Search results for: Adaptive Control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4275

Search results for: Adaptive Control

4065 Multivariable Control of Smart Timoshenko Beam Structures Using POF Technique

Authors: T.C. Manjunath, B. Bandyopadhyay

Abstract:

Active Vibration Control (AVC) is an important problem in structures. One of the ways to tackle this problem is to make the structure smart, adaptive and self-controlling. The objective of active vibration control is to reduce the vibration of a system by automatic modification of the system-s structural response. This paper features the modeling and design of a Periodic Output Feedback (POF) control technique for the active vibration control of a flexible Timoshenko cantilever beam for a multivariable case with 2 inputs and 2 outputs by retaining the first 2 dominant vibratory modes using the smart structure concept. The entire structure is modeled in state space form using the concept of piezoelectric theory, Timoshenko beam theory, Finite Element Method (FEM) and the state space techniques. Simulations are performed in MATLAB. The effect of placing the sensor / actuator at 2 finite element locations along the length of the beam is observed. The open loop responses, closed loop responses and the tip displacements with and without the controller are obtained and the performance of the smart system is evaluated for active vibration control.

Keywords: Smart structure, Timoshenko theory, Euler-Bernoulli theory, Periodic output feedback control, Finite Element Method, State space model, Vibration control, Multivariable system, Linear Matrix Inequality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2319
4064 A Comprehensive Review of Adaptive Building Energy Management Systems Based on Users’ Feedback

Authors: P. Nafisi Poor, P. Javid

Abstract:

Over the past few years, the idea of adaptive buildings and specifically, adaptive building energy management systems (ABEMS) has become popular. Well-performed management in terms of energy is to create a balance between energy consumption and user comfort; therefore, in new energy management models, efficient energy consumption is not the sole factor and the user's comfortability is also considered in the calculations. One of the main ways of measuring this factor is by analyzing user feedback on the conditions to understand whether they are satisfied with conditions or not. This paper provides a comprehensive review of recent approaches towards energy management systems based on users' feedbacks and subsequently performs a comparison between them premised upon their efficiency and accuracy to understand which approaches were more accurate and which ones resulted in a more efficient way of minimizing energy consumption while maintaining users' comfortability. It was concluded that the highest accuracy rate among the presented works was 95% accuracy in determining satisfaction and up to 51.08% energy savings can be achieved without disturbing user’s comfort. Considering the growing interest in designing and developing adaptive buildings, these studies can support diverse inquiries about this subject and can be used as a resource to support studies and researches towards efficient energy consumption while maintaining the comfortability of users.

Keywords: Adaptive buildings, energy efficiency, intelligent buildings, user comfortability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 679
4063 Minimal Residual Method for Adaptive Filtering with Finite Termination

Authors: Noor Atinah Ahmad, Shazia Javed

Abstract:

We present a discussion of three adaptive filtering algorithms well known for their one-step termination property, in terms of their relationship with the minimal residual method. These algorithms are the normalized least mean square (NLMS), Affine Projection algorithm (APA) and the recursive least squares algorithm (RLS). The NLMS is shown to be a result of the orthogonality condition imposed on the instantaneous approximation of the Wiener equation, while APA and RLS algorithm result from orthogonality condition in multi-dimensional minimal residual formulation. Further analysis of the minimal residual formulation for the RLS leads to a triangular system which also possesses the one-step termination property (in exact arithmetic)

Keywords: Adaptive filtering, minimal residual method, projection method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554
4062 A Multi-Population Differential Evolution with Adaptive Mutation and Local Search for Global Optimization

Authors: Zhoucheng Bao, Haiyan Zhu, Tingting Pang, Zuling Wang

Abstract:

This paper presents a multi population Differential Evolution (DE) with adaptive mutation and local search for global optimization, named AMMADE in order to better coordinate the cooperation between the populations and the rational use of resources. In AMMADE, the population is divided based on the Euclidean distance sorting method at each generation to appropriately coordinate the cooperation between subpopulations and the usage of resources, such that the best-performed subpopulation will get more computing resources in the next generation. Further, an adaptive local search strategy is employed on the best-performed subpopulation to achieve a balanced search. The proposed algorithm has been tested by solving optimization problems taken from CEC2014 benchmark problems. Experimental results show that our algorithm can achieve a competitive or better result than related methods. The results also confirm the significance of devised strategies in the proposed algorithm.

