Search results for: Industrial wastewater
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1251

Search results for: Industrial wastewater

1041 Simultaneous Treatment and Catalytic Gasification of Olive Mill Wastewater under Supercritical Conditions

Authors: Ekin Kıpçak, Sinan Kutluay, Mesut Akgün

Abstract:

Recently, a growing interest has emerged on the development of new and efficient energy sources, due to the inevitable extinction of the nonrenewable energy reserves. One of these alternative sources which has a great potential and sustainability to meet up the energy demand is biomass energy. This significant energy source can be utilized with various energy conversion technologies, one of which is biomass gasification in supercritical water. Water, being the most important solvent in nature, has very important characteristics as a reaction solvent under supercritical circumstances. At temperatures above its critical point (374.8oC and 22.1 MPa), water becomes more acidic and its diffusivity increases. Working with water at high temperatures increases the thermal reaction rate, which in consequence leads to a better dissolving of the organic matters and a fast reaction with oxygen. Hence, supercritical water offers a control mechanism depending on solubility, excellent transport properties based on its high diffusion ability and new reaction possibilities for hydrolysis or oxidation. In this study the gasification of a real biomass, namely olive mill wastewater (OMW), in supercritical water is investigated with the use of Pt/Al2O3 and Ni/Al2O3 catalysts. OMW is a by-product obtained during olive oil production, which has a complex nature characterized by a high content of organic compounds and polyphenols. These properties impose OMW a significant pollution potential, but at the same time, the high content of organics makes OMW a desirable biomass candidate for energy production. All of the catalytic gasification experiments were made with five different reaction temperatures (400, 450, 500, 550 and 600°C), under a constant pressure of 25 MPa. For the experiments conducted with Ni/Al2O3 catalyst, the effect of five reaction times (30, 60, 90, 120 and 150 s) was investigated. However, procuring that similar gasification efficiencies could be obtained at shorter times, the experiments were made by using different reaction times (10, 15, 20, 25 and 30 s) for the case of Pt/Al2O3 catalyst. Through these experiments, the effects of temperature, time and catalyst type on the gasification yields and treatment efficiencies were investigated.

Keywords: Catalyst, Gasification, Olive mill wastewater, Supercritical water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745
1040 Role of Organic Wastewater Constituents in Iron Redox Cycling for Ferric Sludge Reuse in the Fenton-Based Treatment

Authors: J. Bolobajev, M. Trapido, A. Goi

Abstract:

The practical application of the Fenton-based treatment method for organic compounds-contaminated water purification is limited mainly because of the large amount of ferric sludge formed during the treatment, where ferrous iron (Fe(II)) is used as the activator of the hydrogen peroxide oxidation processes. Reuse of ferric sludge collected from clarifiers to substitute Fe(II) salts allows reducing the total cost of Fenton-type treatment technologies and minimizing the accumulation of hazardous ferric waste. Dissolution of ferric iron (Fe(III)) from the sludge to liquid phase at acidic pH and autocatalytic transformation of Fe(III) to Fe(II) by phenolic compounds (tannic acid, lignin, phenol, catechol, pyrogallol and hydroquinone) added or present as water/wastewater constituents were found to be essentially involved in the Fenton-based oxidation mechanism. Observed enhanced formation of highly reactive species, hydroxyl radicals, resulted in a substantial organic contaminant degradation increase. Sludge reuse at acidic pH and in the presence of ferric iron reductants is a novel strategy in the Fenton-based treatment application for organic compounds-contaminated water purification.

Keywords: Ferric sludge reuse, ferric iron reductant, water treatment, organic pollutant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1667
1039 Comparison of Hough Transform and Mean Shift Algorithm for Estimation of the Orientation Angle of Industrial Data Matrix Codes

Authors: Ion-Cosmin Dita, Vasile Gui, Franz Quint, Marius Otesteanu

Abstract:

In automatic manufacturing and assembling of mechanical, electrical and electronic parts one needs to reliably identify the position of components and to extract the information of these components. Data Matrix Codes (DMC) are established by these days in many areas of industrial manufacturing thanks to their concentration of information on small spaces. In today’s usually order-related industry, where increased tracing requirements prevail, they offer further advantages over other identification systems. This underlines in an impressive way the necessity of a robust code reading system for detecting DMC on the components in factories. This paper compares two methods for estimating the angle of orientation of Data Matrix Codes: one method based on the Hough Transform and the other based on the Mean Shift Algorithm. We concentrate on Data Matrix Codes in industrial environment, punched, milled, lasered or etched on different materials in arbitrary orientation.

