Search results for: energy price forecasting
3129 Towards Achieving Energy Efficiency in Kazakhstan
Authors: Aigerim Uyzbayeva, Valeriya Tyo, Nurlan Ibrayev
Abstract:
Kazakhstan is currently one of the dynamically developing states in its region. The stable growth in all sectors of the economy leads to a corresponding increase in energy consumption. Thus country consumes significant amount of energy due to the high level of industrialisation and the presence of energy-intensive manufacturing such as mining and metallurgy which in turn leads to low energy efficiency. With allowance for this the Government has set several priorities to adopt a transition of Republic of Kazakhstan to a “green economy”. This article provides an overview of Kazakhstan’s energy efficiency situation in for the period of 1991- 2014. First, the dynamics of production and consumption of conventional energy resources are given. Second, the potential of renewable energy sources is summarised followed by the description of GHG emissions trends in the country. Third, Kazakhstan’ national initiatives, policies and locally implemented projects in the field of energy efficiency are described.
Keywords: Energy efficiency in Kazakhstan, greenhouse gases, renewable energy, sustainable development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35383128 Global Electricity Consumption Estimation Using Particle Swarm Optimization (PSO)
Authors: E.Assareh, M.A. Behrang, R. Assareh, N. Hedayat
Abstract:
An integrated Artificial Neural Network- Particle Swarm Optimization (PSO) is presented for analyzing global electricity consumption. To aim this purpose, following steps are done: STEP 1: in the first step, PSO is applied in order to determine world-s oil, natural gas, coal and primary energy demand equations based on socio-economic indicators. World-s population, Gross domestic product (GDP), oil trade movement and natural gas trade movement are used as socio-economic indicators in this study. For each socio-economic indicator, a feed-forward back propagation artificial neural network is trained and projected for future time domain. STEP 2: in the second step, global electricity consumption is projected based on the oil, natural gas, coal and primary energy consumption using PSO. global electricity consumption is forecasted up to year 2040.
Keywords: Particle Swarm Optimization, Artificial NeuralNetworks, Fossil Fuels, Electricity, Forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15033127 Future Outlook and Current Situation for Security of Gas Supply in Eastern Baltic Region
Authors: Ando Leppiman, Kati Kõrbe Kaare, Ott Koppel
Abstract:
Growing demand for gas has rekindled a debate on gas security of supply due to supply interruptions, increasing gas prices, cross-border bottlenecks and a growing reliance on imports over longer distances. Security of supply is defined mostly as an infrastructure package to satisfy N-1 criteria. In case of Estonia, Finland, Latvia and Lithuania all the gas infrastructure is built to supply natural gas only from one single supplier, Russia. In 2012 almost 100% of natural gas to the Eastern Baltic Region was supplied by Gazprom. Under such circumstances infrastructure N-1 criteria does not guarantee security of supply. In the Eastern Baltic Region, the assessment of risk of gas supply disruption has been worked out by applying the method of risk scenarios. There are various risks to be tackled in Eastern Baltic States in terms of improving security of supply, such as single supplier risk, physical infrastructure risk, regulatory gap, fair price and competition. The objective of this paper is to evaluate the energy security of the Eastern Baltic Region within the framework of the European Union’s policies and to make recommendations on how to better guarantee the energy security of the region.
Keywords: Security of supply, supply routes for natural gas, energy balance, diversified supply options, common regulative package.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19053126 PredictionSCMS: The Implementation of an AI-Powered Supply Chain Management System
Authors: Ioannis Andrianakis, Vasileios Gkatas, Nikos Eleftheriadis, Alexios Ellinidis, Ermioni Avramidou
Abstract:
The paper discusses the main aspects involved in the development of a supply chain management system using the developed PredictionSCMS software as a basis for the discussion. The discussion is focused on three topics: the first is demand forecasting, where we present the predictive algorithms implemented and discuss related concepts such as the calculation of the safety stock, the effect of out-of-stock days etc. The second topic concerns the design of a supply chain, where the core parameters involved in the process are given, together with a methodology of incorporating these parameters in a meaningful order creation strategy. Finally, the paper discusses some critical events that can happen during the operation of a supply chain management system and how the developed software notifies the end user about their occurrence.