Keywords: Differential evolution, multi-mutation strategies, memetic algorithm, adaptive local search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 443
4061 Adaptive Extended Kalman Filter for Ballistic Missile Tracking

Authors: Gaurav Kumar, Dharmbir Prasad, Rudra Pratap Singh

Abstract:

In the current work, adaptive extended Kalman filter (AEKF) is presented for solution of ground radar based ballistic missile (BM) tracking problem in re-entry phase with unknown ballistic coefficient. The estimation of trajectory of any BM in re-entry phase is extremely difficult, because of highly non-linear motion of BM. The estimation accuracy of AEKF has been tested for a typical test target tracking problem adopted from literature. Further, the approach of AEKF is compared with extended Kalman filter (EKF). The simulation result indicates the superiority of the AEKF in solving joint parameter and state estimation problems.

Keywords: Adaptive, AEKF, ballistic missile, EKF, re-entry phase, target tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1666
4060 Adaptation Learning Speed Control for a High- Performance Induction Motor using Neural Networks

Authors: M. Zerikat, S. Chekroun

Abstract:

This paper proposes an effective adaptation learning algorithm based on artificial neural networks for speed control of an induction motor assumed to operate in a high-performance drives environment. The structure scheme consists of a neural network controller and an algorithm for changing the NN weights in order that the motor speed can accurately track of the reference command. This paper also makes uses a very realistic and practical scheme to estimate and adaptively learn the noise content in the speed load torque characteristic of the motor. The availability of the proposed controller is verified by through a laboratory implementation and under computation simulations with Matlab-software. The process is also tested for the tracking property using different types of reference signals. The performance and robustness of the proposed control scheme have evaluated under a variety of operating conditions of the induction motor drives. The obtained results demonstrate the effectiveness of the proposed control scheme system performances, both in steady state error in speed and dynamic conditions, was found to be excellent and those is not overshoot.

Keywords: Electric drive, Induction motor, speed control, Adaptive control, neural network, High Performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028
4059 Improving the Convergence of the Backpropagation Algorithm Using Local Adaptive Techniques

Authors: Z. Zainuddin, N. Mahat, Y. Abu Hassan

Abstract:

Since the presentation of the backpropagation algorithm, a vast variety of improvements of the technique for training a feed forward neural networks have been proposed. This article focuses on two classes of acceleration techniques, one is known as Local Adaptive Techniques that are based on weightspecific only, such as the temporal behavior of the partial derivative of the current weight. The other, known as Dynamic Adaptation Methods, which dynamically adapts the momentum factors, α, and learning rate, η, with respect to the iteration number or gradient. Some of most popular learning algorithms are described. These techniques have been implemented and tested on several problems and measured in terms of gradient and error function evaluation, and percentage of success. Numerical evidence shows that these techniques improve the convergence of the Backpropagation algorithm.

Keywords: Backpropagation, Dynamic Adaptation Methods, Local Adaptive Techniques, Neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2172
4058 New Adaptive Linear Discriminante Analysis for Face Recognition with SVM

Authors: Mehdi Ghayoumi

Abstract:

We have applied new accelerated algorithm for linear discriminate analysis (LDA) in face recognition with support vector machine. The new algorithm has the advantage of optimal selection of the step size. The gradient descent method and new algorithm has been implemented in software and evaluated on the Yale face database B. The eigenfaces of these approaches have been used to training a KNN. Recognition rate with new algorithm is compared with gradient.

Keywords: lda, adaptive, svm, face recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423
4057 Reduction of Impulsive Noise in OFDM System Using Adaptive Algorithm

Authors: Alina Mirza, Sumrin M. Kabir, Shahzad A. Sheikh

Abstract:

The Orthogonal Frequency Division Multiplexing (OFDM) with high data rate, high spectral efficiency and its ability to mitigate the effects of multipath makes them most suitable in wireless application. Impulsive noise distorts the OFDM transmission and therefore methods must be investigated to suppress this noise. In this paper, a State Space Recursive Least Square (SSRLS) algorithm based adaptive impulsive noise suppressor for OFDM communication system is proposed. And a comparison with another adaptive algorithm is conducted. The state space model-dependent recursive parameters of proposed scheme enables to achieve steady state mean squared error (MSE), low bit error rate (BER), and faster convergence than that of some of existing algorithm.