Keywords: Industrial data matrix code, Hough transform, mean shift.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1334
1038 Teaching Contemporary Power Distribution and Industrial Networks in Higher Education Vocational Studies

Authors: Rade M. Ciric

Abstract:

The paper shows the development and implementation of the syllabus of the subject 'Distribution and Industrial Networks', attended by the vocational specialist Year 4 students of the Electric Power Engineering study programme at the Higher Education Technical School of Vocational Studies in Novi Sad. The aim of the subject is to equip students with the knowledge necessary for planning, exploitation and management of distributive and industrial electric power networks in an open electricity market environment. The results of the evaluation of educational outcomes on the subject are presented and discussed.

Keywords: Engineering education, power distribution network, syllabus implementation, outcome evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 774
1037 Operation Assay of an Industrial Single-Source – Single-Detector Gamma CT Using MCNP4C Code Simulation and Experimental Test Comparisons

Authors: M. Ghanadi, M. Rezazadeh*, M. Ardeshiri, R. Gholipour Peyvandi, M. Jafarzadeh, M. Shahriari, M.Rezaei Rad, Z. Gholamzadeh

Abstract:

A 3D industrial computed tomography (CT) manufactured based on a first generation CT systems, single-source – single-detector, was evaluated. Operation accuracy assessment of the manufactured system was achieved using simulation in comparison with experimental tests. 137Cs and 60Co were used as a gamma source. Simulations were achieved using MCNP4C code. Experimental tests of 137Cs were in good agreement with the simulations

Keywords: Gamma source, Industrial CT, MCNP4C, Operation assessment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663
1036 Contamination in Industrial Areas and Environmental Management in Latvia

Authors: Juris Burlakovs, Maris Klavins, Raimonds Ernsteins, Armands Ruskulis

Abstract:

Environmental contamination is a common problem in ex-industrial and industrial sites. This article gives a brief description of general applied environmental investigation methodologies and possible remediation applications in Latvia. Most of contaminated areas are situated in former and active industrial, military areas and ports. Industrial and logistic activities very often have been with great impact for more than hundred years thus the contamination level with heavy metals, hydrocarbons, pesticides, persistent organic pollutants is high and is threatening health and environment in general. 242 territories now are numbered as contaminated and fixed in the National Register of contaminated territories in Latvia. Research and remediation of contamination in densely populated areas are of important environmental policy domain. Four different investigation case studies of contaminated areas are given describing the history of use, environmental quality assessment as well as planned environmental management actions. All four case study locations are situated in Riga - the capital of the Republic of Latvia. The aim of this paper is to analyze the situation and problems with management of contaminated areas in Latvia, give description of field research methods and recommendations for remediation industry based on scientific data and innovations.

Keywords: Remediation technology, environmental quality assessment, heavy metals, hydrocarbon contamination, environmental management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2299
1035 Catalytic Gasification of Olive Mill Wastewater as a Biomass Source under Supercritical Conditions

Authors: Ekin Kıpçak, Mesut Akgün

Abstract:

Recently, a growing interest has emerged on the development of new and efficient energy sources, due to the inevitable extinction of the nonrenewable energy reserves. One of these alternative sources which have a great potential and sustainability to meet up the energy demand is biomass energy. This significant energy source can be utilized with various energy conversion technologies, one of which is biomass gasification in supercritical water.

Water, being the most important solvent in nature, has very important characteristics as a reaction solvent under supercritical circumstances. At temperatures above its critical point (374.8oC and 22.1MPa), water becomes more acidic and its diffusivity increases. Working with water at high temperatures increases the thermal reaction rate, which in consequence leads to a better dissolving of the organic matters and a fast reaction with oxygen. Hence, supercritical water offers a control mechanism depending on solubility, excellent transport properties based on its high diffusion ability and new reaction possibilities for hydrolysis or oxidation.

In this study the gasification of a real biomass, namely olive mill wastewater (OMW), in supercritical water conditions is investigated with the use of Ru/Al2O3 catalyst. OMW is a by-product obtained during olive oil production, which has a complex nature characterized by a high content of organic compounds and polyphenols. These properties impose OMW a significant pollution potential, but at the same time, the high content of organics makes OMW a desirable biomass candidate for energy production.

The catalytic gasification experiments were made with five different reaction temperatures (400, 450, 500, 550 and 600°C) and five reaction times (30, 60, 90, 120 and 150s), under a constant pressure of 25MPa. Through these experiments, the effects of reaction temperature and time on the gasification yield, gaseous product composition and OMW treatment efficiency were investigated.

