Search results for: mapping algorithm
1416 Extended Minimal Controller Synthesis for Voltage-Fed Induction Motor Based on the Hyperstability Theory
Authors: A. Ramdane, F.Naceri, S. Ramdane
Abstract:
in this work, we present a new strategy of direct adaptive control denoted: Extended minimal controller synthesis (EMCS). This algorithm is designed for an induction motor, which includes both electrical and mechanical dynamics under the assumptions of linear magnetic circuits. The main motivation of the EMCS control is to enhance the robustness of the MRAC algorithms, i.e. the rejection of bounded effects of rapidly varying external disturbances.
Keywords: Adaptive Control, Simple model reference adaptive control (SMRAC), Extended Minimal Controller synthesis (EMCS), Induction Motor (IM)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16401415 Comparison of Different Types of Sources of Traffic Using SFQ Scheduling Discipline
Authors: Alejandro Gomez Suarez, H. Srikanth Kamath
Abstract:
In this paper, SFQ (Start Time Fair Queuing) algorithm is analyzed when this is applied in computer networks to know what kind of behavior the traffic in the net has when different data sources are managed by the scheduler. Using the NS2 software the computer networks were simulated to be able to get the graphs showing the performance of the scheduler. Different traffic sources were introduced in the scripts, trying to establish the real scenario. Finally the results were that depending on the data source, the traffic can be affected in different levels, when Constant Bite Rate is applied, the scheduler ensures a constant level of data sent and received, but the truth is that in the real life it is impossible to ensure a level that resists the changes in work load. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21381414 Comparison of Frequency Estimation Methods for Reflected Signals in Mobile Platforms
Authors: Kathrin Reinhold
Abstract:
Precise frequency estimation methods for pulseshaped echoes are a prerequisite to determine the relative velocity between sensor and reflector. Signal frequencies are analysed using three different methods: Fourier Transform, Chirp ZTransform and the MUSIC algorithm. Simulations of echoes are performed varying both the noise level and the number of reflecting points. The superposition of echoes with a random initial phase is found to influence the precision of frequency estimation severely for FFT and MUSIC. The standard deviation of the frequency using FFT is larger than for MUSIC. However, MUSIC is more noise-sensitive. The distorting effect of superpositions is less pronounced in experimental data.
Keywords: Frequency estimation, pulse-echo-method, superposition, echoes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11681413 Mapping of Solar Radiation Anomalies Based on Climate Change
Authors: Elison Eduardo Jardim Bierhals, Claudineia Brazil, Francisco Pereira, Elton Rossini
Abstract:
The use of alternative energy sources to meet energy demand reduces environmental damage. To diversify an energy matrix and to minimize global warming, a solar energy is gaining space, being an important source of renewable energy, and its potential depends on the climatic conditions of the region. Brazil presents a great solar potential for a generation of electric energy, so the knowledge of solar radiation and its characteristics are fundamental for the study of energy use. Due to the above reasons, this article aims to verify the climatic variability corresponding to the variations in solar radiation anomalies, in the face of climate change scenarios. The data used in this research are part of the Intercomparison of Interconnected Models, Phase 5 (CMIP5), which contributed to the preparation of the fifth IPCC-AR5 report. The solar radiation data were extracted from The Australian Community Climate and Earth System Simulator (ACCESS) model using the RCP 4.5 and RCP 8.5 scenarios that represent an intermediate structure and a pessimistic framework, the latter being the most worrisome in all cases. In order to allow the use of solar radiation as a source of energy in a given location and/or region, it is important, first, to determine its availability, thus justifying the importance of the study. The results pointed out, for the 75-year period (2026-2100), based on a pessimistic scenario, indicate a drop in solar radiation of the approximately 12% in the eastern region of Rio Grande do Sul. Factors that influence the pessimistic prospects of this scenario should be better observed by the responsible authorities, since they can affect the possibility to produce electricity from solar radiation.