Keywords: OFDM, Impulsive Noise, SSRLS, BER.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2701
4056 Removing Ocular Artifacts from EEG Signals using Adaptive Filtering and ARMAX Modeling

Authors: Parisa Shooshtari, Gelareh Mohamadi, Behnam Molaee Ardekani, Mohammad Bagher Shamsollahi

Abstract:

EEG signal is one of the oldest measures of brain activity that has been used vastly for clinical diagnoses and biomedical researches. However, EEG signals are highly contaminated with various artifacts, both from the subject and from equipment interferences. Among these various kinds of artifacts, ocular noise is the most important one. Since many applications such as BCI require online and real-time processing of EEG signal, it is ideal if the removal of artifacts is performed in an online fashion. Recently, some methods for online ocular artifact removing have been proposed. One of these methods is ARMAX modeling of EEG signal. This method assumes that the recorded EEG signal is a combination of EOG artifacts and the background EEG. Then the background EEG is estimated via estimation of ARMAX parameters. The other recently proposed method is based on adaptive filtering. This method uses EOG signal as the reference input and subtracts EOG artifacts from recorded EEG signals. In this paper we investigate the efficiency of each method for removing of EOG artifacts. A comparison is made between these two methods. Our undertaken conclusion from this comparison is that adaptive filtering method has better results compared with the results achieved by ARMAX modeling.

Keywords: Ocular Artifacts, EEG, Adaptive Filtering, ARMAX

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903
4055 A Method for 3D Mesh Adaptation in FEA

Authors: S. Sfarni, E. Bellenger, J. Fortin, M. Guessasma

Abstract:

The use of the mechanical simulation (in particular the finite element analysis) requires the management of assumptions in order to analyse a real complex system. In finite element analysis (FEA), two modeling steps require assumptions to be able to carry out the computations and to obtain some results: the building of the physical model and the building of the simulation model. The simplification assumptions made on the analysed system in these two steps can generate two kinds of errors: the physical modeling errors (mathematical model, domain simplifications, materials properties, boundary conditions and loads) and the mesh discretization errors. This paper proposes a mesh adaptive method based on the use of an h-adaptive scheme in combination with an error estimator in order to choose the mesh of the simulation model. This method allows us to choose the mesh of the simulation model in order to control the cost and the quality of the finite element analysis.

Keywords: Finite element, discretization errors, adaptivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1479
4054 Quality Classification and Monitoring Using Adaptive Metric Distance and Neural Networks: Application in Pickling Process

Authors: S. Bouhouche, M. Lahreche, S. Ziani, J. Bast

Abstract:

Modern manufacturing facilities are large scale, highly complex, and operate with large number of variables under closed loop control. Early and accurate fault detection and diagnosis for these plants can minimise down time, increase the safety of plant operations, and reduce manufacturing costs. Fault detection and isolation is more complex particularly in the case of the faulty analog control systems. Analog control systems are not equipped with monitoring function where the process parameters are continually visualised. In this situation, It is very difficult to find the relationship between the fault importance and its consequences on the product failure. We consider in this paper an approach to fault detection and analysis of its effect on the production quality using an adaptive centring and scaling in the pickling process in cold rolling. The fault appeared on one of the power unit driving a rotary machine, this machine can not track a reference speed given by another machine. The length of metal loop is then in continuous oscillation, this affects the product quality. Using a computerised data acquisition system, the main machine parameters have been monitored. The fault has been detected and isolated on basis of analysis of monitored data. Normal and faulty situation have been obtained by an artificial neural network (ANN) model which is implemented to simulate the normal and faulty status of rotary machine. Correlation between the product quality defined by an index and the residual is used to quality classification.

Keywords: Modeling, fault detection and diagnosis, parameters estimation, neural networks, Fault Detection and Diagnosis (FDD), pickling process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
4053 Application of Adaptive Neuro-Fuzzy Inference System in the Prediction of Economic Crisis Periods in USA

Authors: Eleftherios Giovanis

Abstract:

In this paper discrete choice models, Logit and Probit are examined in order to predict the economic recession or expansion periods in USA. Additionally we propose an adaptive neuro-fuzzy inference system with triangular membership function. We examine the in-sample period 1947-2005 and we test the models in the out-of sample period 2006-2009. The forecasting results indicate that the Adaptive Neuro-fuzzy Inference System (ANFIS) model outperforms significant the Logit and Probit models in the out-of sample period. This indicates that neuro-fuzzy model provides a better and more reliable signal on whether or not a financial crisis will take place.