Keywords: Catalyst, Gasification, Olive mill wastewater, Ru/Al2O3, Supercritical water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2277
1034 Copper Contamination in the Sediments of Northern Kaohsiung Harbor, Taiwan

Authors: Chiu-Wen Chen, Chih-Feng Chen, Cheng-Di Dong

Abstract:

The distribution, enrichment, accumulation, and potential ecological risk of copper (Cu) in the surface sediments of northern Kaohsiung Harbor, Taiwan were investigated. Sediment samples from 12 locations of northern Kaohsiung Harbor were collected and characterized for Cu, aluminum, water content, organic matter, total nitrogen, total phosphorous, total grease and grain size. Results showed that the Cu concentrations varied from 6.9–244 mg/kg with an average of 109±66 mg/kg. The spatial distribution of Cu reveals that the Cu concentration is relatively high in the river mouth region, and gradually diminishes toward the harbor entrance region. This indicates that upstream industrial and municipal wastewater discharges along the river bank are major sources of Cu pollution. Results from the enrichment factor and geo-accumulation index analyses imply that the sediments collected from the river mouth can be characterized between moderate and moderately severe degree enrichment and between none to medium and moderate accumulation of Cu, respectively. However, results of potential ecological risk index indicate that the sediment has low ecological potential risk.

Keywords: Accumulation, ecological risk, enrichment, copper, sediment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1334
1033 Mercury Removal Using Pseudomonas putida (ATTC 49128): Effect of Acclimatization Time, Speed and Temperature of Incubator Shaker

Authors: A. A. M. Azoddein, R. M. Yunus, N. M. Sulaiman, A. B. Bustary, K. Sabar

Abstract:

Microbes have been used to solve environmental problems for many years. The role of microorganism to sequester, precipitate or alter the oxidation state of various heavy metals has been extensively studied. Treatment using microorganism interacts with toxic metal are very diverse. The purpose of this research is to remove the mercury using Pseudomonas putida (P. putida), pure culture ATTC 49128 at optimum growth parameters such as techniques of culture, acclimatization time and speed of incubator shaker. Thus, in this study, the optimum growth parameters of P. putida were obtained to achieve the maximum of mercury removal. Based on the optimum parameters of P. putida for specific growth rate, the removal of two different mercury concentration, 1 ppm and 4 ppm were studied. From mercury nitrate solution, a mercuryresistant bacterial strain which is able to reduce from ionic mercury to metallic mercury was used to reduce ionic mercury. The overall levels of mercury removal in this study were between 80% and 89%. The information obtained in this study is of fundamental for understanding of the survival of P. putida ATTC 49128 in mercury solution. Thus, microbial mercury removal is a potential bioremediation for wastewater especially in petrochemical industries in Malaysia.

Keywords: Pseudomonas putida, growth kinetic, biosorption, mercury, petrochemical wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2420
1032 Study on the Optimization of Completely Batch Water-using Network with Multiple Contaminants Considering Flow Change

Authors: Jian Du, Shui Hong Hong, Lu Meng, Qing Wei Meng

Abstract:

This work addresses the problem of optimizing completely batch water-using network with multiple contaminants where the flow change caused by mass transfer is taken into consideration for the first time. A mathematical technique for optimizing water-using network is proposed based on source-tank-sink superstructure. The task is to obtain the freshwater usage, recycle assignments among water-using units, wastewater discharge and a steady water-using network configuration by following steps. Firstly, operating sequences of water-using units are determined by time constraints. Next, superstructure is simplified by eliminating the reuse and recycle from water-using units with maximum concentration of key contaminants. Then, the non-linear programming model is solved by GAMS (General Algebra Model System) for minimum freshwater usage, maximum water recycle and minimum wastewater discharge. Finally, numbers of operating periods are calculated to acquire the steady network configuration. A case study is solved to illustrate the applicability of the proposed approach.

Keywords: Completely batch process, flow change, multiple contaminants, water-using network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1450
1031 The Importance of Class Attendance and Cumulative GPA for Academic Success in Industrial Engineering Classes

Authors: Suleiman Obeidat, Adnan Bashir, Wisam Abu Jadayil

Abstract:

The affect of the attendance percentage, the overall GPA and the number of credit hours the student is enrolled in at specific semester on the grade attained in specific course has been studied. This study has been performed on three courses offered in industrial engineering department at the Hashemite University in Jordan. Study has revealed that the grade attained by a student is strongly affected by the attendance percentage and his overall GPA with a value of R2 of 52.5%. Another model that has been investigated is the relation between the semester GPA and the attendance percentage, the number of credit hours enrolled in at specific semester, and the overall GPA. This model gave us a strong relationship between the semester GPA and attendance percentage and the overall GPA with a value of R2 of 76.2%.

