Search results for: Network Intrusion Detection
3821 A Pattern Recognition Neural Network Model for Detection and Classification of SQL Injection Attacks
Authors: Naghmeh Moradpoor Sheykhkanloo
Abstract:
Thousands of organisations store important and confidential information related to them, their customers, and their business partners in databases all across the world. The stored data ranges from less sensitive (e.g. first name, last name, date of birth) to more sensitive data (e.g. password, pin code, and credit card information). Losing data, disclosing confidential information or even changing the value of data are the severe damages that Structured Query Language injection (SQLi) attack can cause on a given database. It is a code injection technique where malicious SQL statements are inserted into a given SQL database by simply using a web browser. In this paper, we propose an effective pattern recognition neural network model for detection and classification of SQLi attacks. The proposed model is built from three main elements of: a Uniform Resource Locator (URL) generator in order to generate thousands of malicious and benign URLs, a URL classifier in order to: 1) classify each generated URL to either a benign URL or a malicious URL and 2) classify the malicious URLs into different SQLi attack categories, and a NN model in order to: 1) detect either a given URL is a malicious URL or a benign URL and 2) identify the type of SQLi attack for each malicious URL. The model is first trained and then evaluated by employing thousands of benign and malicious URLs. The results of the experiments are presented in order to demonstrate the effectiveness of the proposed approach.Keywords: Neural Networks, pattern recognition, SQL injection attacks, SQL injection attack classification, SQL injection attack detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28453820 e-Plagiarism Detection at Glamorgan
Authors: Esyin Chew, Haydn Blackey
Abstract:
There are increasingly plagiarism offences for students in higher education in the digital educational world. On the other hand, various and competitive online assessment and plagiarism detection tools are available in the market. Taking the University of Glamorgan as a case study, this paper describes and introduces an institutional journey on electronic plagiarism detection to inform the initial experience of an innovative tool and method which could be further explored in the future research. The comparative study and system workflow for e-plagiarism detection tool are discussed. Benefits for both academics and students are also presented. Electronic plagiarism detection tools brought great benefits to both academics and students in Glamorgan. On the other hand, the debates raised in such initial experience are discussed.Keywords: Educational Technology, Plagiarism detection, Turnitin
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18453819 Dimensionality Reduction in Modal Analysis for Structural Health Monitoring
Authors: Elia Favarelli, Enrico Testi, Andrea Giorgetti
Abstract:
Autonomous structural health monitoring (SHM) of many structures and bridges became a topic of paramount importance for maintenance purposes and safety reasons. This paper proposes a set of machine learning (ML) tools to perform automatic feature selection and detection of anomalies in a bridge from vibrational data and compare different feature extraction schemes to increase the accuracy and reduce the amount of data collected. As a case study, the Z-24 bridge is considered because of the extensive database of accelerometric data in both standard and damaged conditions. The proposed framework starts from the first four fundamental frequencies extracted through operational modal analysis (OMA) and clustering, followed by time-domain filtering (tracking). The fundamental frequencies extracted are then fed to a dimensionality reduction block implemented through two different approaches: feature selection (intelligent multiplexer) that tries to estimate the most reliable frequencies based on the evaluation of some statistical features (i.e., entropy, variance, kurtosis), and feature extraction (auto-associative neural network (ANN)) that combine the fundamental frequencies to extract new damage sensitive features in a low dimensional feature space. Finally, one-class classification (OCC) algorithms perform anomaly detection, trained with standard condition points, and tested with normal and anomaly ones. In particular, principal component analysis (PCA), kernel principal component analysis (KPCA), and autoassociative neural network (ANN) are presented and their performance are compared. It is also shown that, by evaluating the correct features, the anomaly can be detected with accuracy and an F1 score greater than 95%.
