologies are becoming available on the web, and online ontologies libraries for storing and indexing ontologies are increasing in number and demand. Semantic and Ontologies search engines have also started to appear, to facilitate search and retrieval of online ontologies.

Keywords: Software Developing, Ontology, Ontology Library, Artificial Intelligent, Protégé, Object Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878
7480 General Regression Neural Network and Back Propagation Neural Network Modeling for Predicting Radial Overcut in EDM: A Comparative Study

Authors: Raja Das, M. K. Pradhan

Abstract:

This paper presents a comparative study between two neural network models namely General Regression Neural Network (GRNN) and Back Propagation Neural Network (BPNN) are used to estimate radial overcut produced during Electrical Discharge Machining (EDM). Four input parameters have been employed: discharge current (Ip), pulse on time (Ton), Duty fraction (Tau) and discharge voltage (V). Recently, artificial intelligence techniques, as it is emerged as an effective tool that could be used to replace time consuming procedures in various scientific or engineering applications, explicitly in prediction and estimation of the complex and nonlinear process. The both networks are trained, and the prediction results are tested with the unseen validation set of the experiment and analysed. It is found that the performance of both the networks are found to be in good agreement with average percentage error less than 11% and the correlation coefficient obtained for the validation data set for GRNN and BPNN is more than 91%. However, it is much faster to train GRNN network than a BPNN and GRNN is often more accurate than BPNN. GRNN requires more memory space to store the model, GRNN features fast learning that does not require an iterative procedure, and highly parallel structure. GRNN networks are slower than multilayer perceptron networks at classifying new cases.

Keywords: Electrical-discharge machining, General Regression Neural Network, Back-propagation Neural Network, Radial Overcut.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3115
7479 Damping Mechanism in Welded Structures

Authors: B.Singh, B.K.Nanda

Abstract:

Response surface methodology with Box–Benhken (BB) design of experiment approach has been utilized to study the mechanism of interface slip damping in layered and jointed tack welded beams with varying surface roughness. The design utilizes the initial amplitude of excitation, tack length and surface roughness at the interfaces to develop the model for the logarithmic damping decrement of the layered and jointed welded structures. Statistically designed experiments have been performed to estimate the coefficients in the mathematical model, predict the response, and check the adequacy of the model. Comparison of predicted and experimental response values outside the design conditions have shown good correspondence, implying that empirical model derived from response surface approach can be effectively used to describe the mechanism of interface slip damping in layered and jointed tack welded structures.

Keywords: Interface slip damping, welded joint, surface roughness, amplitude, tack length, response surface methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1830
7478 Sensitive Analysis of the ZF Model for ABC Multi Criteria Inventory Classification

Authors: Makram Ben Jeddou

Abstract:

ABC classification is widely used by managers for inventory control. The classical ABC classification is based on Pareto principle and according to the criterion of the annual use value only. Single criterion classification is often insufficient for a closely inventory control. Multi-criteria inventory classification models have been proposed by researchers in order to consider other important criteria. From these models, we will consider a specific model in order to make a sensitive analysis on the composite score calculated for each item. In fact, this score, based on a normalized average between a good and a bad optimized index, can affect the ABC-item classification. We will focus on items differently assigned to classes and then propose a classification compromise.

Keywords: ABC classification, Multi criteria inventory classification models, ZF-model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2517
7477 A Design for Customer Preferences Model by Cluster Analysis of Geometric Features and Customer Preferences

Authors: Yuan-Jye Tseng, Ching-Yen Chen

Abstract:

In the design cycle, a main design task is to determine the external shape of the product. The external shape of a product is one of the key factors that can affect the customers’ preferences linking to the motivation to buy the product, especially in the case of a consumer electronic product such as a mobile phone. The relationship between the external shape and the customer preferences needs to be studied to enhance the customer’s purchase desire and action. In this research, a design for customer preferences model is developed for investigating the relationships between the external shape and the customer preferences of a product. In the first stage, the names of the geometric features are collected and evaluated from the data of the specified internet web pages using the developed text miner. The key geometric features can be determined if the number of occurrence on the web pages is relatively high. For each key geometric feature, the numerical values are explored using the text miner to collect the internet data from the web pages. In the second stage, a cluster analysis model is developed to evaluate the numerical values of the key geometric features to divide the external shapes into several groups. Several design suggestion cases can be proposed, for example, large model, mid-size model, and mini model, for designing a mobile phone. A customer preference index is developed by evaluating the numerical data of each of the key geometric features of the design suggestion cases. The design suggestion case with the top ranking of the customer preference index can be selected as the final design of the product. In this paper, an example product of a notebook computer is illustrated. It shows that the external shape of a product can be used to drive customer preferences. The presented design for customer preferences model is useful for determining a suitable external shape of the product to increase customer preferences.

Keywords: Cluster analysis, customer preferences, design evaluation, design for customer preferences, product design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 777
7476 Solid State Fermentation of Cassava Peel with Trichoderma viride (ATCC 36316) for Protein Enrichment

Authors: Olufunke O. Ezekiel, Ogugua C. Aworh

Abstract:

Solid state fermentation of cassava peel with emphasis on protein enrichment using Trichoderma viride was evaluated. The effect of five variables: moisture content, pH, particle size (p), nitrogen source and incubation temperature; on the true protein and total sugars of cassava peel was investigated. The optimum fermentation period was established to be 8 days. Total sugars were 5-fold higher at pH 6 relative to pH 4 and 7-fold higher when cassava peels were fermented at 30oC relative to 25oC as well as using ammonium sulfate as the nitrogen source relative to urea or a combination of both. Total sugars ranged between 123.21mg/g at 50% initial moisture content to 374mg/g at 60% and from 190.59mg/g with particle size range of 2.00>p>1.41mm to 310.10mg/g with 4.00>p>3.35mm.True protein ranged from 229.70 mg/g at pH 4 to 284.05 mg/g at pH 6; from 200.87 mg/g with urea as nitrogen source and to 254.50mg/g with ammonium sulfate; from 213.82mg/g at 50% initial moisture content to 254.50mg/g at 60% moisture content, from 205.75mg/g in cassava peel with 5.6>p> 4.75mm to 268.30 in cassava peel with particle size 4.00>p>3.35mm, from 207.57mg/g at 25oC to 254.50mg/g at 30oC Cassava peel with particle size 4.00>p>3.35 mm and initial moisture content of 60% at pH 6.0, 30oC incubation temperature with ammonium sulfate (10g N / kg substrate) was most suitable for protein enrichment with Trichoderma viride. Crude protein increased from 4.21 % in unfermented cassava peel samples to 10.43 % in fermented samples.

Keywords: Cassava peel, Solid state fermentation, Trichoderma viride, Total sugars, True protein.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3347