Keywords: ANFIS, discrete choice models, financial crisis, USeconomy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610
4052 A Signal Driven Adaptive Resolution Short-Time Fourier Transform

Authors: Saeed Mian Qaisar, Laurent Fesquet, Marc Renaudin

Abstract:

The frequency contents of the non-stationary signals vary with time. For proper characterization of such signals, a smart time-frequency representation is necessary. Classically, the STFT (short-time Fourier transform) is employed for this purpose. Its limitation is the fixed timefrequency resolution. To overcome this drawback an enhanced STFT version is devised. It is based on the signal driven sampling scheme, which is named as the cross-level sampling. It can adapt the sampling frequency and the window function (length plus shape) by following the input signal local variations. This adaptation results into the proposed technique appealing features, which are the adaptive time-frequency resolution and the computational efficiency.

Keywords: Level Crossing Sampling, Activity Selection, Adaptive Resolution Analysis, Computational Complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573
4051 Diversity for Safety and Security of Autonomous Vehicles against Accidental and Deliberate Faults

Authors: Anil Ranjitbhai Patel, Clement John Shaji, Peter Liggesmeyer

Abstract:

Safety and security of Autonomous Vehicles (AVs) is a growing concern, first, due to the increased number of safety-critical functions taken over by automotive embedded systems; second, due to the increased exposure of the software-intensive systems to potential attackers; third, due to dynamic interaction in an uncertain and unknown environment at runtime which results in changed functional and non-functional properties of the system. Frequently occurring environmental uncertainties, random component failures, and compromise security of the AVs might result in hazardous events, sometimes even in an accident, if left undetected. Beyond these technical issues, we argue that the safety and security of AVs against accidental and deliberate faults are poorly understood and rarely implemented. One possible way to overcome this is through a well-known diversity approach. As an effective approach to increase safety and security, diversity has been widely used in the aviation, railway, and aerospace industries. Thus, paper proposes fault-tolerance by diversity model taking into consideration the mitigation of accidental and deliberate faults by application of structure and variant redundancy. The model can be used to design the AVs with various types of diversity in hardware and software-based multi-version system. The paper evaluates the presented approach by employing an example from adaptive cruise control, followed by discussing the case study with initial findings.

Keywords: Autonomous vehicles, diversity, fault-tolerance, adaptive cruise control, safety, security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 488
4050 Using Degree of Adaptive (DOA) Model for Partner Selection in Supply Chain

Authors: Habibollah Javanmard

Abstract:

In order to reduce cost, increase quality, and for timely supplying production systems has considerably taken the advantages of supply chain management and these advantages are also competitive. Selection of appropriate supplier has an important role in improvement and efficiency of systems. The models of supplier selection which have already been used by researchers have considered selection one or more suppliers from potential suppliers but in this paper selecting one supplier as partner from one supplier that have minimum one period supplying to buyer is considered. This paper presents a conceptual model for partner selection and application of Degree of Adoptive (DOA) model for final selection. The attributes weight in this model is prepared through AHP model. After making the descriptive model, determining the attributes and measuring the parameters of the adaptive is examined in an auto industry of Iran(Zagross Khodro co.) and results are presented.

Keywords: Partnership, Degree of Adaptive, AHP, SupplyChain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675
4049 Near-Field Robust Adaptive Beamforming Based on Worst-Case Performance Optimization

Authors: Jing-ran Lin, Qi-cong Peng, Huai-zong Shao

Abstract:

The performance of adaptive beamforming degrades substantially in the presence of steering vector mismatches. This degradation is especially severe in the near-field, for the 3-dimensional source location is more difficult to estimate than the 2-dimensional direction of arrival in far-field cases. As a solution, a novel approach of near-field robust adaptive beamforming (RABF) is proposed in this paper. It is a natural extension of the traditional far-field RABF and belongs to the class of diagonal loading approaches, with the loading level determined based on worst-case performance optimization. However, different from the methods solving the optimal loading by iteration, it suggests here a simple closed-form solution after some approximations, and consequently, the optimal weight vector can be expressed in a closed form. Besides simplicity and low computational cost, the proposed approach reveals how different factors affect the optimal loading as well as the weight vector. Its excellent performance in the near-field is confirmed via a number of numerical examples.