Keywords: Anomaly detection, dimensionality reduction, frequencies selection, modal analysis, neural network, structural health monitoring, vibration measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7093818 Improving Digital Image Edge Detection by Fuzzy Systems
Authors: Begol, Moslem, Maghooli, Keivan
Abstract:
Image Edge Detection is one of the most important parts of image processing. In this paper, by fuzzy technique, a new method is used to improve digital image edge detection. In this method, a 3x3 mask is employed to process each pixel by means of vicinity. Each pixel is considered a fuzzy input and by examining fuzzy rules in its vicinity, the edge pixel is specified and by utilizing calculation algorithms in image processing, edges are displayed more clearly. This method shows significant improvement compared to different edge detection methods (e.g. Sobel, Canny).Keywords: Fuzzy Systems, Edge Detection, Fuzzy edgedetection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20913817 Detection of Diabetic Symptoms in Retina Images Using Analog Algorithms
Authors: Daniela Matei, Radu Matei
Abstract:
In this paper a class of analog algorithms based on the concept of Cellular Neural Network (CNN) is applied in some processing operations of some important medical images, namely retina images, for detecting various symptoms connected with diabetic retinopathy. Some specific processing tasks like morphological operations, linear filtering and thresholding are proposed, the corresponding template values are given and simulations on real retina images are provided.Keywords: Diabetic retinopathy, pathology detection, cellular neural networks, analog algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20823816 Advanced Geolocation of IP Addresses
Authors: Robert Koch, Mario Golling, Gabi Dreo Rodosek
Abstract:
Tracing and locating the geographical location of users (Geolocation) is used extensively in todays Internet. Whenever we, e.g., request a page from google we are - unless there was a specific configuration made - automatically forwarded to the page with the relevant language and amongst others, dependent on our location identified, specific commercials are presented. Especially within the area of Network Security, Geolocation has a significant impact. Because of the way the Internet works, attacks can be executed from almost everywhere. Therefore, for an attribution, knowledge of the origination of an attack - and thus Geolocation - is mandatory in order to be able to trace back an attacker. In addition, Geolocation can also be used very successfully to increase the security of a network during operation (i.e. before an intrusion actually has taken place). Similar to greylisting in emails, Geolocation allows to (i) correlate attacks detected with new connections and (ii) as a consequence to classify traffic a priori as more suspicious (thus particularly allowing to inspect this traffic in more detail). Although numerous techniques for Geolocation are existing, each strategy is subject to certain restrictions. Following the ideas of Endo et al., this publication tries to overcome these shortcomings with a combined solution of different methods to allow improved and optimized Geolocation. Thus, we present our architecture for improved Geolocation, by designing a new algorithm, which combines several Geolocation techniques to increase the accuracy.
Keywords: IP geolocation, prosecution of computer fraud, attack attribution, target-analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47273815 Semi-Automatic Trend Detection in Scholarly Repository Using Semantic Approach
Authors: Fereshteh Mahdavi, Maizatul Akmar Ismail, Noorhidawati Abdullah
Abstract:
Currently WWW is the first solution for scholars in finding information. But, analyzing and interpreting this volume of information will lead to researchers overload in pursuing their research. Trend detection in scientific publication retrieval systems helps scholars to find relevant, new and popular special areas by visualizing the trend of input topic. However, there are few researches on trend detection in scientific corpora while their proposed models do not appear to be suitable. Previous works lack of an appropriate representation scheme for research topics. This paper describes a method that combines Semantic Web and ontology to support advance search functions such as trend detection in the context of scholarly Semantic Web system (SSWeb).Keywords: Trend, Semi-Automatic Trend Detection, Ontology, Semantic Trend Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15333814 A Comparative Study into Observer based Fault Detection and Diagnosis in DC Motors: Part-I
Authors: Padmakumar S., Vivek Agarwal, Kallol Roy
Abstract:
A model based fault detection and diagnosis technique for DC motor is proposed in this paper. Fault detection using Kalman filter and its different variants are compared. Only incipient faults are considered for the study. The Kalman Filter iterations and all the related computations required for fault detection and fault confirmation are presented. A second order linear state space model of DC motor is used for this work. A comparative assessment of the estimates computed from four different observers and their relative performance is evaluated.Keywords: DC motor model, Fault detection and diagnosis Kalman Filter, Unscented Kalman Filter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24963813 A Neural Computing-Based Approach for the Early Detection of Hepatocellular Carcinoma
Authors: Marina Gorunescu, Florin Gorunescu, Kenneth Revett
Abstract:
Hepatocellular carcinoma, also called hepatoma, most commonly appears in a patient with chronic viral hepatitis. In patients with a higher suspicion of HCC, such as small or subtle rising of serum enzymes levels, the best method of diagnosis involves a CT scan of the abdomen, but only at high cost. The aim of this study was to increase the ability of the physician to early detect HCC, using a probabilistic neural network-based approach, in order to save time and hospital resources.Keywords: Early HCC diagnosis, probabilistic neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12653812 Rapid Detection System of Airborne Pathogens
Authors: Shigenori Togashi, Kei Takenaka
Abstract:
We developed new processes which can collect and detect rapidly airborne pathogens such as the avian flu virus for the pandemic prevention. The fluorescence antibody technique is known as one of high-sensitive detection methods for viruses, but this needs up to a few hours to bind sufficient fluorescence dyes to viruses for detection. In this paper, we developed a mist-labeling can detect substitution viruses in a short time to improve the binding rate of fluorescent dyes and substitution viruses by the micro reaction process. Moreover, we developed the rapid detection system with the above “mist labeling”. The detection system set with a sampling bag collecting patient’s breath and a cartridge can detect automatically pathogens within 10 minutes.