Keywords: Demand forecasting, machine learning, risk management, supply chain design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053125 Potential of Energy Conservation of Daylight Linked Lighting System in India
Authors: Biswajit Biswas
Abstract:
Demand of energy is increasing faster than the generation. It leads shortage of power in all sectors of society. At peak hours this shortage is higher. Unless we utilize energy efficient technology, it is very difficult to minimize the shortage of energy. So energy efficiency program and energy conservation has an important role. Energy efficient technologies are cost intensive hence it is always not possible to implement in country like India. In the recent study, an educational building with operating hours from 10:00 a.m. to 05:00 p.m. has been selected to quantify the possibility of lighting energy conservation. As the operating hour is in daytime, integration of daylight with artificial lighting system will definitely reduce the lighting energy consumption. Moreover the initial investment has been given priority and hence the existing lighting installation was unaltered. An automatic controller has been designed which will be operated as a function of daylight through windows and the lighting system of the room will function accordingly. The result of the study of integrating daylight gave quite satisfactory for visual comfort as well as energy conservation.
Keywords: Lighting energy, energy efficiency, daylight, illumination, energy conservation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19563124 Agricultural Commodities Volatility in Some Selected Markets in the Northern and Western States in Nigeria
Authors: T. Danjuma, N. M. Ike-Muonso, H. C. Chinwenyi
Abstract:
The price volatility of agricultural commodities in Nigeria market is very essential and understanding its future evolution is important for informed decision making to policymakers. In this paper, we examined the volatilities of some agricultural commodities such as maize (white), cowpeas (brown) and sorghum (white) in Mubi and Dawanau markets in the Northern part of the country and compared its volatilities with the same agricultural commodities from Lagos and Ibadan markets in the Western part of Nigeria.
Keywords: Agricultural commodity, agricultural market, derivatives, volatility, price.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 533123 Pathway to Reduce Industrial Energy Intensity for Energy Conservation at Chinese Provincial Level
Authors: Shengman Zhao, Yang Yu, Shenghui Cui
Abstract:
Using logarithmic mean Divisia decomposition technique, this paper analyzes the change in industrial energy intensity of Fujian Province in China, based on data sets of added value and energy consumption for 35 selected industrial sub-sectors from 1999 to 2009. The change in industrial energy intensity is decomposed into intensity effect and structure effect. Results show that the industrial energy intensity of Fujian Province has achieved a reduction of 51% over the past ten years. The structural change, a shift in the mix of industrial sub-sectors, made overwhelming contribution to the reduction. The impact of energy efficiency’s improvement was relatively small. However, the aggregate industrial energy intensity was very sensitive to both the changes in energy intensity and in production share of energy-intensive sub-sectors, such as production and supply of electric power, steam and hot water. Pathway to reduce industrial energy intensity for energy conservation in Fujian Province is proposed in the end.
Keywords: Decomposition analysis, energy intensity, Fujian Province, industry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13883122 Investigating the Invalidity of the Law of Energy Conservation Based on Waves Interference Phenomenon Inside a Ringed Waveguide
Authors: M. Yusefzad
Abstract:
Law of energy conservation is one of the fundamental laws of physics. Energy is conserved, and the total amount of energy is constant. It can be transferred from one object to another and changed from one state to another. However, in the case of wave interference, this law faces important contradictions. Based on the presented mathematical relationship in this paper, it seems that validity of this law depends on the path of energy wave, like light, in which it is located. In this paper, by using some fundamental concepts in physics like the constancy of the electromagnetic wave speed in a specific media and wave theory of light, it will be shown that law of energy conservation is not valid in every condition and in some circumstances, it is possible to increase energy of a system with a determined amount of energy without any input.
Keywords: Power, law of energy conservation, electromagnetic wave, interference, Maxwell’s equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10493121 A Study on Inference from Distance Variables in Hedonic Regression
Authors: Yan Wang, Yasushi Asami, Yukio Sadahiro
Abstract:
In urban area, several landmarks may affect housing price and rents, and hedonic analysis should employ distance variables corresponding to each landmarks. Unfortunately, the effects of distances to landmarks on housing prices are generally not consistent with the true price. These distance variables may cause magnitude error in regression, pointing a problem of spatial multicollinearity. In this paper, we provided some approaches for getting the samples with less bias and method on locating the specific sampling area to avoid the multicollinerity problem in two specific landmarks case.