Keywords: Robust adaptive beamforming (RABF), near-field, steering vector mismatches, diagonal loading, worst-case performanceoptimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881
4048 Analysis of Cooperative Hybrid ARQ with Adaptive Modulation and Coding on a Correlated Fading Channel Environment

Authors: Ibrahim Ozkan

Abstract:

In this study, a cross-layer design which combines adaptive modulation and coding (AMC) and hybrid automatic repeat request (HARQ) techniques for a cooperative wireless network is investigated analytically. Previous analyses of such systems in the literature are confined to the case where the fading channel is independent at each retransmission, which can be unrealistic unless the channel is varying very fast. On the other hand, temporal channel correlation can have a significant impact on the performance of HARQ systems. In this study, utilizing a Markov channel model which accounts for the temporal correlation, the performance of non-cooperative and cooperative networks are investigated in terms of packet loss rate and throughput metrics for Chase combining HARQ strategy.

Keywords: Cooperative network, adaptive modulation and coding, hybrid ARQ, correlated fading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 589
4047 Black Box Model and Evolutionary Fuzzy Control Methods of Coupled-Tank System

Authors: S. Yaman, S. Rostami

Abstract:

In this study, a black box modeling of the coupled-tank system is obtained by using fuzzy sets. The derived model is tested via adaptive neuro fuzzy inference system (ANFIS). In order to achieve a better control performance, the parameters of three different controller types, classical proportional integral controller (PID), fuzzy PID and function tuner method, are tuned by one of the evolutionary computation method, genetic algorithm. All tuned controllers are applied to the fuzzy model of the coupled-tank experimental setup and analyzed under the different reference input values. According to the results, it is seen that function tuner method demonstrates better robust control performance and guarantees the closed loop stability.

Keywords: Function tuner method, fuzzy modeling, fuzzy PID controller, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649
4046 Recursive Least Squares Adaptive Filter a better ISI Compensator

Authors: O. P. Sharma, V. Janyani, S. Sancheti

Abstract:

Inter-symbol interference if not taken care off may cause severe error at the receiver and the detection of signal becomes difficult. An adaptive equalizer employing Recursive Least Squares algorithm can be a good compensation for the ISI problem. In this paper performance of communication link in presence of Least Mean Square and Recursive Least Squares equalizer algorithm is analyzed. A Model of communication system having Quadrature amplitude modulation and Rician fading channel is implemented using MATLAB communication block set. Bit error rate and number of errors is evaluated for RLS and LMS equalizer algorithm, due to change in Signal to Noise Ratio (SNR) and fading component gain in Rician fading Channel.

Keywords: Least mean square (LMS), Recursive least squares(RLS), Adaptive equalization, Bit error rate (BER), Rician fading channel, Quadrature Amplitude Modulation (QAM), Signal to noiseratio (SNR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3079
4045 Adaptive Transient and CW RF Interference Mitigation in HF OTH Radar: Experimental Results

Authors: Pavel Turcaj, Yuri I. Abramovich, Gordon J. Frazer

Abstract:

We introduce an adaptive technique for the joint mitigation of transients and continuous-wave radio-frequency co-channel interference (CW RFI) in high-frequency (HF) over-the-horizon radars (OTHRs). The performance of this technique is illustrated using data from an operational surface-wave radar (SECAR) and from recent experimental trials with sky-wave (SW) and sky-wave–line-of-sight (SKYLOS) HF OTHRs.

Keywords:

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610
4044 Vibration Suppression of Timoshenko Beams with Embedded Piezoelectrics Using POF

Authors: T. C. Manjunath, B. Bandyopadhyay

Abstract:

This paper deals with the design of a periodic output feedback controller for a flexible beam structure modeled with Timoshenko beam theory, Finite Element Method, State space methods and embedded piezoelectrics concept. The first 3 modes are considered in modeling the beam. The main objective of this work is to control the vibrations of the beam when subjected to an external force. Shear piezoelectric sensors and actuators are embedded into the top and bottom layers of a flexible aluminum beam structure, thus making it intelligent and self-adaptive. The composite beam is divided into 5 finite elements and the control actuator is placed at finite element position 1, whereas the sensor is varied from position 2 to 5, i.e., from the nearby fixed end to the free end. 4 state space SISO models are thus developed. Periodic Output Feedback (POF) Controllers are designed for the 4 SISO models of the same plant to control the flexural vibrations. The effect of placing the sensor at different locations on the beam is observed and the performance of the controller is evaluated for vibration control. Conclusions are finally drawn.