Keywords: Viruses, Sampler, Mist, Detection, Fluorescent dyes, Microreaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28463811 Analysis of Social Network Using Clever Ant Colony Metaphor
Authors: Mohammad Al-Fayoumi, Soumya Banerjee, Jr., P. K. Mahanti
Abstract:
A social network is a set of people or organization or other social entities connected by some form of relationships. Analysis of social network broadly elaborates visual and mathematical representation of that relationship. Web can also be considered as a social network. This paper presents an innovative approach to analyze a social network using a variant of existing ant colony optimization algorithm called as Clever Ant Colony Metaphor. Experiments are performed and interesting findings and observations have been inferred based on the proposed model.
Keywords: Social Network, Ant Colony, Maximum Clique, Sub graph, Clever Ant colony.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19863810 Change Detection and Non Stationary Signals Tracking by Adaptive Filtering
Authors: Mounira RouaÐùnia, Noureddine Doghmane
Abstract:
In this paper we consider the problem of change detection and non stationary signals tracking. Using parametric estimation of signals based on least square lattice adaptive filters we consider for change detection statistical parametric methods using likelihood ratio and hypothesis tests. In order to track signals dynamics, we introduce a compensation procedure in the adaptive estimation. This will improve the adaptive estimation performances and fasten it-s convergence after changes detection.Keywords: Change detection, Hypothesis test, likelihood ratioleast square lattice adaptive filters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16363809 Design the Bowtie Antenna for the Detection of the Tumor in Microwave Tomography
Authors: Muhammd Hassan Khalil, Xu Jiadong
Abstract:
Early breast cancer detection is an emerging field of research as it can save the women infected by malignant tumors. Microwave breast imaging is based on the electrical property contrast between healthy and malignant tumor. This contrast can be detected by use of microwave energy with an array of antennas that illuminate the breast through coupling medium and by measuring the scattered fields. In this paper, author has been presented the design and simulation results of the bowtie antenna. This bowtie antenna is designed for the detection of breast cancer detection.
Keywords: Breast cancer detection, Microwave Imaging, Tomography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20683808 Analysis of the Ambient Media Approach of Advertisement Samples from the Adman Awards and Symposium under the Category of Outdoor and Ambience
Authors: Chanthana Poninthawong
Abstract:
This research is to study the types of products and services that employs 'ambient media and respective techniques in its advertisement materials. Data collection has been done via analyses of a total of 62 advertisements that employed ambient media approach in Thailand during the years 2004 to 2011. The 62 advertisement were qualifying advertisements of the Adman Awards & Symposium under the category of Outdoor & Ambience. Analysis results reveal that there is a total of 14 products and services that chooses to utilize ambient media in its advertisement. Amongst all ambient media techniques, 'intrusion' uses the value of a medium in its representation of content most often. Following intrusion is 'interaction', where consumers are invited to participate and interact with the advertising materials. 'Illusion' ranks third in its ability to subject the viewers to distortions of reality that makes the division between reality and fantasy less clear.Keywords: Ambient media, Adman Awards, advertising, Out of Home media.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24293807 A Framework for Review Spam Detection Research
Authors: Mohammadali Tavakoli, Atefeh Heydari, Zuriati Ismail, Naomie Salim
Abstract:
With the increasing number of people reviewing products online in recent years, opinion sharing websites has become the most important source of customers’ opinions. Unfortunately, spammers generate and post fake reviews in order to promote or demote brands and mislead potential customers. These are notably destructive not only for potential customers, but also for business holders and manufacturers. However, research in this area is not adequate, and many critical problems related to spam detection have not been solved to date. To provide green researchers in the domain with a great aid, in this paper, we have attempted to create a highquality framework to make a clear vision on review spam-detection methods. In addition, this report contains a comprehensive collection of detection metrics used in proposed spam-detection approaches. These metrics are extremely applicable for developing novel detection methods.