Keywords: Attendance in classes, GPA, Industrial Engineering, Grade

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3589
1030 Commercialization of Technologies, Productivity and Problems of Technological Audit in the Russian Economy

Authors: E. A. Tkachenko, E. M. Rogova, A. S. Osipenko

Abstract:

The problems of technological development for the Russian Federation take on special significance in the context of modernization of the production base. The complexity of the position of the Russian economy is that it cannot be attributed fully to developing ones. Russia is a strong industrial power that has gone through the processes of destructive de-industrialization in the conditions of changing its economic and political structure. The need to find ways for re-industrialization is not a unique task for the economies of industrially developed countries. Under the influence of production outsourcing for 20 years, the industrial potential of leading economies of the world was regressed against the backdrop of the ascent of China, a new industrial giant. Therefore, methods, tools, and techniques utilized for industrial renaissance in EU may be used to achieve a technological leap in the Russian Federation, especially since the temporary gap of 5-7 years makes it possible to analyze best practices and use those technological transfer tools that have shown the greatest efficiency. In this article, methods of technological transfer are analyzed, the role of technological audit is justified, and factors are analyzed that influence the successful process of commercialization of technologies.

Keywords: Technological transfer, productivity, technological audit, commercialization of technologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 815
1029 Towards Improved Public Information on Industrial Emissions in Italy: Concepts and Specific Issues Associated to the Italian Experience in IPPC Permit Licensing

Authors: Mazziotti Gomez de Teran C., Fiore D., Cola B., Fardelli A.

Abstract:

The present paper summarizes the analysis of the request for consultation of information and data on industrial emissions made publicly available on the web site of the Ministry of Environment, Land and Sea on integrated pollution prevention and control from large industrial installations, the so called “AIA Portal”. As a matter of fact, a huge amount of information on national industrial plants is already available on internet, although it is usually proposed as textual documentation or images. Thus, it is not possible to access all the relevant information through interoperability systems and also to retrieval relevant information for decision making purposes as well as rising of awareness on environmental issue. Moreover, since in Italy the number of institutional and private subjects involved in the management of the public information on industrial emissions is substantial, the access to the information is provided on internet web sites according to different criteria; thus, at present it is not structurally homogeneous and comparable. To overcome the mentioned difficulties in the case of the Coordinating Committee for the implementation of the Agreement for the industrial area in Taranto and Statte, operating before the IPPC permit granting procedures of the relevant installation located in the area, a big effort was devoted to elaborate and to validate data and information on characterization of soil, ground water aquifer and coastal sea at disposal of different subjects to derive a global perspective for decision making purposes. Thus, the present paper also focuses on main outcomes matured during such experience.

Keywords: Public information, emissions into atmosphere, IPPC permits, territorial information systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2057
1028 Environmental and Technical Modeling of Industrial Solid Waste Management Using Analytical Network Process; A Case Study: Gilan-IRAN

Authors: D. Nouri, M.R. Sabour, M. Ghanbarzadeh Lak

Abstract:

Proper management of residues originated from industrial activities is considered as one of the serious challenges faced by industrial societies due to their potential hazards to the environment. Common disposal methods for industrial solid wastes (ISWs) encompass various combinations of solely management options, i.e. recycling, incineration, composting, and sanitary landfilling. Indeed, the procedure used to evaluate and nominate the best practical methods should be based on environmental, technical, economical, and social assessments. In this paper an environmentaltechnical assessment model is developed using analytical network process (ANP) to facilitate the decision making practice for ISWs generated at Gilan province, Iran. Using the results of performed surveys on industrial units located at Gilan, the various groups of solid wastes in the research area were characterized, and four different ISW management scenarios were studied. The evaluation process was conducted using the above-mentioned model in the Super Decisions software (version 2.0.8) environment. The results indicates that the best ISW management scenario for Gilan province is consist of recycling the metal industries residues, composting the putrescible portion of ISWs, combustion of paper, wood, fabric and polymeric wastes as well as energy extraction in the incineration plant, and finally landfilling the rest of the waste stream in addition with rejected materials from recycling and compost production plants and ashes from the incineration unit.

Keywords: Analytical Network Process, Disposal Scenario, Gilan Province, Industrial Waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952
1027 Characterization and Behavior of Level and Flow Transmitters Available on the Market

Authors: V. A. C. Vale, E. T. L. Cöuras Ford

Abstract:

In view of the requirements of the current industrial processes, the instrumentation plays a critical role. In this context, this work aims to raise some the operating characteristics of the level and flow transmitters, in addition to observing their similarities and possible limitations configurations.