Keywords: Climate change, solar radiation, energy utilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9921412 Route Training in Mobile Robotics through System Identification
Authors: Roberto Iglesias, Theocharis Kyriacou, Ulrich Nehmzow, Steve Billings
Abstract:
Fundamental sensor-motor couplings form the backbone of most mobile robot control tasks, and often need to be implemented fast, efficiently and nevertheless reliably. Machine learning techniques are therefore often used to obtain the desired sensor-motor competences. In this paper we present an alternative to established machine learning methods such as artificial neural networks, that is very fast, easy to implement, and has the distinct advantage that it generates transparent, analysable sensor-motor couplings: system identification through nonlinear polynomial mapping. This work, which is part of the RobotMODIC project at the universities of Essex and Sheffield, aims to develop a theoretical understanding of the interaction between the robot and its environment. One of the purposes of this research is to enable the principled design of robot control programs. As a first step towards this aim we model the behaviour of the robot, as this emerges from its interaction with the environment, with the NARMAX modelling method (Nonlinear, Auto-Regressive, Moving Average models with eXogenous inputs). This method produces explicit polynomial functions that can be subsequently analysed using established mathematical methods. In this paper we demonstrate the fidelity of the obtained NARMAX models in the challenging task of robot route learning; we present a set of experiments in which a Magellan Pro mobile robot was taught to follow four different routes, always using the same mechanism to obtain the required control law.Keywords: Mobile robotics, system identification, non-linear modelling, NARMAX.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17221411 Enhancing Security in Resource Sharing Using Key Holding Mechanism
Authors: M. Victor Jose, V. Seenivasagam
Abstract:
This paper describes a logical method to enhance security on the grid computing to restrict the misuse of the grid resources. This method is an economic and efficient one to avoid the usage of the special devices. The security issues, techniques and solutions needed to provide a secure grid computing environment are described. A well defined process for security management among the resource accesses and key holding algorithm is also proposed. In this method, the identity management, access control and authorization and authentication are effectively handled.
Keywords: Grid security, Irregular binary series, Key holding mechanism, Resource identity, Secure resource access.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17251410 Fuzzy Multi-Criteria Framework for Supporting Biofuels Policy Making
Authors: Jadwiga R. Ziolkowska
Abstract:
In this paper, a fuzzy algorithm and a fuzzy multicriteria decision framework are developed and used for a practical question of optimizing biofuels policy making. The methodological framework shows how to incorporate fuzzy set theory in a decision process of finding a sustainable biofuels policy among several policy options. Fuzzy set theory is used here as a tool to deal with uncertainties of decision environment, vagueness and ambiguities of policy objectives, subjectivities of human assessments and imprecise and incomplete information about the evaluated policy instruments.Keywords: Fuzzy set theory, multi-criteria decision-makingsupport, uncertainties, policy making, biofuels
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20301409 BIBD-s for (13, 5, 5), (16, 6, 5) and (21, 6, 4) Possessing Possibly an Automorphism of Order 3
Authors: Ivica Martinjak, Mario-Osvin Pavcevic
Abstract:
When trying to enumerate all BIBD-s for given parameters, their natural solution space appears to be huge and grows extremely with the number of points of the design. Therefore, constructive enumerations are often carried out by assuming additional constraints on design-s structure, automorphisms being mostly used ones. It remains a hard task to construct designs with trivial automorphism group – those with no additional symmetry – although it is believed that most of the BIBD-s belong to that case. In this paper, very many new designs with parameters 2-(13, 5, 5), 2-(16, 6, 5) and 2-(21, 6, 4) are constructed, assuming an action of an automorphism of order 3. Even more, it was possible to construct millions of such designs with no non-trivial automorphisms.Keywords: BIBD, incidence matrix, automorphism group, tactical decomposition, deterministic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13191408 Comparative Study of Universities’ Web Structure Mining
Authors: Z. Abdullah, A. R. Hamdan
Abstract:
This paper is meant to analyze the ranking of University of Malaysia Terengganu, UMT’s website in the World Wide Web. There are only few researches have been done on comparing the ranking of universities’ websites so this research will be able to determine whether the existing UMT’s website is serving its purpose which is to introduce UMT to the world. The ranking is based on hub and authority values which are accordance to the structure of the website. These values are computed using two websearching algorithms, HITS and SALSA. Three other universities’ websites are used as the benchmarks which are UM, Harvard and Stanford. The result is clearly showing that more work has to be done on the existing UMT’s website where important pages according to the benchmarks, do not exist in UMT’s pages. The ranking of UMT’s website will act as a guideline for the web-developer to develop a more efficient website.Keywords: Algorithm, ranking, website, web structure mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16671407 Edge Detection in Low Contrast Images
Authors: Koushlendra Kumar Singh, Manish Kumar Bajpai, Rajesh K. Pandey
Abstract:
The edges of low contrast images are not clearly distinguishable to human eye. It is difficult to find the edges and boundaries in it. The present work encompasses a new approach for low contrast images. The Chebyshev polynomial based fractional order filter has been used for filtering operation on an image. The preprocessing has been performed by this filter on the input image. Laplacian of Gaussian method has been applied on preprocessed image for edge detection. The algorithm has been tested on two test images.