Keywords: Fake reviews, Feature collection, Opinion spam, Spam detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25173806 Strategies for Securing Safety Messages with Fixed Key Infrastructure in Vehicular Network
Authors: Nasser Mozayani, Maryam Barzegar, Hoda Madani
Abstract:
Vehicular communications play a substantial role in providing safety in transportation by means of safety message exchange. Researchers have proposed several solutions for securing safety messages. Protocols based on a fixed key infrastructure are more efficient in implementation and maintain stronger security in comparison with dynamic structures. These protocols utilize zone partitioning to establish distinct key infrastructure under Certificate Authority (CA) supervision in different regions. Secure anonymous broadcasting (SAB) is one of these protocols that preserves most of security aspects but it has some deficiencies in practice. A very important issue is region change of a vehicle for its mobility. Changing regions leads to change of CA and necessity of having new key set to resume communication. In this paper, we propose solutions for informing vehicles about region change to obtain new key set before entering next region. This hinders attackers- intrusion, packet loss and lessons time delay. We also make key request messages secure by confirming old CA-s public key to the message, hence stronger security for safety message broadcasting is attained.
Keywords: Secure broadcasting, Certificate authority (CA), Key exchange, Vehicular network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15393805 Fast Algorithm of Shot Cut Detection
Authors: Lenka Krulikovská, Jaroslav Polec, Tomáš Hirner
Abstract:
In this paper we present a novel method, which reduces the computational complexity of abrupt cut detection. We have proposed fast algorithm, where the similarity of frames within defined step is evaluated instead of comparing successive frames. Based on the results of simulation on large video collection, the proposed fast algorithm is able to achieve 80% reduction of needed frames comparisons compared to actually used methods without the shot cut detection accuracy degradation.Keywords: Abrupt cut, fast algorithm, shot cut detection, Pearson correlation coefficient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17463804 Evaluating Portfolio Performance by Highlighting Network Property and the Sharpe Ratio in the Stock Market
Authors: Zahra Hatami, Hesham Ali, David Volkman
Abstract:
Selecting a portfolio for investing is a crucial decision for individuals and legal entities. In the last two decades, with economic globalization, a stream of financial innovations has rushed to the aid of financial institutions. The importance of selecting stocks for the portfolio is always a challenging task for investors. This study aims to create a financial network to identify optimal portfolios using network centralities metrics. This research presents a community detection technique of superior stocks that can be described as an optimal stock portfolio to be used by investors. By using the advantages of a network and its property in extracted communities, a group of stocks was selected for each of the various time periods. The performance of the optimal portfolios was compared to the famous index. Their Sharpe ratio was calculated in a timely manner to evaluate their profit for making decisions. The analysis shows that the selected potential portfolio from stocks with low centrality measurement can outperform the market; however, they have a lower Sharpe ratio than stocks with high centrality scores. In other words, stocks with low centralities could outperform the S&P500 yet have a lower Sharpe ratio than high central stocks.
Keywords: Portfolio management performance, network analysis, centrality measurements, Sharpe ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4123803 An Approach to Secure Mobile Agent Communication in Multi-Agent Systems
Authors: Olumide Simeon Ogunnusi, Shukor Abd Razak, Michael Kolade Adu
Abstract:
Inter-agent communication manager facilitates communication among mobile agents via message passing mechanism. Until now, all Foundation for Intelligent Physical Agents (FIPA) compliant agent systems are capable of exchanging messages following the standard format of sending and receiving messages. Previous works tend to secure messages to be exchanged among a community of collaborative agents commissioned to perform specific tasks using cryptosystems. However, the approach is characterized by computational complexity due to the encryption and decryption processes required at the two ends. The proposed approach to secure agent communication allows only agents that are created by the host agent server to communicate via the agent communication channel provided by the host agent platform. These agents are assumed to be harmless. Therefore, to secure communication of legitimate agents from intrusion by external agents, a 2-phase policy enforcement system was developed. The first phase constrains the external agent to run only on the network server while the second phase confines the activities of the external agent to its execution environment. To implement the proposed policy, a controller agent was charged with the task of screening any external agent entering the local area network and preventing it from migrating to the agent execution host where the legitimate agents are running. On arrival of the external agent at the host network server, an introspector agent was charged to monitor and restrain its activities. This approach secures legitimate agent communication from Man-in-the Middle and Replay attacks.
