Search results for: product features
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2708

Search results for: product features

398 Enhancement of Rice Straw Composting Using UV Induced Mutants of Penicillium Strain

Authors: T. N. M. El Sebai, A. A.Khattab, Wafaa M. Abd-El Rahim, H. Moawad

Abstract:

Fungal mutant strains have produced cellulase and xylanase enzymes, and have induced high hydrolysis with enhanced of rice straw. The mutants were obtained by exposing Penicillium strain to UV-light treatments. Screening and selection after treatment with UV-light were carried out using cellulolytic and xylanolytic clear zones method to select the hypercellulolytic and hyperxylanolytic mutants. These mutants were evaluated for their cellulase and xylanase enzyme production as well as their abilities for biodegradation of rice straw. The mutant 12 UV/1 produced 306.21% and 209.91% cellulase and xylanase, respectively, as compared with the original wild type strain. This mutant showed high capacity of rice straw degradation. The effectiveness of tested mutant strain and that of wild strain was compared in relation to enhancing the composting process of rice straw and animal manures mixture. The results obtained showed that the compost product of inoculated mixture with mutant strain (12 UV/1) was the best compared to the wild strain and un-inoculated mixture. Analysis of the composted materials showed that the characteristics of the produced compost were close to those of the high quality standard compost. The results obtained in the present work suggest that the combination between rice straw and animal manure could be used for enhancing the composting process of rice straw and particularly when applied with fungal decomposer accelerating the composting process.

Keywords: Rice straw, composting, UV mutants, Penicillium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1822
397 Methane Production from Biomedical Waste (Blood)

Authors: Fatima M. Kabbashi, Abdalla M. Abdalla, Hussam K. Hamad, Elias S. Hassan

Abstract:

This study investigates the production of renewable energy (biogas) from biomedical hazard waste (blood) and eco-friendly disposal. Biogas is produced by the bacterial anaerobic digestion of biomaterial (blood). During digestion process bacterial feeding result in breaking down chemical bonds of the biomaterial and changing its features, by the end of the digestion (biogas production) the remains become manure as known. That has led to the economic and eco-friendly disposal of hazard biomedical waste (blood). The samples (Whole blood, Red blood cells 'RBCs', Blood platelet and Fresh Frozen Plasma ‘FFP’) are collected and measured in terms of carbon to nitrogen C/N ratio and total solid, then filled in connected flasks (three flasks) using water displacement method. The results of trails showed that the platelet and FFP failed to produce flammable gas, but via a gas analyzer, it showed the presence of the following gases: CO, HC, CO₂, and NOX. Otherwise, the blood and RBCs produced flammable gases: Methane-nitrous CH₃NO (99.45%), which has a blue color flame and carbon dioxide CO₂ (0.55%), which has red/yellow color flame. Methane-nitrous is sometimes used as fuel for rockets, some aircraft and racing cars.

Keywords: Renewable energy, biogas, biomedical waste, blood, anaerobic digestion, eco-friendly disposal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1216
396 Artificial Intelligence-Based Chest X-Ray Test of COVID-19 Patients

Authors: Dhurgham Al-Karawi, Nisreen Polus, Shakir Al-Zaidi, Sabah Jassim

Abstract:

The management of COVID-19 patients based on chest imaging is emerging as an essential tool for evaluating the spread of the pandemic which has gripped the global community. It has already been used to monitor the situation of COVID-19 patients who have issues in respiratory status. There has been increase to use chest imaging for medical triage of patients who are showing moderate-severe clinical COVID-19 features, this is due to the fast dispersal of the pandemic to all continents and communities. This article demonstrates the development of machine learning techniques for the test of COVID-19 patients using Chest X-Ray (CXR) images in nearly real-time, to distinguish the COVID-19 infection with a significantly high level of accuracy. The testing performance has covered a combination of different datasets of CXR images of positive COVID-19 patients, patients with viral and bacterial infections, also, people with a clear chest. The proposed AI scheme successfully distinguishes CXR scans of COVID-19 infected patients from CXR scans of viral and bacterial based pneumonia as well as normal cases with an average accuracy of 94.43%, sensitivity 95%, and specificity 93.86%. Predicted decisions would be supported by visual evidence to help clinicians speed up the initial assessment process of new suspected cases, especially in a resource-constrained environment.

Keywords: COVID-19, chest x-ray scan, artificial intelligence, texture analysis, local binary pattern transform, Gabor filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 676
395 Multi-Layer Multi-Feature Background Subtraction Using Codebook Model Framework

Authors: Yun-Tao Zhang, Jong-Yeop Bae, Whoi-Yul Kim

Abstract:

Background modeling and subtraction in video analysis has been widely used as an effective method for moving objects detection in many computer vision applications. Recently, a large number of approaches have been developed to tackle different types of challenges in this field. However, the dynamic background and illumination variations are the most frequently occurred problems in the practical situation. This paper presents a favorable two-layer model based on codebook algorithm incorporated with local binary pattern (LBP) texture measure, targeted for handling dynamic background and illumination variation problems. More specifically, the first layer is designed by block-based codebook combining with LBP histogram and mean value of each RGB color channel. Because of the invariance of the LBP features with respect to monotonic gray-scale changes, this layer can produce block wise detection results with considerable tolerance of illumination variations. The pixel-based codebook is employed to reinforce the precision from the output of the first layer which is to eliminate false positives further. As a result, the proposed approach can greatly promote the accuracy under the circumstances of dynamic background and illumination changes. Experimental results on several popular background subtraction datasets demonstrate very competitive performance compared to previous models.