Keywords: Chebyshev polynomials, Fractional order differentiator, Laplacian of Gaussian (LoG) method, Low contrast image.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32771406 Modeling and Optimization of Aggregate Production Planning - A Genetic Algorithm Approach
Authors: B. Fahimnia, L.H.S. Luong, R. M. Marian
Abstract:
The Aggregate Production Plan (APP) is a schedule of the organization-s overall operations over a planning horizon to satisfy demand while minimizing costs. It is the baseline for any further planning and formulating the master production scheduling, resources, capacity and raw material planning. This paper presents a methodology to model the Aggregate Production Planning problem, which is combinatorial in nature, when optimized with Genetic Algorithms. This is done considering a multitude of constraints of contradictory nature and the optimization criterion – overall cost, made up of costs with production, work force, inventory, and subcontracting. A case study of substantial size, used to develop the model, is presented, along with the genetic operators.Keywords: Aggregate Production Planning, Costs, and Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25861405 Efficient Mean Shift Clustering Using Exponential Integral Kernels
Authors: S. Sutor, R. Röhr, G. Pujolle, R. Reda
Abstract:
This paper presents a highly efficient algorithm for detecting and tracking humans and objects in video surveillance sequences. Mean shift clustering is applied on backgrounddifferenced image sequences. For efficiency, all calculations are performed on integral images. Novel corresponding exponential integral kernels are introduced to allow the application of nonuniform kernels for clustering, which dramatically increases robustness without giving up the efficiency of the integral data structures. Experimental results demonstrating the power of this approach are presented.
Keywords: Clustering, Integral Images, Kernels, Person Detection, Person Tracking, Intelligent Video Surveillance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15291404 Feature Subset Selection Using Ant Colony Optimization
Authors: Ahmed Al-Ani
Abstract:
Feature selection is an important step in many pattern classification problems. It is applied to select a subset of features, from a much larger set, such that the selected subset is sufficient to perform the classification task. Due to its importance, the problem of feature selection has been investigated by many researchers. In this paper, a novel feature subset search procedure that utilizes the Ant Colony Optimization (ACO) is presented. The ACO is a metaheuristic inspired by the behavior of real ants in their search for the shortest paths to food sources. It looks for optimal solutions by considering both local heuristics and previous knowledge. When applied to two different classification problems, the proposed algorithm achieved very promising results.Keywords: Ant Colony Optimization, ant systems, feature selection, pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16021403 A Mean–Variance–Skewness Portfolio Optimization Model
Authors: Kostas Metaxiotis
Abstract:
Portfolio optimization is one of the most important topics in finance. This paper proposes a mean–variance–skewness (MVS) portfolio optimization model. Traditionally, the portfolio optimization problem is solved by using the mean–variance (MV) framework. In this study, we formulate the proposed model as a three-objective optimization problem, where the portfolio's expected return and skewness are maximized whereas the portfolio risk is minimized. For solving the proposed three-objective portfolio optimization model we apply an adapted version of the non-dominated sorting genetic algorithm (NSGAII). Finally, we use a real dataset from FTSE-100 for validating the proposed model.