Keywords: Flow, level, instrumentation, configurations of meters, method of choice of the meters, instrumentation in the industrial processes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1409
1026 Developing Safety Behavior Practice Suitable for Thai Industrial Operators

Authors: Lertchai Ratana-Arporn, Aphisith Angkhanit

Abstract:

The objective of this study was to develop safety practices which is suitable for Thai industrial operators from Incident and Injury Free, IIF to create safety behavior and reduce the un-safe records in the petroleum industry. A number of 310 technicians i.e., 295 males and 15 females, in service maintenance section participated in this program. The safety attitude level and safety behavior level for pre-attended and post-attended the developed safety practices of the technicians were evaluated using questionnaire procedure and on-site observation. After applied the developed practice program, both of the safety attitudes and safety behavior were increased to be at very good level and good level, respectively. Evaluating the follow-up unsafe records, it was found that the injury was reduced from 0.11 to 0 case/month, the medical treatment case was reduced from 0.22 to 0 case/month and the first aid case was reduced from 1 to 0.33 case/month. The developed safety working practice was successfully implemented to Thai industrial operators.

Keywords: Incident and Injury Free, safety practices, Thai industrial operators, "WeCare".

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1149
1025 Effect of Flowrate and Coolant Temperature on the Efficiency of Progressive Freeze Concentration on Simulated Wastewater

Authors: M. Jusoh, R. Mohd Yunus, M. A. Abu Hassan

Abstract:

Freeze concentration freezes or crystallises the water molecules out as ice crystals and leaves behind a highly concentrated solution. In conventional suspension freeze concentration where ice crystals formed as a suspension in the mother liquor, separation of ice is difficult. The size of the ice crystals is still very limited which will require usage of scraped surface heat exchangers, which is very expensive and accounted for approximately 30% of the capital cost. This research is conducted using a newer method of freeze concentration, which is progressive freeze concentration. Ice crystals were formed as a layer on the designed heat exchanger surface. In this particular research, a helical structured copper crystallisation chamber was designed and fabricated. The effect of two operating conditions on the performance of the newly designed crystallisation chamber was investigated, which are circulation flowrate and coolant temperature. The performance of the design was evaluated by the effective partition constant, K, calculated from the volume and concentration of the solid and liquid phase. The system was also monitored by a data acquisition tool in order to see the temperature profile throughout the process. On completing the experimental work, it was found that higher flowrate resulted in a lower K, which translated into high efficiency. The efficiency is the highest at 1000 ml/min. It was also found that the process gives the highest efficiency at a coolant temperature of -6 °C.

Keywords: Freeze concentration, progressive freeze concentration, freeze wastewater treatment, ice crystals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2174
1024 Film Sensors for the Harsh Environment Application

Authors: Wenmin Qu

Abstract:

A capacitance level sensor with a segmented film electrode and a thin-film volume flow sensor with an innovative by-pass sleeve is presented as industrial products for the application in a harsh environment. The working principle of such sensors is well known; however, the traditional sensors show some limitations for certain industrial measurements. The two sensors presented in this paper overcome this limitation and enlarge the application spectrum. The problem is analyzed, and the solution is given. The emphasis of the paper is on developing the problem-solving concepts and the realization of the corresponding measuring circuits. These should give advice and encouragement, how we can still develop electronic measuring products in an almost saturated market.

Keywords: By-pass sleeve, charge transfer circuit, fixed ΔT circuit, harsh environment, industrial application, segmented electrode.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 491
1023 Multi-Level Meta-Modeling for Enabling Dynamic Subtyping for Industrial Automation

Authors: Zoltan Theisz, Gergely Mezei

Abstract:

Modern industrial automation relies on service oriented concepts of Internet of Things (IoT) device modeling in order to provide a flexible and extendable environment for service meta-repository. However, state-of-the-art meta-modeling techniques prefer design-time modeling, which results in a heavy usage of class sometimes unnecessary static subtyping. Although this approach benefits from clear-cut object-oriented design principles, it also seals the model repository for further dynamic extensions. In this paper, a dynamic multi-level modeling approach is introduced that enables dynamic subtyping through a more relaxed partial instantiation mechanism. The approach is demonstrated on a simple sensor network example.

Keywords: Meta-modeling, dynamic subtyping, DMLA, industrial automation, arrowhead.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1123
1022 Risk Assessment in Durations and Costs for Construction of Industrial Facilities in Egypt Using Equations and Computer

Authors: M. Kamal Elbokl, Negadi Kheira

Abstract:

Risk Evaluation is an important step in protecting your workers and your business, as well as complying with the law. It helps you focus on the risks that really matter in your workplace – the ones with the potential to cause real harm. We are in this paper introduce basics of risk assessment then we mention some of ways to risk evaluation by computer especially Monte Carlo simulation and Microsoft project.