Keywords: Background subtraction, codebook model, local binary pattern, dynamic background, illumination changes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1964
394 Visualization and Indexing of Spectral Databases

Authors: Tibor Kulcsar, Gabor Sarossy, Gabor Bereznai, Robert Auer, Janos Abonyi

Abstract:

On-line (near infrared) spectroscopy is widely used to support the operation of complex process systems. Information extracted from spectral database can be used to estimate unmeasured product properties and monitor the operation of the process. These techniques are based on looking for similar spectra by nearest neighborhood algorithms and distance based searching methods. Search for nearest neighbors in the spectral space is an NP-hard problem, the computational complexity increases by the number of points in the discrete spectrum and the number of samples in the database. To reduce the calculation time some kind of indexing could be used. The main idea presented in this paper is to combine indexing and visualization techniques to reduce the computational requirement of estimation algorithms by providing a two dimensional indexing that can also be used to visualize the structure of the spectral database. This 2D visualization of spectral database does not only support application of distance and similarity based techniques but enables the utilization of advanced clustering and prediction algorithms based on the Delaunay tessellation of the mapped spectral space. This means the prediction has not to use the high dimension space but can be based on the mapped space too. The results illustrate that the proposed method is able to segment (cluster) spectral databases and detect outliers that are not suitable for instance based learning algorithms.

Keywords: indexing high dimensional databases, dimensional reduction, clustering, similarity, k-nn algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768
393 Conversion in Chemical Reactors using Hollow Cylindrical Catalyst Pellet

Authors: Mohammad Asif

Abstract:

Heterogeneous catalysis is vital for a number of chemical, refinery and pollution control processes. The use of catalyst pellets of hollow cylindrical shape provide several distinct advantages over other common shapes, and can therefore help to enhance conversion levels in reactors. A better utilization of the catalytic material is probably most notable of these features due to the absence of the pellet core, which helps to significantly lower the effect of the internal transport resistance. This is reflected in the enhancement of the effectiveness factor. For the case of the first order irreversible kinetics, a substantial increase in the effectiveness factor can be obtained by varying shape parameters. Important shape parameters of a finite hollow cylinder are the ratio of the inside to the outside radii (κ) and the height to the diameter ratio (γ). A high value of κ the generally helps to enhance the effectiveness factor. On the other hand, lower values of the effectiveness factors are obtained when the dimension of the height and the diameter are comparable. Thus, the departure of parameter γ from the unity favors higher effectiveness factor. Since a higher effectiveness factor is a measure of a greater utilization of the catalytic material, higher conversion levels can be achieved using the hollow cylindrical pellets possessing optimized shape parameters.

Keywords: Finite hollow cylinder, Catalyst pellet, Effectiveness factor, Thiele Modulus, Conversion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3705
392 Improving Quality of Business Networks for Information Systems

Authors: Hazem M. El-Bakry, Ahmed Atwan

Abstract:

Computer networks are essential part in computerbased information systems. The performance of these networks has a great influence on the whole information system. Measuring the usability criteria and customers satisfaction on small computer network is very important. In this article, an effective approach for measuring the usability of business network in an information system is introduced. The usability process for networking provides us with a flexible and a cost-effective way to assess the usability of a network and its products. In addition, the proposed approach can be used to certify network product usability late in the development cycle. Furthermore, it can be used to help in developing usable interfaces very early in the cycle and to give a way to measure, track, and improve usability. Moreover, a new approach for fast information processing over computer networks is presented. The entire data are collected together in a long vector and then tested as a one input pattern. Proposed fast time delay neural networks (FTDNNs) use cross correlation in the frequency domain between the tested data and the input weights of neural networks. It is proved mathematically and practically that the number of computation steps required for the presented time delay neural networks is less than that needed by conventional time delay neural networks (CTDNNs). Simulation results using MATLAB confirm the theoretical computations.

Keywords: Usability Criteria, Computer Networks, Fast Information Processing, Cross Correlation, Frequency Domain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2032
391 Analysis of Precipitation Time Series of Urban Centers of Northeastern Brazil using Wavelet Transform

Authors: Celso A. G. Santos, Paula K. M. M. Freire

Abstract:

The urban centers within northeastern Brazil are mainly influenced by the intense rainfalls, which can occur after long periods of drought, when flood events can be observed during such events. Thus, this paper aims to study the rainfall frequencies in such region through the wavelet transform. An application of wavelet analysis is done with long time series of the total monthly rainfall amount at the capital cities of northeastern Brazil. The main frequency components in the time series are studied by the global wavelet spectrum and the modulation in separated periodicity bands were done in order to extract additional information, e.g., the 8 and 16 months band was examined by an average of all scales, giving a measure of the average annual variance versus time, where the periods with low or high variance could be identified. The important increases were identified in the average variance for some periods, e.g. 1947 to 1952 at Teresina city, which can be considered as high wet periods. Although, the precipitation in those sites showed similar global wavelet spectra, the wavelet spectra revealed particular features. This study can be considered an important tool for time series analysis, which can help the studies concerning flood control, mainly when they are applied together with rainfall-runoff simulations.