Keywords: Smart structure, Timoshenko beam theory, Periodic output feedback control, Finite Element Method, State space model, SISO, Embedded sensors and actuators, Vibration control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2134
4043 Improving Performance of World Wide Web by Adaptive Web Traffic Reduction

Authors: Achuthsankar S. Nair, J. S. Jayasudha

Abstract:

The ever increasing use of World Wide Web in the existing network, results in poor performance. Several techniques have been developed for reducing web traffic by compressing the size of the file, saving the web pages at the client side, changing the burst nature of traffic into constant rate etc. No single method was adequate enough to access the document instantly through the Internet. In this paper, adaptive hybrid algorithms are developed for reducing web traffic. Intelligent agents are used for monitoring the web traffic. Depending upon the bandwidth usage, user-s preferences, server and browser capabilities, intelligent agents use the best techniques to achieve maximum traffic reduction. Web caching, compression, filtering, optimization of HTML tags, and traffic dispersion are incorporated into this adaptive selection. Using this new hybrid technique, latency is reduced to 20 – 60 % and cache hit ratio is increased 40 – 82 %.

Keywords: Bandwidth, Congestion, Intelligent Agents, Prefetching, Web Caching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743
4042 Passenger Seat Vibration Comparison Using ANFIS Control in Active Quarter Car Model

Authors: Devdutt

Abstract:

In this paper, vibration control response of passenger seat in quarter car model having three degrees of freedom is studied. Three different control strategies are taken into account using Adaptive Neuro Fuzzy Inference System (ANFIS) controller. In first case, ANFIS controller is applied in main suspension of active quarter car model. In second case, passenger seat suspension is assembled with ANFIS controller. Finally, both main and passenger seat suspensions are integrated with ANFIS controller. Simulation work under random road excitations is performed using passive and controlled quarter car models for performance comparison of passenger ride comfort. Ride comfort analysis is also compared as per ISO 2631-1 criterion. The obtained simulation responses are compared taking passenger seat acceleration and displacement response in time and frequency domain for the selection of best control strategy in designed quarter car model.

Keywords: Active suspension system, ANFIS controller, passenger ride comfort, quarter car model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 837
4041 Investigation of Interference Conditions in BFWA System Applying Adaptive TDD

Authors: Gábor Szládek, Balázs Héder, János Bitó

Abstract:

In a BFWA (Broadband Fixed Wireless Access Network) the evolved SINR (Signal to Interference plus Noise Ratio) is relevant influenced by the applied duplex method. The TDD (Time Division Duplex), especially adaptive TDD method has some advantage contrary to FDD (Frequency Division Duplex), for example the spectrum efficiency and flexibility. However these methods are suffering several new interference situations that can-t occur in a FDD system. This leads to reduced SINR in the covered area what could cause some connection outages. Therefore, countermeasure techniques against interference are necessary to apply in TDD systems. Synchronization is one way to handling the interference. In this paper the TDD systems – applying different system synchronization degree - will be compared by the evolved SINR at different locations of the BFWA service area and the percentage of the covered area by the system.

Keywords: Adaptive TDD, BFWA networks, duplex methods, intra system interferences.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1329
4040 A New Time-Frequency Speech Analysis Approach Based On Adaptive Fourier Decomposition

Authors: Liming Zhang

Abstract:

In this paper, a new adaptive Fourier decomposition (AFD) based time-frequency speech analysis approach is proposed. Given the fact that the fundamental frequency of speech signals often undergo fluctuation, the classical short-time Fourier transform (STFT) based spectrogram analysis suffers from the difficulty of window size selection. AFD is a newly developed signal decomposition theory. It is designed to deal with time-varying non-stationary signals. Its outstanding characteristic is to provide instantaneous frequency for each decomposed component, so the time-frequency analysis becomes easier. Experiments are conducted based on the sample sentence in TIMIT Acoustic-Phonetic Continuous Speech Corpus. The results show that the AFD based time-frequency distribution outperforms the STFT based one.