We use Program Evaluation and Review Technique (PERT) to deal with Risks in Industrial Facilities in Evaluation and Assessment for this risk. Using PERT Technique in Microsoft Project by the PERT toolbar and using PERTMASTER Program with Primavera Program we evaluate many hazards and make calculations for that by mathematical equation to make right decisions. We define and calculate risk factor and risk severity to ranking the type of the risk then dealing with it using in that many ways like probability computation, curves, and tables. By introducing variables in the equation of functions in computer programs we calculate the risk in the time and the cost in general case and then mention some examples in industrial facilities field.

Keywords: Risk, Industrial Facilities, PERT, Monte Carlo Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951
1021 Continuous Fixed Bed Reactor Application for Decolourization of Textile Effluent by Adsorption on NaOH Treated Eggshell

Authors: M. Chafi, S. Akazdam, C. Asrir, L. Sebbahi, B. Gourich, N. Barka, M. Essahli

Abstract:

Fixed bed adsorption has become a frequently used industrial application in wastewater treatment processes. Various low cost adsorbents have been studied for their applicability in treatment of different types of effluents. In this work, the intention of the study was to explore the efficacy and feasibility for azo dye, Acid Orange 7 (AO7) adsorption onto fixed bed column of NaOH Treated eggshell (TES). The effect of various parameters like flow rate, initial dye concentration, and bed height were exploited in this study. The studies confirmed that the breakthrough curves were dependent on flow rate, initial dye concentration solution of AO7 and bed depth. The Thomas, Yoon–Nelson, and Adams and Bohart models were analysed to evaluate the column adsorption performance. The adsorption capacity, rate constant and correlation coefficient associated to each model for column adsorption was calculated and mentioned. The column experimental data were fitted well with Thomas model with coefficients of correlation R2 ≥0.93 at different conditions but the Yoon–Nelson, BDST and Bohart–Adams model (R2=0.911), predicted poor performance of fixed-bed column. The (TES) was shown to be suitable adsorbent for adsorption of AO7 using fixed-bed adsorption column.

Keywords: Adsorption models, acid orange 7, bed depth, breakthrough, dye adsorption, fixed-bed column, treated eggshell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2269
1020 From Research to Teaching: Integrating Social Robotics in Engineering Degrees

Authors: Yolanda Bolea, Antoni Grau, Alberto Sanfeliu

Abstract:

When industrial robotics subject is taught in a degree in robotics, social and humanoid robotics concepts are rarely mentioned because this field of robotics is not used in industry. In this paper, an educational project related with industrial robotics is presented which includes social and humanoid robotics. The main motivations to realize this research are: i) humanoid robotics will be appearing soon in industry, the experience, based on research projects, indicates their deployment sooner than expected; ii) its educational interest, technology is shared with industrial robotics; iii) it is very attractive, students are interested in this part of the subject and thus they are interested in the whole subject. As a pedagogical methodology, the use of the problem-based learning is considered. Those concepts are introduced in a seminar during the last part of the subject and developed as a set of practices in the laboratory.

Keywords: Higher education in robotics, humanoid robotics, problem-based learning, social robotics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
1019 Estimation of Aquifer Properties Using Pumping Tests: Case Study of Pydibhimavaram Industrial Area, Srikakulam, India

Authors: G. Venkata Rao, P. Kalpana, R. Srinivasa Rao

Abstract:

Adequate and reliable estimates of aquifer parameters are of utmost importance for proper management of vital groundwater resources. At present scenario, the ground water is polluted because of industrial waste disposed over the land and the contaminants are transported in the aquifer from one area to another area, which is depending on the characteristics of the aquifer and contaminants. To know the contaminant transport, the accurate estimation of aquifer properties is highly needed. Conventionally, these properties are estimated through pumping tests carried out on water wells. The occurrence and movement of ground water in the aquifer are characteristically defined by the aquifer parameters. The pumping (aquifer) test is the standard technique for estimating various hydraulic properties of aquifer systems, viz., transmissivity (T), hydraulic conductivity (K), storage coefficient (S) etc., for which the graphical method is widely used. The study area for conducting pumping test is Pydibheemavaram Industrial area near the coastal belt of Srikulam, AP, India. The main objective of the present work is to estimate the aquifer properties for developing contaminant transport model for the study area.

Keywords: Aquifer, contaminant transport, hydraulic conductivity, industrial waste, pumping test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3408
1018 The Effect of Transformer’s Vector Group on Retained Voltage Magnitude and Sag Frequency at Industrial Sites Due to Faults

Authors: M. N. Moschakis, V. V. Dafopoulos, I. G. Andritsos, E. S. Karapidakis, J. M. Prousalidis

Abstract:

This paper deals with the effect of a power transformer’s vector group on the basic voltage sag characteristics during unbalanced faults at a meshed or radial power network. Specifically, the propagation of voltage sags through a power transformer is studied with advanced short-circuit analysis. A smart method to incorporate this effect on analytical mathematical expressions is proposed. Based on this methodology, the positive effect of transformers of certain vector groups on the mitigation of the expected number of voltage sags per year (sag frequency) at the terminals of critical industrial customers can be estimated.