Keywords: rainfall data, urban center, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2446
390 Authenticity Issues of Social Media: Credibility, Quality and Reality

Authors: Shahrinaz Ismail, Roslina Abdul Latif

Abstract:

Social media has led to paradigm shifts in ways people work and do business, interact and socialize, learn and obtain knowledge. So much so that social media has established itself as an important spatial extension of this nation-s historicity and challenges. Regardless of the enabling reputation and recommendation features through social networks embedded in the social media system, the overflow of broadcasted and publicized media contents turns the table around from engendering trust to doubting the trust system. When the trust is at doubt, the effects include deactivation of accounts and creation of multiple profiles, which lead to the overflow of 'ghost' contents (i.e. “the abundance of abandoned ships"). In most literature, the study of trust can be related to culture; hence the difference between Western-s “openness" and Eastern-s “blue-chip" concepts in networking and relationships. From a survey on issues and challenges among Malaysian social media users, 'authenticity' emerges as one of the main factors that causes and is caused by other factors. The other issue that has surfaced is credibility either in terms of message/content and source. Another is the quality of the knowledge that is shared. This paper explores the terrains of this critical space which in recent years has been dominated increasingly by, arguably, social networks embedded in the social media system, the overflow of broadcasted and publicized media content.

Keywords: Authenticity, credibility, knowledge quality and social media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4546
389 Experimental Investigation of the Influence of Cement on Soil-Municipal Solid Incineration Fly Ash Mix Properties

Authors: G. Aouf, D. Tabbal, A. Sabsabi, R. Aouf

Abstract:

The aim of this study is to assess the viability of utilizing Municipal Solid Waste Incineration Fly Ash (MSWIFA) with Ordinary Portland cement as soil reinforcement materials for geotechnical engineering applications. A detailed experimental program is carried out followed by analysis of results. Soil samples were prepared by adding cement to MSWIFA-soil mix at different percentages. Then, a series of laboratory tests were performed namely: Sieve analysis, Atterberg limits tests, Unconfined compression test, and Proctor tests. A parametric study is conducted to investigate the effect of adding the cement at different percentages on the unconfined compression strength, maximum dry density (MDD), and optimum moisture content (OMC) of clayey soil-MSWIFA. The variations of admixtures’ contents were 10%, 20%, and 30% for MSWIFA by dry total weight of soil and 10%, 15%, and 20% for Portland cement by dry total weight of the mix. The test results reveal that adding MSWIFA to the soil up to 20% increased the MDD of the mixture and decreased the OMC, then an opposite trend for results were found when the percentage of MSWIFA exceeds 20%. This is due to the low specific gravity of MSWIFA and to the greater water absorption of MSWIFA. The laboratory tests also indicate that the Unconfined Compression Test values were found to be increased for all the mixtures with curing periods of 7, 14, and 28 days. It is also observed that the cement increased the strength of the finished product of the mix of soil and MSWIFA.

Keywords: Clayey soil, cement, Municipal Solid Waste Incineration Fly Ash, MSWIFA, unconfined compression strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 347
388 A Real-Time Monitoring System of the Supply Chain Conditions, Products and Means of Transport

Authors: Dimitrios E. Kontaxis, George Litainas, Dimitrios P. Ptochos, Vaggelis P. Ptochos, Sotirios P. Ptochos, Dimitrios Beletsis, Konstantinos Kritikakis, Milan Sunaric

Abstract:

Real-time monitoring of the supply chain conditions and procedures is a critical element for the optimal coordination and safety of the deliveries, as well as for the minimization of the delivery time and cost. Real time monitoring requires IoT data streams, which are related to the conditions of the products and the means of transport (e.g., location, temperature/humidity conditions, kinematic state, ambient light conditions, etc.). These streams are generated by battery-based IoT tracking devices, equipped with appropriate sensors, and are transmitted to a cloud-based back-end system. Proper handling and processing of the IoT data streams, using predictive and artificial intelligence algorithms, can provide significant and useful results, which can be exploited by the supply chain stakeholders in order to enhance their financial benefits, as well as the efficiency, security, transparency, coordination and sustainability of the supply chain procedures. The technology, the features and the characteristics of a complete, proprietary system, including hardware, firmware and software tools - developed in the context of a co-funded R&D program - are addressed and presented in this paper. 

Keywords: IoT embedded electronics, real-time monitoring, tracking device, sensor platform

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 630
387 Medical Image Watermark and Tamper Detection Using Constant Correlation Spread Spectrum Watermarking

Authors: Peter U. Eze, P. Udaya, Robin J. Evans

Abstract:

Data hiding can be achieved by Steganography or invisible digital watermarking. For digital watermarking, both accurate retrieval of the embedded watermark and the integrity of the cover image are important. Medical image security in Teleradiology is one of the applications where the embedded patient record needs to be extracted with accuracy as well as the medical image integrity verified. In this research paper, the Constant Correlation Spread Spectrum digital watermarking for medical image tamper detection and accurate embedded watermark retrieval is introduced. In the proposed method, a watermark bit from a patient record is spread in a medical image sub-block such that the correlation of all watermarked sub-blocks with a spreading code, W, would have a constant value, p. The constant correlation p, spreading code, W and the size of the sub-blocks constitute the secret key. Tamper detection is achieved by flagging any sub-block whose correlation value deviates by more than a small value, ℇ, from p. The major features of our new scheme include: (1) Improving watermark detection accuracy for high-pixel depth medical images by reducing the Bit Error Rate (BER) to Zero and (2) block-level tamper detection in a single computational process with simultaneous watermark detection, thereby increasing utility with the same computational cost.