Keywords: Landmarks, hedonic regression, distance variables, collinearity, multicollinerity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19043120 Research on Regional Energy Saving Potential Based on Nonparametric Radial Adjustment and Slack Adjustment
Authors: Donglan Zha, Ning Ding
Abstract:
Taking the provincial capital, labor and energy as inputs, regional GDP as output from 1995 to 2007, the paper quantifies the vertical and lateral energy saving potential by introducing the radial adjustment and slack adjustment of DEA. The results show that by the vertical, the achievement of energy saving in 2007 is better than their respective historical performances. By horizontal, in 2007 it can be found that Tianjin, Liaoning, Shanghai and Yunnan do better in energy saving than other provinces. In national wide, the higher of energy efficiency, the larger of per capita GDP and the proportion of the tertiary industry in the national economy, the more open to the outside, the lower the energy saving potential demonstrates, while the energy endowment has negative effect on energy saving potential.Keywords: radial adjustment; slack adjustment; regional disparity; energy saving potential
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13393119 Using Combination of Optimized Recurrent Neural Network with Design of Experiments and Regression for Control Chart Forecasting
Authors: R. Behmanesh, I. Rahimi
Abstract:
recurrent neural network (RNN) is an efficient tool for modeling production control process as well as modeling services. In this paper one RNN was combined with regression model and were employed in order to be checked whether the obtained data by the model in comparison with actual data, are valid for variable process control chart. Therefore, one maintenance process in workshop of Esfahan Oil Refining Co. (EORC) was taken for illustration of models. First, the regression was made for predicting the response time of process based upon determined factors, and then the error between actual and predicted response time as output and also the same factors as input were used in RNN. Finally, according to predicted data from combined model, it is scrutinized for test values in statistical process control whether forecasting efficiency is acceptable. Meanwhile, in training process of RNN, design of experiments was set so as to optimize the RNN.Keywords: RNN, DOE, regression, control chart.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16593118 Scenario Analysis of Indonesia's Energy Security by using a System-Dynamics Approach
Authors: Yudha Prambudia, Masaru Nakano
Abstract:
Due to rapid economic growth, Indonesia's energy needs is rapidly increasing. Indonesia-s primary energy consumption has doubled in 2007 compared to 2003. Indonesia's status change from oil net-exporter to oil net-importer country recently has increased Indonesia's concern over energy security. Due to this, oil import becomes center of attention in the dynamics of Indonesia's energy security. Conventional studies addressing Indonesia's energy security have focused on energy production sector. This study explores Indonesia-s energy security considering energy import sector by modeling and simulating Indonesia-s energy-related policies using system dynamics. Simulation result of Indonesia's energy security in 2020 in Business-As-Usual scenario shows that in term of supply demand ratio, energy security will be very high, but also it poses high dependence on energy import. The Alternative scenario result shows lower energy security in term of supply demand ratio and much lower dependence on energy import. It is also found that the Alternative scenario produce lower GDP growth.
Keywords: Energy security, modeling, simulation, system dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21263117 Mobility Analysis of the Population of Rabat-Salé-Zemmour-Zaer
Authors: F. Ghaiti
Abstract:
In this paper, we present the 2006 survey study origin destination and price that we carried out during 2006 fall in the area in the Moroccan region of Rabat-Salé-Zemmour-Zaer. The survey concerns the people-s characteristics, their displacements behavior and the price that they will be able to pay for a tramway ticket. The main objective is to study a set of relative features to the households and to their displacement's habits and to their choices among public and privet transport modes. A comparison between this survey results and that of the 1996's is made. A pricing scheme is also given according to the tram capacity. (The Rabat-Salé tramway is under construction right now and it will be operational beginning 2010).