Keywords: Agent communication, introspective agent, isolation of agent, policy enforcement system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6463802 An Intelligent Nondestructive Testing System of Ultrasonic Infrared Thermal Imaging Based on Embedded Linux
Authors: Hao Mi, Ming Yang, Tian-yue Yang
Abstract:
Ultrasonic infrared nondestructive testing is a kind of testing method with high speed, accuracy and localization. However, there are still some problems, such as the detection requires manual real-time field judgment, the methods of result storage and viewing are still primitive. An intelligent non-destructive detection system based on embedded linux is put forward in this paper. The hardware part of the detection system is based on the ARM (Advanced Reduced Instruction Set Computer Machine) core and an embedded linux system is built to realize image processing and defect detection of thermal images. The CLAHE algorithm and the Butterworth filter are used to process the thermal image, and then the boa server and CGI (Common Gateway Interface) technology are used to transmit the test results to the display terminal through the network for real-time monitoring and remote monitoring. The system also liberates labor and eliminates the obstacle of manual judgment. According to the experiment result, the system provides a convenient and quick solution for industrial non-destructive testing.Keywords: Remote monitoring, non-destructive testing, embedded linux system, image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9693801 Optimizing Spatial Trend Detection By Artificial Immune Systems
Authors: M. Derakhshanfar, B. Minaei-Bidgoli
Abstract:
Spatial trends are one of the valuable patterns in geo databases. They play an important role in data analysis and knowledge discovery from spatial data. A spatial trend is a regular change of one or more non spatial attributes when spatially moving away from a start object. Spatial trend detection is a graph search problem therefore heuristic methods can be good solution. Artificial immune system (AIS) is a special method for searching and optimizing. AIS is a novel evolutionary paradigm inspired by the biological immune system. The models based on immune system principles, such as the clonal selection theory, the immune network model or the negative selection algorithm, have been finding increasing applications in fields of science and engineering. In this paper, we develop a novel immunological algorithm based on clonal selection algorithm (CSA) for spatial trend detection. We are created neighborhood graph and neighborhood path, then select spatial trends that their affinity is high for antibody. In an evolutionary process with artificial immune algorithm, affinity of low trends is increased with mutation until stop condition is satisfied.Keywords: Spatial Data Mining, Spatial Trend Detection, Heuristic Methods, Artificial Immune System, Clonal Selection Algorithm (CSA)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20493800 Research on the Survivability of Embedded Real-time System
Abstract:
Introducing survivability into embedded real-time system (ERTS) can improve the survivability power of the system. This paper mainly discusses about the survivability of ERTS. The first is the survivability origin of ERTS. The second is survivability analysis. According to the definition of survivability based on survivability specification and division of the entire survivability analysis process for ERTS, a survivability analysis profile is presented. The quantitative analysis model of this profile is emphasized and illuminated in detail, the quantifying analysis of system was showed helpful to evaluate system survivability more accurate. The third is platform design of survivability analysis. In terms of the profile, the analysis process is encapsulated and assembled into one platform, on which quantification, standardization and simplification of survivability analysis are all achieved. The fourth is survivability design. According to character of ERTS, strengthened design method is selected to realize system survivability design. Through the analysis of embedded mobile video-on-demand system, intrusion tolerant technology is introduced in whole survivability design.