Keywords: Constant correlation, medical image, spread spectrum, tamper detection, watermarking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 972
386 A Deep Learning Framework for Polarimetric SAR Change Detection Using Capsule Network

Authors: Sanae Attioui, Said Najah

Abstract:

The Earth's surface is constantly changing through forces of nature and human activities. Reliable, accurate, and timely change detection is critical to environmental monitoring, resource management, and planning activities. Recently, interest in deep learning algorithms, especially convolutional neural networks, has increased in the field of image change detection due to their powerful ability to extract multi-level image features automatically. However, these networks are prone to drawbacks that limit their applications, which reside in their inability to capture spatial relationships between image instances, as this necessitates a large amount of training data. As an alternative, Capsule Network has been proposed to overcome these shortcomings. Although its effectiveness in remote sensing image analysis has been experimentally verified, its application in change detection tasks remains very sparse. Motivated by its greater robustness towards improved hierarchical object representation, this study aims to apply a capsule network for PolSAR image Change Detection. The experimental results demonstrate that the proposed change detection method can yield a significantly higher detection rate compared to methods based on convolutional neural networks.

Keywords: Change detection, capsule network, deep network, Convolutional Neural Networks, polarimetric synthetic aperture radar images, PolSAR images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 496
385 Computational Modeling in Strategic Marketing

Authors: Petr Cernohorsky, Jan Voracek

Abstract:

Well-developed strategic marketing planning is the essential prerequisite for establishment of the right and unique competitive advantage. Typical market, however, is a heterogeneous and decentralized structure with natural involvement of individual or group subjectivity and irrationality. These features cannot be fully expressed with one-shot rigorous formal models based on, e.g. mathematics, statistics or empirical formulas. We present an innovative solution, extending the domain of agent based computational economics towards the concept of hybrid modeling in service provider and consumer market such as telecommunications. The behavior of the market is described by two classes of agents - consumer and service provider agents - whose internal dynamics are fundamentally different. Customers are rather free multi-state structures, adjusting behavior and preferences quickly in accordance with time and changing environment. Producers, on the contrary, are traditionally structured companies with comparable internal processes and specific managerial policies. Their business momentum is higher and immediate reaction possibilities limited. This limitation underlines importance of proper strategic planning as the main process advising managers in time whether to continue with more or less the same business or whether to consider the need for future structural changes that would ensure retention of existing customers or acquisition of new ones.

Keywords: Agent-based computational economics, hybrid modeling, strategic marketing, system dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
384 Addressing Scalability Issues of Named Entity Recognition Using Multi-Class Support Vector Machines

Authors: Mona Soliman Habib

Abstract:

This paper explores the scalability issues associated with solving the Named Entity Recognition (NER) problem using Support Vector Machines (SVM) and high-dimensional features. The performance results of a set of experiments conducted using binary and multi-class SVM with increasing training data sizes are examined. The NER domain chosen for these experiments is the biomedical publications domain, especially selected due to its importance and inherent challenges. A simple machine learning approach is used that eliminates prior language knowledge such as part-of-speech or noun phrase tagging thereby allowing for its applicability across languages. No domain-specific knowledge is included. The accuracy measures achieved are comparable to those obtained using more complex approaches, which constitutes a motivation to investigate ways to improve the scalability of multiclass SVM in order to make the solution more practical and useable. Improving training time of multi-class SVM would make support vector machines a more viable and practical machine learning solution for real-world problems with large datasets. An initial prototype results in great improvement of the training time at the expense of memory requirements.

Keywords: Named entity recognition, support vector machines, language independence, bioinformatics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1688
383 Discovering Complex Regularities: from Tree to Semi-Lattice Classifications

Authors: A. Faro, D. Giordano, F. Maiorana

Abstract:

Data mining uses a variety of techniques each of which is useful for some particular task. It is important to have a deep understanding of each technique and be able to perform sophisticated analysis. In this article we describe a tool built to simulate a variation of the Kohonen network to perform unsupervised clustering and support the entire data mining process up to results visualization. A graphical representation helps the user to find out a strategy to optimize classification by adding, moving or delete a neuron in order to change the number of classes. The tool is able to automatically suggest a strategy to optimize the number of classes optimization, but also support both tree classifications and semi-lattice organizations of the classes to give to the users the possibility of passing from one class to the ones with which it has some aspects in common. Examples of using tree and semi-lattice classifications are given to illustrate advantages and problems. The tool is applied to classify macroeconomic data that report the most developed countries- import and export. It is possible to classify the countries based on their economic behaviour and use the tool to characterize the commercial behaviour of a country in a selected class from the analysis of positive and negative features that contribute to classes formation. Possible interrelationships between the classes and their meaning are also discussed.