Keywords: Adaptive fourier decomposition, instantaneous frequency, speech analysis, time-frequency distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724
4039 A New Approach for Network Reconfiguration Problem in Order to Deviation Bus Voltage Minimization with Regard to Probabilistic Load Model and DGs

Authors: Mahmood Reza Shakarami, Reza Sedaghati

Abstract:

Recently, distributed generation technologies have received much attention for the potential energy savings and reliability assurances that might be achieved as a result of their widespread adoption. The distribution feeder reconfiguration (DFR) is one of the most important control schemes in the distribution networks, which can be affected by DGs. This paper presents a new approach to DFR at the distribution networks considering wind turbines. The main objective of the DFR is to minimize the deviation of the bus voltage. Since the DFR is a nonlinear optimization problem, we apply the Adaptive Modified Firefly Optimization (AMFO) approach to solve it. As a result of the conflicting behavior of the single- objective function, a fuzzy based clustering technique is employed to reach the set of optimal solutions called Pareto solutions. The approach is tested on the IEEE 32-bus standard test system.

Keywords: Adaptive Modified Firefly Optimization (AMFO), Pareto solutions, feeder reconfiguration, wind turbines, bus voltage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2017
4038 Educational Quiz Board Games for Adaptive E-Learning

Authors: Boyan Bontchev, Dessislava Vassileva

Abstract:

Internet computer games turn to be more and more attractive within the context of technology enhanced learning. Educational games as quizzes and quests have gained significant success in appealing and motivating learners to study in a different way and provoke steadily increasing interest in new methods of application. Board games are specific group of games where figures are manipulated in competitive play mode with race conditions on a surface according predefined rules. The article represents a new, formalized model of traditional quizzes, puzzles and quests shown as multimedia board games which facilitates the construction process of such games. Authors provide different examples of quizzes and their models in order to demonstrate the model is quite general and does support not only quizzes, mazes and quests but also any set of teaching activities. The execution process of such models is explained and, as well, how they can be useful for creation and delivery of adaptive e-learning courseware.

Keywords: Quiz, board game, e-learning, adaptive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2422
4037 Adaptive Weighted Averaging Filter Using the Appropriate Number of Consecutive Frames

Authors: Mahmoud Saeidi, Ali Nazemipour

Abstract:

In this paper, we propose a novel adaptive spatiotemporal filter that utilizes image sequences in order to remove noise. The consecutive frames include: current, previous and next noisy frames. The filter proposed in this paper is based upon the weighted averaging pixels intensity and noise variance in image sequences. It utilizes the Appropriate Number of Consecutive Frames (ANCF) based on the noisy pixels intensity among the frames. The number of consecutive frames is adaptively calculated for each region in image and its value may change from one region to another region depending on the pixels intensity within the region. The weights are determined by a well-defined mathematical criterion, which is adaptive to the feature of spatiotemporal pixels of the consecutive frames. It is experimentally shown that the proposed filter can preserve image structures and edges under motion while suppressing noise, and thus can be effectively used in image sequences filtering. In addition, the AWA filter using ANCF is particularly well suited for filtering sequences that contain segments with abruptly changing scene content due to, for example, rapid zooming and changes in the view of the camera.

Keywords: Appropriate Number of Consecutive Frames, Adaptive Weighted Averaging, Motion Estimation, Noise Variance, Motion Compensation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819
4036 FILMS based ANC System – Evaluation and Practical Implementation

Authors: Branislav Vuksanović, Dragana Nikolić

Abstract:

This paper describes the implementation and testing of a multichannel active noise control system (ANCS) based on the filtered-inverse LMS (FILMS) algorithm. The FILMS algorithm is derived from the well-known filtered-x LMS (FXLMS) algorithm with the aim to improve the rate of convergence of the multichannel FXLMS algorithm and to reduce its computational load. Laboratory setup and techniques used to implement this system efficiently are described in this paper. Experiments performed in order to test the performance of the FILMS algorithm are discussed and the obtained results presented.

Keywords: Active noise control, adaptive filters, inverse filters, LMS algorithm, FILMS algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634