Keywords: ERTS (embedded real-time system), survivability, quantitative analysis, survivability specification, intrusion tolerant
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13043799 Dynamic Fault Diagnosis for Semi-Batch Reactor under Closed-Loop Control via Independent Radial Basis Function Neural Network
Authors: Abdelkarim M. Ertiame, D. W. Yu, D. L. Yu, J. B. Gomm
Abstract:
In this paper, a robust fault detection and isolation (FDI) scheme is developed to monitor a multivariable nonlinear chemical process called the Chylla-Haase polymerization reactor, when it is under the cascade PI control. The scheme employs a radial basis function neural network (RBFNN) in an independent mode to model the process dynamics, and using the weighted sum-squared prediction error as the residual. The Recursive Orthogonal Least Squares algorithm (ROLS) is employed to train the model to overcome the training difficulty of the independent mode of the network. Then, another RBFNN is used as a fault classifier to isolate faults from different features involved in the residual vector. Several actuator and sensor faults are simulated in a nonlinear simulation of the reactor in Simulink. The scheme is used to detect and isolate the faults on-line. The simulation results show the effectiveness of the scheme even the process is subjected to disturbances and uncertainties including significant changes in the monomer feed rate, fouling factor, impurity factor, ambient temperature, and measurement noise. The simulation results are presented to illustrate the effectiveness and robustness of the proposed method.Keywords: Robust fault detection, cascade control, independent RBF model, RBF neural networks, Chylla-Haase reactor, FDI under closed-loop control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18353798 A Convolutional Neural Network-Based Vehicle Theft Detection, Location, and Reporting System
Authors: Michael Moeti, Khuliso Sigama, Thapelo Samuel Matlala
Abstract:
One of the principal challenges that the world is confronted with is insecurity. The crime rate is increasing exponentially, and protecting our physical assets, especially in the motorist sector, is becoming impossible when applying our own strength. The need to develop technological solutions that detect and report theft without any human interference is inevitable. This is critical, especially for vehicle owners, to ensure theft detection and speedy identification towards recovery efforts in cases where a vehicle is missing or attempted theft is taking place. The vehicle theft detection system uses Convolutional Neural Network (CNN) to recognize the driver's face captured using an installed mobile phone device. The location identification function uses a Global Positioning System (GPS) to determine the real-time location of the vehicle. Upon identification of the location, Global System for Mobile Communications (GSM) technology is used to report or notify the vehicle owner about the whereabouts of the vehicle. The installed mobile app was implemented by making use of Python as it is undoubtedly the best choice in machine learning. It allows easy access to machine learning algorithms through its widely developed library ecosystem. The graphical user interface was developed by making use of JAVA as it is better suited for mobile development. Google's online database (Firebase) was used as a means of storage for the application. The system integration test was performed using a simple percentage analysis. 60 vehicle owners participated in this study as a sample, and questionnaires were used in order to establish the acceptability of the system developed. The result indicates the efficiency of the proposed system, and consequently, the paper proposes that the use of the system can effectively monitor the vehicle at any given place, even if it is driven outside its normal jurisdiction. More so, the system can be used as a database to detect, locate and report missing vehicles to different security agencies.
Keywords: Convolutional Neural Network, CNN, location identification, tracking, GPS, GSM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4173797 Design and Implementation of an Image Based System to Enhance the Security of ATM
Authors: Seyed Nima Tayarani Bathaie
Abstract:
In this paper, an image-receiving system was designed and implemented through optimization of object detection algorithms using Haar features. This optimized algorithm served as face and eye detection separately. Then, cascading them led to a clear image of the user. Utilization of this feature brought about higher security by preventing fraud. This attribute results from the fact that services will be given to the user on condition that a clear image of his face has already been captured which would exclude the inappropriate person. In order to expedite processing and eliminating unnecessary ones, the input image was compressed, a motion detection function was included in the program, and detection window size was confined.
Keywords: Face detection algorithm, Haar features, Security of ATM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21093796 A Novel Spectral Index for Automatic Shadow Detection in Urban Mapping Based On WorldView-2 Satellite Imagery
Authors: Kaveh Shahi, Helmi Z. M. Shafri, Ebrahim Taherzadeh
Abstract:
In remote sensing, shadow causes problems in many applications such as change detection and classification. It is caused by objects which are elevated, thus can directly affect the accuracy of information. For these reasons, it is very important to detect shadows particularly in urban high spatial resolution imagery which created a significant problem. This paper focuses on automatic shadow detection based on a new spectral index for multispectral imagery known as Shadow Detection Index (SDI). The new spectral index was tested on different areas of WorldView-2 images and the results demonstrated that the new spectral index has a massive potential to extract shadows with accuracy of 94% effectively and automatically. Furthermore, the new shadow detection index improved road extraction from 82% to 93%.