Keywords: Unsupervised classification, Kohonen networks, macroeconomics, Visual data mining, Cluster interpretation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541
382 Feature Based Dense Stereo Matching using Dynamic Programming and Color

Authors: Hajar Sadeghi, Payman Moallem, S. Amirhassn Monadjemi

Abstract:

This paper presents a new feature based dense stereo matching algorithm to obtain the dense disparity map via dynamic programming. After extraction of some proper features, we use some matching constraints such as epipolar line, disparity limit, ordering and limit of directional derivative of disparity as well. Also, a coarseto- fine multiresolution strategy is used to decrease the search space and therefore increase the accuracy and processing speed. The proposed method links the detected feature points into the chains and compares some of the feature points from different chains, to increase the matching speed. We also employ color stereo matching to increase the accuracy of the algorithm. Then after feature matching, we use the dynamic programming to obtain the dense disparity map. It differs from the classical DP methods in the stereo vision, since it employs sparse disparity map obtained from the feature based matching stage. The DP is also performed further on a scan line, between any matched two feature points on that scan line. Thus our algorithm is truly an optimization method. Our algorithm offers a good trade off in terms of accuracy and computational efficiency. Regarding the results of our experiments, the proposed algorithm increases the accuracy from 20 to 70%, and reduces the running time of the algorithm almost 70%.

Keywords: Chain Correspondence, Color Stereo Matching, Dynamic Programming, Epipolar Line, Stereo Vision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2348
381 One-DOF Precision Position Control using the Combined Piezo-VCM Actuator

Authors: Yung-Tien Liu, Chun-Chao Wang

Abstract:

This paper presents the control performance of a high-precision positioning device using the hybrid actuator composed of a piezoelectric (PZT) actuator and a voice-coil motor (VCM). The combined piezo-VCM actuator features two main characteristics: a large operation range due to long stroke of the VCM, and high precision and heavy load positioning ability due to PZT impact force. A one-degree-of-freedom (DOF) experimental setup was configured to examine the fundamental characteristics, and the control performance was effectively demonstrated by using a switching controller. In rough positioning state, an integral variable structure controller (IVSC) was used for the VCM to conduct long range of operation; in precision positioning state, an impact force controller (IFC) for the PZT actuator coupled with presliding states of the sliding table was used to obtain high-precision position control and achieve both forward and backward actuations. The experimental results showed that the sliding table having a mass of 881g and with a preload of 10 N was successfully positioned within the positioning accuracy of 10 nm in both forward and backward position controls.

Keywords: Integral variable structure controller (IVSC), impact force, precision positioning, presliding, PZT actuator, voice-coil motor (VCM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1935
380 Application of Synthetic Monomers Grafted Xanthan Gum for Rhodamine B Removal in Aqueous Solution

Authors: T. Moremedi, L. Katata-Seru, S. Sardar, A. Bandyopadhyay, E. Makhado, M. Joseph Hato

Abstract:

The rapid industrialisation and population growth have led to a steady fall in freshwater supplies worldwide. As a result, water systems are affected by modern methods upon use due to secondary contamination. The application of novel adsorbents derived from natural polymer holds a great promise in addressing challenges in water treatment. In this study, the UV irradiation technique was used to prepare acrylamide (AAm) monomer, and acrylic acid (AA) monomer grafted xanthan gum (XG) copolymer. Furthermore, the factors affecting rhodamine B (RhB) adsorption from aqueous media, such as pH, dosage, concentration, and time were also investigated. The FTIR results confirmed the formation of graft copolymer by the strong vibrational bands at 1709 cm-1 and 1612 cm-1 for AA and AAm, respectively. Additionally, more irregular, porous and wrinkled surface observed from SEM of XG-g-AAm/AA indicated copolymerization interaction of monomers. The optimum conditions for removing RhB dye with a maximum adsorption capacity of 313 mg/g at 25 0C from aqueous solution were pH approximately 5, initial dye concentration = 200 ppm, adsorbent dose = 30 mg. Also, the detailed investigation of the isothermal and adsorption kinetics of RhB from aqueous solution showed that the adsorption of the dye followed a Freundlich model (R2 = 0.96333) and pseudo-second-order kinetics. The results further indicated that this absorbent based on XG had the universality to remove dye through the mechanism of chemical adsorption. The outstanding adsorption potential of the grafted copolymer could be used to remove cationic dyes from aqueous solution as a low-cost product.

Keywords: Xanthan gum, adsorbents, rhodamine B, Freundlich model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 660
379 Wheat Bran Carbohydrates as Substrate for Bifidobacterium lactis Development

Authors: V. Radenkovs, D. Klava, K. Juhnevica

Abstract:

The present study addresses problems and solutions related to new functional food production. Wheat (Triticum aestivum L) bran obtained from industrial mill company “Dobeles dzirnavieks”, was used to investigate them as raw material like nutrients for Bifidobacterium lactis Bb-12. Enzymatic hydrolysis of wheat bran starch was carried out by α-amylase from Bacillus amyloliquefaciens (Sigma Aldrich). The Viscozyme L purchased from (Sigma Aldrich) were used for reducing released sugar. Bifidibacterium lactis Bb-12 purchased from (Probio-Tec® CHR Hansen) was cultivated in enzymatically hydrolysed wheat bran mash. All procedures ensured the number of active Bifidobacterium lactis Bb-12 in the final product reached 105 CFUg-1. After enzymatic and bacterial fermentations sample were freeze dried for analysis of chemical compounds. All experiments were performed at Faculty of Food Technology of Latvia University of Agriculture in January- March 2013. The obtained results show that both types of wheat bran (enzymatically treated and non-treated) influenced the fermentative activity and number of Bifidibacterium lactis Bb-12 viable in wheat bran mash. Amount of acidity strongly increase during the wheat bran mash fermentation. The main objective of this work was to create low-energy functional enzymatically and bacterially treated food from wheat bran using enzymatic hydrolysis of carbohydrates and following cultivation of Bifidobacterium lactis Bb-12.