Keywords: Balanced and unbalanced faults, industrial design, phase shift, power quality, power systems, voltage sags (or dips).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10220
1017 Predictive Maintenance of Industrial Shredders: Efficient Operation through Real-Time Monitoring Using Statistical Machine Learning

Authors: Federico Pittino, Dominik Holzmann, Krithika Sayar-Chand, Stefan Moser, Sebastian Pliessnig, Thomas Arnold

Abstract:

The shredding of waste materials is a key step in the recycling process towards circular economy. Industrial shredders for waste processing operate in very harsh operating conditions, leading to the need of frequent maintenance of critical components. The maintenance optimization is particularly important also to increase the machine’s efficiency, thereby reducing the operational costs. In this work, a monitoring system has been developed and deployed on an industrial shredder located at a waste recycling plant in Austria. The machine has been monitored for several months and methods for predictive maintenance have been developed for two key components: the cutting knives and the drive belt. The large amount of collected data is leveraged by statistical machine learning techniques, thereby not requiring a very detailed knowledge of the machine or its live operating conditions. The results show that, despite the wide range of operating conditions, a reliable estimate of the optimal time for maintenance can be derived. Moreover, the trade-off between the cost of maintenance and the increase in power consumption due to the wear state of the monitored components of the machine is investigated. This work proves the benefits of real-time monitoring system for efficient operation of industrial shredders.

Keywords: predictive maintenance, circular economy, industrial shredder, cost optimization, statistical machine learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 639
1016 Transforming Ganges to be a Living River through Waste Water Management

Authors: P. M. Natarajan, Shambhu Kallolikar, S. Ganesh

Abstract:

By size and volume of water, Ganges River basin is the biggest among the fourteen major river basins in India. By Hindu’s faith, it is the main ‘holy river’ in this nation. But, of late, the pollution load, both domestic and industrial sources are deteriorating the surface and groundwater as well as land resources and hence the environment of the Ganges River basin is under threat. Seeing this scenario, the Indian government began to reclaim this river by two Ganges Action Plans I and II since 1986 by spending Rs. 2,747.52 crores ($457.92 million). But the result was no improvement in the water quality of the river and groundwater and environment even after almost three decades of reclamation, and hence now the New Indian Government is taking extra care to rejuvenate this river and allotted Rs. 2,037 cores ($339.50 million) in 2014 and Rs. 20,000 crores ($3,333.33 million) in 2015. The reasons for the poor water quality and stinking environment even after three decades of reclamation of the river are either no treatment/partial treatment of the sewage. Hence, now the authors are suggesting a tertiary level treatment standard of sewages of all sources and origins of the Ganges River basin and recycling the entire treated water for nondomestic uses. At 20million litres per day (MLD) capacity of each sewage treatment plant (STP), this basin needs about 2020 plants to treat the entire sewage load. Cost of the STPs is Rs. 3,43,400 million ($5,723.33 million) and the annual maintenance cost is Rs. 15,352 million ($255.87 million). The advantages of the proposed exercise are: we can produce a volume of 1,769.52 million m3 of biogas. Since biogas is energy, can be used as a fuel, for any heating purpose, such as cooking. It can also be used in a gas engine to convert the energy in the gas into electricity and heat. It is possible to generate about 3,539.04 million kilowatt electricity per annum from the biogas generated in the process of wastewater treatment in Ganges basin. The income generation from electricity works out to Rs 10,617.12million ($176.95million). This power can be used to bridge the supply and demand gap of energy in the power hungry villages where 300million people are without electricity in India even today, and to run these STPs as well. The 664.18 million tonnes of sludge generated by the treatment plants per annum can be used in agriculture as manure with suitable amendments. By arresting the pollution load the 187.42 cubic kilometer (km3) of groundwater potential of the Ganges River basin could be protected from deterioration. Since we can recycle the sewage for non-domestic purposes, about 14.75km3 of fresh water per annum can be conserved for future use. The total value of the water saving per annum is Rs.22,11,916million ($36,865.27million) and each citizen of Ganges River basin can save Rs. 4,423.83/ ($73.73) per annum and Rs. 12.12 ($0.202) per day by recycling the treated water for nondomestic uses. Further the environment of this basin could be kept clean by arresting the foul smell as well as the 3% of greenhouse gages emission from the stinking waterways and land. These are the ways to reclaim the waterways of Ganges River basin from deterioration.