Keywords: Matrix O/D, Theory of pricing, Urban transport survey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26403116 Energy Management Techniques in Mobile Robots
Authors: G. Gurguze, I. Turkoglu
Abstract:
Today, the developing features of technological tools with limited energy resources have made it necessary to use energy efficiently. Energy management techniques have emerged for this purpose. As with every field, energy management is vital for robots that are being used in many areas from industry to daily life and that are thought to take up more spaces in the future. Particularly, effective power management in autonomous and multi robots, which are getting more complicated and increasing day by day, will improve the performance and success. In this study, robot management algorithms, usage of renewable and hybrid energy sources, robot motion patterns, robot designs, sharing strategies of workloads in multiple robots, road and mission planning algorithms are discussed for efficient use of energy resources by mobile robots. These techniques have been evaluated in terms of efficient use of existing energy resources and energy management in robots.
Keywords: Energy management, mobile robot, robot administration, robot management, robot planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15693115 Energy Efficiency Analysis of Crossover Technologies in Industrial Applications
Authors: W. Schellong
Abstract:
Industry accounts for one-third of global final energy demand. Crossover technologies (e.g. motors, pumps, process heat, and air conditioning) play an important role in improving energy efficiency. These technologies are used in many applications independent of the production branch. Especially electrical power is used by drives, pumps, compressors, and lightning. The paper demonstrates the algorithm of the energy analysis by some selected case studies for typical industrial processes. The energy analysis represents an essential part of energy management systems (EMS). Generally, process control system (PCS) can support EMS. They provide information about the production process, and they organize the maintenance actions. Combining these tools into an integrated process allows the development of an energy critical equipment strategy. Thus, asset and energy management can use the same common data to improve the energy efficiency.
Keywords: Crossover technologies, data management, energy analysis, energy efficiency, process control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9613114 Comprehensive Assessment of Energy Efficiency within the Production Process
Authors: S. Kreitlein, N. Eder, A. Syed-Khaja, J. Franke
Abstract:
The importance of energy efficiency within the production processes increases steadily. For a comprehensive assessment of energy efficiency within the production process, unfortunately no tools exist or have been developed yet. Therefore the Institute for Factory Automation and Production Systems at the Friedrich-Alexander-University Erlangen-Nuremberg has developed two methods with the goal of achieving transparency and a quantitative assessment of energy efficiency namely EEV (Energy Efficiency Value) and EPE (Energetic Process Efficiency). This paper describes the basics and state-of-the-art as well as the developed approaches.
Keywords: Energy efficiency, energy efficiency value, energetic process efficiency, production.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22793113 Forecasting Fraudulent Financial Statements using Data Mining
Authors: S. Kotsiantis, E. Koumanakos, D. Tzelepis, V. Tampakas
Abstract:
This paper explores the effectiveness of machine learning techniques in detecting firms that issue fraudulent financial statements (FFS) and deals with the identification of factors associated to FFS. To this end, a number of experiments have been conducted using representative learning algorithms, which were trained using a data set of 164 fraud and non-fraud Greek firms in the recent period 2001-2002. The decision of which particular method to choose is a complicated problem. A good alternative to choosing only one method is to create a hybrid forecasting system incorporating a number of possible solution methods as components (an ensemble of classifiers). For this purpose, we have implemented a hybrid decision support system that combines the representative algorithms using a stacking variant methodology and achieves better performance than any examined simple and ensemble method. To sum up, this study indicates that the investigation of financial information can be used in the identification of FFS and underline the importance of financial ratios.Keywords: Machine learning, stacking, classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30523112 Combined Sewer Overflow forecasting with Feed-forward Back-propagation Artificial Neural Network
Authors: Achela K. Fernando, Xiujuan Zhang, Peter F. Kinley
Abstract:
A feed-forward, back-propagation Artificial Neural Network (ANN) model has been used to forecast the occurrences of wastewater overflows in a combined sewerage reticulation system. This approach was tested to evaluate its applicability as a method alternative to the common practice of developing a complete conceptual, mathematical hydrological-hydraulic model for the sewerage system to enable such forecasts. The ANN approach obviates the need for a-priori understanding and representation of the underlying hydrological hydraulic phenomena in mathematical terms but enables learning the characteristics of a sewer overflow from the historical data. The performance of the standard feed-forward, back-propagation of error algorithm was enhanced by a modified data normalizing technique that enabled the ANN model to extrapolate into the territory that was unseen by the training data. The algorithm and the data normalizing method are presented along with the ANN model output results that indicate a good accuracy in the forecasted sewer overflow rates. However, it was revealed that the accurate forecasting of the overflow rates are heavily dependent on the availability of a real-time flow monitoring at the overflow structure to provide antecedent flow rate data. The ability of the ANN to forecast the overflow rates without the antecedent flow rates (as is the case with traditional conceptual reticulation models) was found to be quite poor.Keywords: Artificial Neural Networks, Back-propagationlearning, Combined sewer overflows, Forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15293111 Defining a Pathway to Zero Energy Building: A Case Study on Retrofitting an Old Office Building into a Net Zero Energy Building for Hot-Humid Climate
Authors: Kwame B. O. Amoah
Abstract:
This paper focuses on retrofitting an old existing office building to a net-zero energy building (NZEB). An existing small office building in Melbourne, Florida, was chosen as a case study to integrate state-of-the-art design strategies and energy-efficient building systems to improve building performance and reduce energy consumption. The study aimed to explore possible ways to maximize energy savings and renewable energy generation sources to cover the building's remaining energy needs necessary to achieve net-zero energy goals. A series of retrofit options were reviewed and adopted with some significant additional decision considerations. Detailed processes and considerations leading to zero energy are well documented in this study, with lessons learned adequately outlined. Based on building energy simulations, multiple design considerations were investigated, such as emerging state-of-the-art technologies, material selection, improvements to the building envelope, optimization of the HVAC, lighting systems, and occupancy loads analysis, as well as the application of renewable energy sources. The comparative analysis of simulation results was used to determine how specific techniques led to energy saving and cost reductions. The research results indicate that this small office building can meet net-zero energy use after appropriate design manipulations and renewable energy sources.
Keywords: Energy consumption, building energy analysis, energy retrofits, energy-efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3403110 A New Technique for Solar Activity Forecasting Using Recurrent Elman Networks
Authors: Salvatore Marra, Francesco C. Morabito
Abstract:
In this paper we present an efficient approach for the prediction of two sunspot-related time series, namely the Yearly Sunspot Number and the IR5 Index, that are commonly used for monitoring solar activity. The method is based on exploiting partially recurrent Elman networks and it can be divided into three main steps: the first one consists in a “de-rectification" of the time series under study in order to obtain a new time series whose appearance, similar to a sum of sinusoids, can be modelled by our neural networks much better than the original dataset. After that, we normalize the derectified data so that they have zero mean and unity standard deviation and, finally, train an Elman network with only one input, a recurrent hidden layer and one output using a back-propagation algorithm with variable learning rate and momentum. The achieved results have shown the efficiency of this approach that, although very simple, can perform better than most of the existing solar activity forecasting methods.
Keywords: Elman neural networks, sunspot, solar activity, time series prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18533109 Present Energy Scenario and Potentiality of Wind Energy in Bangladesh
Authors: Md. Alamgir Hossain, Md. Raju Ahmed
Abstract:
Scarcity in energy sector is a major problem, which can hamper the growing development of a country. Bangladesh is one of the electricity-deprived countries; however, the energy demand of Bangladesh is increasing day by day. Due to the shortage of natural resources and environmental issues, many nations are now moving towards renewable energy. Among various form of renewable energy, wind energy is one of most potential source. In this paper, the present energy condition of Bangladesh is discussed and the necessity of moving towards renewable energy is clarified. The wind speed found at different locations at different heights and different years from the survey of several organizations are presented. Although, the results of installed low capacity wind turbines (from few kW to few tens of kW) operated by private or government organization at different places in Bangladesh are not so encouraging; however, it is shown that Bangladesh has a high potential of using large wind turbine (MW range) for capturing wind energy at different places. The present condition of wind energy in Bangladesh and other countries in the world are also presented to emphasize the requisite of moving towards wind energy.