Keywords: Viscozyme L, α-amylase, Bifidobacterium lactis, fermented wheat bran.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2721
378 Design and Implementation of a Counting and Differentiation System for Vehicles through Video Processing

Authors: Derlis Gregor, Kevin Cikel, Mario Arzamendia, Raúl Gregor

Abstract:

This paper presents a self-sustaining mobile system for counting and classification of vehicles through processing video. It proposes a counting and classification algorithm divided in four steps that can be executed multiple times in parallel in a SBC (Single Board Computer), like the Raspberry Pi 2, in such a way that it can be implemented in real time. The first step of the proposed algorithm limits the zone of the image that it will be processed. The second step performs the detection of the mobile objects using a BGS (Background Subtraction) algorithm based on the GMM (Gaussian Mixture Model), as well as a shadow removal algorithm using physical-based features, followed by morphological operations. In the first step the vehicle detection will be performed by using edge detection algorithms and the vehicle following through Kalman filters. The last step of the proposed algorithm registers the vehicle passing and performs their classification according to their areas. An auto-sustainable system is proposed, powered by batteries and photovoltaic solar panels, and the data transmission is done through GPRS (General Packet Radio Service)eliminating the need of using external cable, which will facilitate it deployment and translation to any location where it could operate. The self-sustaining trailer will allow the counting and classification of vehicles in specific zones with difficult access.

Keywords: Intelligent transportation systems, object detection, video processing, road traffic, vehicle counting, vehicle classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1623
377 Patients’ Perceptions of Receiving a Diagnosis of a Hematological Malignancy, Following the SPIKES Protocol

Authors: L. Dixon, D. Gavani

Abstract:

Objective: Sharing devastating news with patients is often considered the most difficult task of doctors. This study aimed to explore patients’ perceptions of receiving bad news including which features improve the experience and which areas need refining. Methods: A questionnaire was written based on the steps of the SPIKES model for breaking bad new. 20 patients receiving treatment for a hematological malignancy completed the questionnaire. Results: Overall, the results are promising as most patients praised their consultation. ‘Poor’ was more commonly rated by women and participants aged 45-64. The main differences between the ‘excellent’ and ‘poor’ consultations include the doctor’s sensitivity and checking the patients’ understanding. Only 35% of patients were asked their existing knowledge and 85% of consultations failed to discuss the impact of the diagnosis on daily life. Conclusion: This study agreed with the consensus of existing literature. The commended aspects include consultation set-up and information given. Areas patients felt needed improvement include doctors determining the patient’s existing knowledge and checking new information has been understood. Doctors should also explore how the diagnosis will affect the patient’s life. With a poorer prognosis, doctors should work on conveying appropriate hope. The study was limited by a small sample size and potential recall bias.

Keywords: Communication, diagnosis, hematology, patients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944
376 Energy-Aware Scheduling in Real-Time Systems: An Analysis of Fair Share Scheduling and Priority-Driven Preemptive Scheduling

Authors: Su Xiaohan, Jin Chicheng, Liu Yijing, Burra Venkata Durga Kumar

Abstract:

Energy-aware scheduling in real-time systems aims to minimize energy consumption, but issues related to resource reservation and timing constraints remain challenges. This study focuses on analyzing two scheduling algorithms, Fair-Share Scheduling (FFS) and Priority-Driven Preemptive Scheduling (PDPS), for solving these issues and energy-aware scheduling in real-time systems. Based on research on both algorithms and the processes of solving two problems, it can be found that FFS ensures fair allocation of resources but needs to improve with an imbalanced system load. And PDPS prioritizes tasks based on criticality to meet timing constraints through preemption but relies heavily on task prioritization and may not be energy efficient. Therefore, improvements to both algorithms with energy-aware features will be proposed. Future work should focus on developing hybrid scheduling techniques that minimize energy consumption through intelligent task prioritization, resource allocation, and meeting time constraints.

Keywords: Energy-aware scheduling, fair-share scheduling, priority-driven preemptive scheduling, real-time systems, optimization, resource reservation, timing constraints.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 119
375 Sonochemically Prepared SnO2 Quantum Dots as a Selective and Low Temperature CO Sensor

Authors: S. Mosadegh Sedghi, Y. Mortazavi, A. Khodadadi, O. Alizadeh Sahraei, M. Vesali Naseh

Abstract:

In this study, a low temperature sensor highly selective to CO in presence of methane is fabricated by using 4 nm SnO2 quantum dots (QDs) prepared by sonication assisted precipitation. SnCl4 aqueous solution was precipitated by ammonia under sonication, which continued for 2 h. A part of the sample was then dried and calcined at 400°C for 1.5 h and characterized by XRD and BET. The average particle size and the specific surface area of the SnO2 QDs as well as their sensing properties were compared with the SnO2 nano-particles which were prepared by conventional sol-gel method. The BET surface area of sonochemically as-prepared product and the one calcined at 400°C after 1.5 hr are 257 m2/gr and 212 m2/gr respectively while the specific surface area for SnO2 nanoparticles prepared by conventional sol-gel method is about 80m2/gr. XRD spectra revealed pure crystalline phase of SnO2 is formed for both as-prepared and calcined samples of SnO2 QDs. However, for the sample prepared by sol-gel method and calcined at 400°C SnO crystals are detected along with those of SnO2. Quantum dots of SnO2 show exceedingly high sensitivity to CO with different concentrations of 100, 300 and 1000 ppm in whole range of temperature (25- 350°C). At 50°C a sensitivity of 27 was obtained for 1000 ppm CO, which increases to a maximum of 147 when the temperature rises to 225°C and then drops off while the maximum sensitivity for the SnO2 sample prepared by the sol-gel method was obtained at 300°C with the amount of 47.2. At the same time no sensitivity to methane is observed in whole range of temperatures for SnO2 QDs. The response and recovery times of the sensor sharply decreases with temperature, while the high selectivity to CO does not deteriorate.

Keywords: Sonochemical, SnO2 QDs, SnO2 gas sensor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2247
374 Statistical Screening of Medium Components on Ethanol Production from Cashew Apple Juice using Saccharomyces diasticus

Authors: Karuppaiya Maruthai, Viruthagiri Thangavelu, Manikandan Kanagasabai

Abstract:

In the present study, effect of critical medium components (a total of fifteen components) on ethanol production from waste cashew apple juice (CAJ) using yeast Saccharomyces diasticus was studied. A statistical response surface methodology (RSM) based Plackett-Burman Design (PBD) was used for the design of experiments. The design contains a total of 32 experimental trails. The effect of medium components on ethanol was studied at two different levels such as low concentration level (-) and high concentration levels (+). The dependent variables selected in this study were ethanol concentration (g/L) and cellmass concentration (g/L). Data obtained from RSM on ethanol production were subjected to analysis of variance (ANOVA). In general, initial substrate concentration significantly influenced the microbial growth and product formation. Of the medium components evaluated, CAJ concentration, yeast extract, (NH4)2SO4, and malt extract showed significant effect on ethanol fermentation. A second-order polynomial model was used to predict the experimental data and the model fitted the data with a high correlation coefficient (R2 > 0.98). Maximum ethanol (15.3 g/L) and biomass (6.4 g/L) concentrations were obtained at the optimum medium composition and at optimum condition (temperature-30°C; initial pH-6.8) after 72 h fermentation using S.diasticus.

Keywords: cashew apple juice, ethanol, fermentation, yeast, response surface methodology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2711
373 Evaluation of the Internal Quality for Pineapple Based on the Spectroscopy Approach and Neural Network

Authors: Nonlapun Meenil, Pisitpong Intarapong, Thitima Wongsheree, Pranchalee Samanpiboon

Abstract:

In Thailand, once pineapples are harvested, they must be classified into two classes based on their sweetness: sweet and unsweet. This paper has studied and developed the assessment of internal quality of pineapples using a low-cost compact spectroscopy sensor according to the spectroscopy approach and Neural Network (NN). During the experiments, Batavia pineapples were utilized, generating 100 samples. The extracted pineapple juice of each sample was used to determine the Soluble Solid Content (SSC) labeling into sweet and unsweet classes. In terms of experimental equipment, the sensor cover was specifically designed to install the sensor and light source to read the reflectance at a five mm depth from pineapple flesh. By using a spectroscopy sensor, data on visible and near-infrared reflectance (Vis-NIR) were collected. The NN was used to classify the pineapple classes. Before the classification step, the preprocessing methods, which are class balancing, data shuffling, and standardization, were applied. The 510 nm and 900 nm reflectance values of the middle parts of pineapples were used as features of the NN. With the sequential model and ReLU activation function, 100% accuracy of the training set and 76.67% accuracy of the test set were achieved. According to the abovementioned information, using a low-cost compact spectroscopy sensor has achieved favorable results in classifying the sweetness of the two classes of pineapples.

Keywords: Spectroscopy, soluble solid content, pineapple, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 118
372 Supply Chain Resilience Triangle: The Study and Development of a Framework

Authors: M. Bevilacqua, F. E. Ciarapica, G. Marcucci

Abstract:

Supply Chain Resilience has been broadly studied during the last decade, focusing the research on many aspects of Supply Chain performance. Consequently, different definitions of Supply Chain Resilience have been developed by the research community, drawing inspiration also from other fields of study such as ecology, sociology, psychology, economy et al. This way, the definitions so far developed in the extant literature are therefore very heterogeneous, and many authors have pointed out a lack of consensus in this field of analysis. The aim of this research is to find common points between these definitions, through the development of a framework of study: the Resilience Triangle. The Resilience Triangle is a tool developed in the field of civil engineering, with the objective of modeling the loss of resilience of a given structure during and after the occurrence of a disruption such as an earthquake. The Resilience Triangle is a simple yet powerful tool: in our opinion, it can summarize all the features that authors have captured in the Supply Chain Resilience definitions over the years. This research intends to recapitulate within this framework all these heterogeneities in Supply Chain Resilience research. After collecting a various number of Supply Chain Resilience definitions present in the extant literature, the methodology approach provides a taxonomy step with the scope of collecting and analyzing all the data gathered. The next step provides the comparison of the data obtained with the plotting of a disruption profile, in order to contextualize the Resilience Triangle in the Supply Chain context. The tool and the results developed in this research will allow to lay the foundation for future Supply Chain Resilience modeling and measurement work.