Keywords: Holy Ganges River, lifeline of India, wastewater treatment and management, making Ganges permanently holy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858
1015 Environmental Limits of Using Newly Developed Progressive Polymer Protection and Repair Systems

Authors: J. Hodna, B. Dohnalkova, V. Petranek, R. Drochytka

Abstract:

The paper is focused on the identification of limiting environmental factors of individual industrial floors on which newly developed polymer protection and repair systems with the use of secondary raw materials will be used. These mainly include floors with extreme stresses and special requirements for materials used. In relation to the environment of a particular industrial floor, it is necessary to ensure, for example, chemical stability, resistance to higher temperatures, resistance to higher mechanical stress, etc. for developed materials, which is reflected in the demands for the developed material systems. The paper describes individual environments and, in relation to them, also requirements for individual components of the developed materials and for the developed materials as a whole.

Keywords: Limits, environment, polymer, industrial floors, recycling, secondary raw material, protective system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750
1014 Adsorption and Electrochemical Regeneration for Industrial Wastewater Treatment

Authors: H. M. Mohammad, A. Martin, N. Brown, N. Hodson, P. Hill, E. Roberts

Abstract:

Graphite intercalation compound (GIC) has been demonstrated to be a useful, low capacity and rapid adsorbent for the removal of organic micropollutants from water. The high electrical conductivity and low capacity of the material lends itself to electrochemical regeneration. Following electrochemical regeneration, equilibrium loading under similar conditions is reported to exceed that achieved by the fresh adsorbent. This behavior is reported in terms of the regeneration efficiency being greater than 100%. In this work, surface analysis techniques are employed to investigate the material in three states: ‘Fresh’, ‘Loaded’ and ‘Regenerated’. ‘Fresh’ GIC is shown to exhibit a hydrogen and oxygen rich surface layer approximately 150 nm thick. ‘Loaded’ GIC shows a similar but slightly thicker surface layer (approximately 370 nm thick) and significant enhancement in the hydrogen and oxygen abundance extending beyond 600 nm from the surface. 'Regenerated’ GIC shows an oxygen rich layer, slightly thicker than the fresh case at approximately 220 nm while showing a very much lower hydrogen enrichment at the surface. Results demonstrate that while the electrochemical regeneration effectively removes the phenol model pollutant, it also oxidizes the exposed carbon surface. These results may have a significant impact on the estimation of adsorbent life.

Keywords: Graphite, adsorbent, electrochemical, regeneration, phenol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 685
1013 Multiparametric Optimization of Water Treatment Process for Thermal Power Plants

Authors: B. Mukanova, N. Glazyrina, S. Glazyrin

Abstract:

The formulated problem of optimization of the technological process of water treatment for thermal power plants is considered in this article. The problem is of multiparametric nature. To optimize the process, namely, reduce the amount of waste water, a new technology was developed to reuse such water. A mathematical model of the technology of wastewater reuse was developed. Optimization parameters were determined. The model consists of a material balance equation, an equation describing the kinetics of ion exchange for the non-equilibrium case and an equation for the ion exchange isotherm. The material balance equation includes a nonlinear term that depends on the kinetics of ion exchange. A direct problem of calculating the impurity concentration at the outlet of the water treatment plant was numerically solved. The direct problem was approximated by an implicit point-to-point computation difference scheme. The inverse problem was formulated as relates to determination of the parameters of the mathematical model of the water treatment plant operating in non-equilibrium conditions. The formulated inverse problem was solved. Following the results of calculation the time of start of the filter regeneration process was determined, as well as the period of regeneration process and the amount of regeneration and wash water. Multi-parameter optimization of water treatment process for thermal power plants allowed decreasing the amount of wastewater by 15%.

Keywords: Direct problem, multiparametric optimization, optimization parameters, water treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2136
1012 Vision Based Robotic Interception in Industrial Manipulation Tasks

Authors: Ahmet Denker, Tuğrul Adıgüzel

Abstract:

In this paper, a solution is presented for a robotic manipulation problem in industrial settings. The problem is sensing objects on a conveyor belt, identifying the target, planning and tracking an interception trajectory between end effector and the target. Such a problem could be formulated as combining object recognition, tracking and interception. For this purpose, we integrated a vision system to the manipulation system and employed tracking algorithms. The control approach is implemented on a real industrial manipulation setting, which consists of a conveyor belt, objects moving on it, a robotic manipulator, and a visual sensor above the conveyor. The trjectory for robotic interception at a rendezvous point on the conveyor belt is analytically calculated. Test results show that tracking the raget along this trajectory results in interception and grabbing of the target object.

Keywords: robotics, robot vision, rendezvous planning, self organizingmaps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1474