Keywords: Renewable energy, wind speed, wind power, modern wind turbine, scarcity of power and gas crisis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35693108 Adaptive Neuro-Fuzzy Inference System for Financial Trading using Intraday Seasonality Observation Model
Authors: A. Kablan
Abstract:
The prediction of financial time series is a very complicated process. If the efficient market hypothesis holds, then the predictability of most financial time series would be a rather controversial issue, due to the fact that the current price contains already all available information in the market. This paper extends the Adaptive Neuro Fuzzy Inference System for High Frequency Trading which is an expert system that is capable of using fuzzy reasoning combined with the pattern recognition capability of neural networks to be used in financial forecasting and trading in high frequency. However, in order to eliminate unnecessary input in the training phase a new event based volatility model was proposed. Taking volatility and the scaling laws of financial time series into consideration has brought about the development of the Intraday Seasonality Observation Model. This new model allows the observation of specific events and seasonalities in data and subsequently removes any unnecessary data. This new event based volatility model provides the ANFIS system with more accurate input and has increased the overall performance of the system.Keywords: Adaptive Neuro-fuzzy Inference system, High Frequency Trading, Intraday Seasonality Observation Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33943107 The National Energy Strategy for Saudi Arabia
Authors: Ziyad Aljarboua
Abstract:
In this paper, we present a technical and an economic assessment of several sources of renewable energy in Saudi Arabia; mainly solar, wind, hydro and biomass. We analyze the environmental and climatic conditions in relation to these sources and give an overview of some of the existing clean energy technologies. Using standardized cost and efficiency data, we carry out a cost benefit analysis to understand the economic factors influencing the sustainability of energy production from renewable sources in light of the energy cost and demand in the Saudi market. Finally, we take a look at the Saudi petroleum industry and the existing sources of conventional energy and assess the potential of building a successful market for renewable energy under the constraints imposed by the flow of subsidized cheap oil. We show that while some renewable energy resources are well suited for distributed or grid connected generation in the kingdom, their viability is greatly undercut by the well developed and well capitalized oil industry.Keywords: Energy strategy, energy policy, renewable energy, Saudi Arabia, oil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37493106 Hazard Rate Estimation of Temporal Point Process, Case Study: Earthquake Hazard Rate in Nusatenggara Region
Authors: Sunusi N., Kresna A. J., Islamiyati A., Raupong
Abstract:
Hazard rate estimation is one of the important topics in forecasting earthquake occurrence. Forecasting earthquake occurrence is a part of the statistical seismology where the main subject is the point process. Generally, earthquake hazard rate is estimated based on the point process likelihood equation called the Hazard Rate Likelihood of Point Process (HRLPP). In this research, we have developed estimation method, that is hazard rate single decrement HRSD. This method was adapted from estimation method in actuarial studies. Here, one individual associated with an earthquake with inter event time is exponentially distributed. The information of epicenter and time of earthquake occurrence are used to estimate hazard rate. At the end, a case study of earthquake hazard rate will be given. Furthermore, we compare the hazard rate between HRLPP and HRSD method.Keywords: Earthquake forecast, Hazard Rate, Likelihood point process, Point process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14953105 Energy Savings in Pumps
Authors: N. Dizadji, P. Entezar, A. Shabani
Abstract:
This study presents energy saving in general-purpose pumps widely used in industrial applications. Such pumps are normally driven by a constant-speed electrical motor which in most applications must support varying load conditions. This is equivalent to saying the loading conditions mismatch the designed optimal energy consumption requirements of the intended application thus resulting in substantial energy losses. In the held experiments it was indicated that combination of mechanical and electrical speed drives can contribute to lower energy consumption in the pump without negatively distorting the required performance indices of a typical centrifugal pump at substantially lower energy consumption. The registered energy savings were recorded to be within the 15-40% margin. It was also indicated that although VSDs are installed at a cost, the financial burden is balanced against the earnings resulting from the associated energy savings.Keywords: Industrial motors, Pumps, Energy consumption, Energy savings, Variable speed drive.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20943104 Measuring Risk Levels and Efficacy of Risk Management Strategies in Vietnamese Catfish Farming
Authors: Tru C. Le, France Cheong
Abstract:
Although the Vietnamese catfish farming has grown at very high rates in recent years, the industry has also faced many problems affecting its sustainability. This paper studies the perceptions of catfish farmers regarding risk and risk management strategies in their production activities. Specifically, the study aims to measure the consequences, likelihoods, and levels of risks as well as the efficacy of risk management in Vietnamese catfish farming. Data for the study were collected through a sample of 261 catfish farmers in the Mekong Delta, Vietnam using a questionnaire survey in 2008. Results show that, in general, price and production risks were perceived as the most important risks. Farm management and technical measures were perceived more effective than other kinds of risk management strategies in risk reduction. Although price risks were rated as important risks, price risk management strategies were not perceived as important measures for risk mitigation. The results of the study are discussed to provide implications for various industry stakeholders, including policy makers, processors, advisors, and developers of new risk management strategies.Keywords: Aquaculture, catfish farming, sources of risk, riskmanagement, risk strategies, risk mitigation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19853103 Time Series Forecasting Using Various Deep Learning Models
Authors: Jimeng Shi, Mahek Jain, Giri Narasimhan
Abstract:
Time Series Forecasting (TSF) is used to predict the target variables at a future time point based on the learning from previous time points. To keep the problem tractable, learning methods use data from a fixed length window in the past as an explicit input. In this paper, we study how the performance of predictive models change as a function of different look-back window sizes and different amounts of time to predict into the future. We also consider the performance of the recent attention-based transformer models, which had good success in the image processing and natural language processing domains. In all, we compare four different deep learning methods (Recurrent Neural Network (RNN), Long Short-term Memory (LSTM), Gated Recurrent Units (GRU), and Transformer) along with a baseline method. The dataset (hourly) we used is the Beijing Air Quality Dataset from the website of University of California, Irvine (UCI), which includes a multivariate time series of many factors measured on an hourly basis for a period of 5 years (2010-14). For each model, we also report on the relationship between the performance and the look-back window sizes and the number of predicted time points into the future. Our experiments suggest that Transformer models have the best performance with the lowest Mean Absolute Errors (MAE = 14.599, 23.273) and Root Mean Square Errors (RSME = 23.573, 38.131) for most of our single-step and multi-steps predictions. The best size for the look-back window to predict 1 hour into the future appears to be one day, while 2 or 4 days perform the best to predict 3 hours into the future.
Keywords: Air quality prediction, deep learning algorithms, time series forecasting, look-back window.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11673102 A Brief Review on Recent Trends in Alternative Sources of Energy
Authors: Divya S., Jibin Joseph
Abstract:
Alternative energy is any energy source that is an alternative to fossil fuel. These alternatives are intended to address concerns about such fossil fuels. Today, because of the variety of energy choices and differing goals of their advocates, defining some energy types as "alternative" is highly controversial. Most of the recent and existing alternative sources of energy are discussed below
Keywords: Athra Quinone Disulphonic Acid (AQDS), Renewable Methanol (RM), Solid Oxide Fuel Cell (SOFC), Maximum Power Point Tracking (MPPT).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25533101 A Comparative Case Study of the Impact of Square and Yurt-Shape Buildings on Energy Efficiency
Authors: Valeriya Tyo, Serikbolat Yessengabulov
Abstract:
Regions with extreme climate conditions such as Astana city require energy saving measures to increase energy performance of buildings which are responsible for more than 40% of total energy consumption. Identification of optimal building geometry is one of key factors to be considered. Architectural form of a building has impact on space heating and cooling energy use, however the interrelationship between the geometry and resultant energy use is not always readily apparent. This paper presents a comparative case study of two prototypical buildings with compact building shape to assess its impact on energy performance.Keywords: Building geometry, energy efficiency, heat gain, heat loss.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25313100 Forecasting Stock Indexes Using Bayesian Additive Regression Tree
Authors: Darren Zou
Abstract:
Forecasting the stock market is a very challenging task. Various economic indicators such as GDP, exchange rates, interest rates, and unemployment have a substantial impact on the stock market. Time series models are the traditional methods used to predict stock market changes. In this paper, a machine learning method, Bayesian Additive Regression Tree (BART) is used in predicting stock market indexes based on multiple economic indicators. BART can be used to model heterogeneous treatment effects, and thereby works well when models are misspecified. It also has the capability to handle non-linear main effects and multi-way interactions without much input from financial analysts. In this research, BART is proposed to provide a reliable prediction on day-to-day stock market activities. By comparing the analysis results from BART and with time series method, BART can perform well and has better prediction capability than the traditional methods.
Keywords: Bayesian, Forecast, Stock, BART.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 734