Keywords: Supply chain resilience, resilience definition, supply chain resilience triangle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2705
371 Featured based Segmentation of Color Textured Images using GLCM and Markov Random Field Model

Authors: Dipti Patra, Mridula J

Abstract:

In this paper, we propose a new image segmentation approach for colour textured images. The proposed method for image segmentation consists of two stages. In the first stage, textural features using gray level co-occurrence matrix(GLCM) are computed for regions of interest (ROI) considered for each class. ROI acts as ground truth for the classes. Ohta model (I1, I2, I3) is the colour model used for segmentation. Statistical mean feature at certain inter pixel distance (IPD) of I2 component was considered to be the optimized textural feature for further segmentation. In the second stage, the feature matrix obtained is assumed to be the degraded version of the image labels and modeled as Markov Random Field (MRF) model to model the unknown image labels. The labels are estimated through maximum a posteriori (MAP) estimation criterion using ICM algorithm. The performance of the proposed approach is compared with that of the existing schemes, JSEG and another scheme which uses GLCM and MRF in RGB colour space. The proposed method is found to be outperforming the existing ones in terms of segmentation accuracy with acceptable rate of convergence. The results are validated with synthetic and real textured images.

Keywords: Texture Image Segmentation, Gray Level Cooccurrence Matrix, Markov Random Field Model, Ohta colour space, ICM algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2171
370 Microbial Oil Production by Monoculture and Mixed Cultures of Microalgae and Oleaginous Yeasts using Sugarcane Juice as Substrate

Authors: Thidarat Papone, Supaporn Kookkhunthod, Ratanaporn Leesing

Abstract:

Monoculture and mixed cultures of microalgae and the oleaginous yeast for microbial oil productions were investigated using sugarcane juice as carbon substrate. The monoculture of yeast Torulaspora maleeae Y30, Torulaspora globosa YU5/2 grew faster than that of microalgae Chlorella sp. KKU-S2. In monoculture of T. maleeae Y30, a biomass of 8.267g/L with lipid yield of 0.920g/L were obtained, while 8.333g/L of biomass with lipid yield of 1.141g/L were obtained for monoculture of T. globosa YU5/2. A biomass of 1.933g/L with lipid yield of 0.052g/L was found for monoculture of Chlorella sp. KKU-S2. The biomass concentration in the mixed culture of the oleaginous yeast with microalgae increased faster and was higher compared with that in the monocultures. A biomass of 8.733g/L with lipid yield of 1.564g/L was obtained for a mixed culture of T. maleeae Y30 with Chlorella sp. KKU-S2, while 8.010g/L of biomass with lipid yield of 2.424g/L was found for mixed culture of T. globosa YU5/2 with Chlorella sp. KKU-S2. Maximum cell yield coefficient (YX/S, g/L) was found of 0.323 in monoculture of Chlorella sp. KKU-S2 but low level of both specific yield of lipid (YP/X, g lipid/g cells) of 0.027 and volumetric lipid production rate (QP, g/L/d) of 0.003 were observed. While, maximum YP/X (0.303), QP (0.105) and maximum process product yield (YP/S, 0.061) were obtained in mixed culture of T. globosa YU5/2 with Chlorella sp. KKU-S2. The results obtained from the study shows that mixed culture of yeast with microalgae is a desirable cultivation process for microbial oil production.

Keywords: Microbial oil, Chlorella sp. KKU-S2, Torulaspora maleeae Y30, Torulaspora globosa YU5/2, mixed culture, biodiesel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2962
369 Utilization of 3-N-trimethylamino-1-propanol by Rhodococcus sp. strain A4 isolated from Natural Soil

Authors: Isam A. Mohamed Ahmed, Jiro Arima, Tsuyoshi Ichiyanagi, Emi Sakuno, Nobuhiro Mori

Abstract:

The aim of this study was to screen for microorganism that able to utilize 3-N-trimethylamino-1-propanol (homocholine) as a sole source of carbon and nitrogen. The aerobic degradation of homocholine has been found by a gram-positive Rhodococcus sp. bacterium isolated from soil. The isolate was identified as Rhodococcus sp. strain A4 based on the phenotypic features, physiologic and biochemical characteristics, and phylogenetic analysis. The cells of the isolated strain grown on both basal-TMAP and nutrient agar medium displayed elementary branching mycelia fragmented into irregular rod and coccoid elements. Comparative 16S rDNA sequencing studies indicated that the strain A4 falls into the Rhodococcus erythropolis subclade and forms a monophyletic group with the type-strains of R. opacus, and R. wratislaviensis. Metabolites analysis by capillary electrophoresis, fast atom bombardment-mass spectrometry, and gas chromatography- mass spectrometry, showed trimethylamine (TMA) as the major metabolite beside β-alanine betaine and trimethylaminopropionaldehyde. Therefore, the possible degradation pathway of trimethylamino propanol in the isolated strain is through consequence oxidation of alcohol group (-OH) to aldehyde (-CHO) and acid (-COOH), and thereafter the cleavage of β-alanine betaine C-N bonds yielded trimethylamine and alkyl chain.

Keywords: Homocholine, 3-N-trimethylamino-1-propanol, Quaternary ammonium compounds, 16S rDNA gene sequence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1532