Keywords: Spectral index, shadow detection, remote sensing images, WorldView-2.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33273795 Optimizing TCP Vegas- Performance with Packet Spacing and Effect of Variable FTP Packet Size over Wireless IPv6 Network
Authors: B. S. Yew , B. L. Ong , R. B. Ahmad
Abstract:
This paper describes the performance of TCP Vegas over the wireless IPv6 network. The performance of TCP Vegas is evaluated using network simulator (ns-2). The simulation experiment investigates how packet spacing affects the network delay, network throughput and network efficiency of TCP Vegas. Moreover, we investigate how the variable FTP packet sizes affect the network performance. The result of the simulation experiment shows that as the packet spacing is implements, the network delay is reduces, network throughput and network efficiency is optimizes. As the FTP packet sizes increase, the ratio of delay per throughput decreases. From the result of experiment, we propose the appropriate packet size in transmitting file transfer protocol application using TCP Vegas with packet spacing enhancement over wireless IPv6 environment in ns-2. Additionally, we suggest the appropriate ratio in determining the appropriate RTT and buffer size in a network.Keywords: TCP Vegas, Packet Spacing, Packet Size, Wireless IPv6, ns-2
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19613794 DCGA Based-Transmission Network Expansion Planning Considering Network Adequacy
Authors: H. Shayeghi, M. Mahdavi, H. Haddadian
Abstract:
Transmission network expansion planning (TNEP) is an important component of power system planning that its task is to minimize the network construction and operational cost while satisfying the demand increasing, imposed technical and economic conditions. Up till now, various methods have been presented to solve the static transmission network expansion planning (STNEP) problem. But in all of these methods, the lines adequacy rate has not been studied after the planning horizon, i.e. when the expanded network misses its adequacy and needs to be expanded again. In this paper, in order to take transmission lines condition after expansion in to account from the line loading view point, the adequacy of transmission network is considered for solution of STNEP problem. To obtain optimal network arrangement, a decimal codification genetic algorithm (DCGA) is being used for minimizing the network construction and operational cost. The effectiveness of the proposed idea is tested on the Garver's six-bus network. The results evaluation reveals that the annual worth of network adequacy has a considerable effect on the network arrangement. In addition, the obtained network, based on the DCGA, has lower investment cost and higher adequacy rate. Thus, the network satisfies the requirements of delivering electric power more safely and reliably to load centers.
Keywords: STNEP Problem, Network Adequacy, DCGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14273793 Concealed Objects Detection in Visible, Infrared and Terahertz Ranges
Authors: M. Kowalski, M. Kastek, M. Szustakowski
Abstract:
Multispectral screening systems are becoming more popular because of their very interesting properties and applications. One of the most significant applications of multispectral screening systems is prevention of terrorist attacks. There are many kinds of threats and many methods of detection. Visual detection of objects hidden under clothing of a person is one of the most challenging problems of threats detection. There are various solutions of the problem; however, the most effective utilize multispectral surveillance imagers. The development of imaging devices and exploration of new spectral bands is a chance to introduce new equipment for assuring public safety. We investigate the possibility of long lasting detection of potentially dangerous objects covered with various types of clothing. In the article we present the results of comparative studies of passive imaging in three spectrums – visible, infrared and terahertz.
Keywords: Infrared, image processing, object detection, screening camera, terahertz.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30943792 Monitoring and Prediction of Intra-Crosstalk in All-Optical Network
Authors: Ahmed Jedidi, Mesfer Mohammed Alshamrani, Alwi Mohammad A. Bamhdi
Abstract:
Optical performance monitoring and optical network management are essential in building a reliable, high-capacity, and service-differentiation enabled all-optical network. One of the serious problems in this network is the fact that optical crosstalk is additive, and thus the aggregate effect of crosstalk over a whole AON may be more nefarious than a single point of crosstalk. As results, we note a huge degradation of the Quality of Service (QoS) in our network. For that, it is necessary to identify and monitor the impairments in whole network. In this way, this paper presents new system to identify and monitor crosstalk in AONs in real-time fashion. particular, it proposes a new technique to manage intra-crosstalk in objective to relax QoS of the network.Keywords: All-optical networks, optical crosstalk, optical cross-connect, crosstalk, monitoring crosstalk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720