Keywords: Evolutionary algorithms, portfolio optimization, skewness, stock selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14171402 A Redundant Dynamic Host Configuration Protocol for Collaborating Embedded Systems
Authors: M. Schukat, M.P. Cullen, D. O'Beirne
Abstract:
This paper describes a UDP over IP based, server-oriented redundant host configuration protocol (RHCP) that can be used by collaborating embedded systems in an ad-hoc network to acquire a dynamic IP address. The service is provided by a single network device at a time and will be dynamically reassigned to one of the other network clients if the primary provider fails. The protocol also allows all participating clients to monitor the dynamic makeup of the network over time. So far the algorithm has been implemented and tested on an 8-bit embedded system architecture with a 10Mbit Ethernet interface.Keywords: Ad-Hoc Networks, Collaborating Embedded Systems, Dynamic Host Configuration, Redundancy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15691401 A Kernel Classifier using Linearised Bregman Iteration
Authors: K. A. D. N. K Wimalawarne
Abstract:
In this paper we introduce a novel kernel classifier based on a iterative shrinkage algorithm developed for compressive sensing. We have adopted Bregman iteration with soft and hard shrinkage functions and generalized hinge loss for solving l1 norm minimization problem for classification. Our experimental results with face recognition and digit classification using SVM as the benchmark have shown that our method has a close error rate compared to SVM but do not perform better than SVM. We have found that the soft shrinkage method give more accuracy and in some situations more sparseness than hard shrinkage methods.Keywords: Compressive sensing, Bregman iteration, Generalisedhinge loss, sparse, kernels, shrinkage functions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13781400 Analysis of Aiming Performance for Games Using Mapping Method of Corneal Reflections Based on Two Different Light Sources
Authors: Yoshikazu Onuki, Itsuo Kumazawa
Abstract:
Fundamental motivation of this paper is how gaze estimation can be utilized effectively regarding an application to games. In games, precise estimation is not always important in aiming targets but an ability to move a cursor to an aiming target accurately is also significant. Incidentally, from a game producing point of view, a separate expression of a head movement and gaze movement sometimes becomes advantageous to expressing sense of presence. A case that panning a background image associated with a head movement and moving a cursor according to gaze movement can be a representative example. On the other hand, widely used technique of POG estimation is based on a relative position between a center of corneal reflection of infrared light sources and a center of pupil. However, a calculation of a center of pupil requires relatively complicated image processing, and therefore, a calculation delay is a concern, since to minimize a delay of inputting data is one of the most significant requirements in games. In this paper, a method to estimate a head movement by only using corneal reflections of two infrared light sources in different locations is proposed. Furthermore, a method to control a cursor using gaze movement as well as a head movement is proposed. By using game-like-applications, proposed methods are evaluated and, as a result, a similar performance to conventional methods is confirmed and an aiming control with lower computation power and stressless intuitive operation is obtained.
Keywords: Point-of-gaze, gaze estimation, head movement, corneal reflections, two infrared light sources, game.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10711399 Numerical Study on Improving Indoor Thermal Comfort Using a PCM Wall
Authors: M. Faraji, F. Berroug
Abstract:
A one-dimensional mathematical model was developed in order to analyze and optimize the latent heat storage wall. The governing equations for energy transport were developed by using the enthalpy method and discretized with volume control scheme. The resulting algebraic equations were next solved iteratively by using TDMA algorithm. A series of numerical investigations were conducted in order to examine the effects of the thickness of the PCM layer on the thermal behavior of the proposed heating system. Results are obtained for thermal gain and temperature fluctuation. The charging discharging process was also presented and analyzed.
Keywords: Phase change material, Building, Concrete, Latent heat, Thermal control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21451398 Light Tracking Fault Tolerant Control System
Authors: J. Florescu, T. Vinay, L. Wang
Abstract:
A fault detection and identification (FDI) technique is presented to create a fault tolerant control system (FTC). The fault detection is achieved by monitoring the position of the light source using an array of light sensors. When a decision is made about the presence of a fault an identification process is initiated to locate the faulty component and reconfigure the controller signals. The signals provided by the sensors are predictable; therefore the existence of a fault is easily identified. Identification of the faulty sensor is based on the dynamics of the frame. The technique is not restricted to a particular type of controllers and the results show consistency.Keywords: algorithm, detection and diagnostic, fault-tolerantcontrol, fault detection and identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14081397 An Assessment of Software Process Optimization Compared to International Best Practice in Bangladesh
Authors: Mohammad Shahadat Hossain Chowdhury, Tania Taharima Chowdhary, Hasan Sarwar
Abstract:
The challenge for software development house in Bangladesh is to find a path of using minimum process rather than CMMI or ISO type gigantic practice and process area. The small and medium size organization in Bangladesh wants to ensure minimum basic Software Process Improvement (SPI) in day to day operational activities. Perhaps, the basic practices will ensure to realize their company's improvement goals. This paper focuses on the key issues in basic software practices for small and medium size software organizations, who are unable to effort the CMMI, ISO, ITIL etc. compliance certifications. This research also suggests a basic software process practices model for Bangladesh and it will show the mapping of our suggestions with international best practice. In this IT competitive world for software process improvement, Small and medium size software companies that require collaboration and strengthening to transform their current perspective into inseparable global IT scenario. This research performed some investigations and analysis on some projects- life cycle, current good practice, effective approach, reality and pain area of practitioners, etc. We did some reasoning, root cause analysis, comparative analysis of various approach, method, practice and justifications of CMMI and real life. We did avoid reinventing the wheel, where our focus is for minimal practice, which will ensure a dignified satisfaction between organizations and software customer.Keywords: Compare with CMMI practices, Key success factors, Small and medium software house, Software process improvement; Software process optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18571396 Automated, Objective Assessment of Pilot Performance in Simulated Environment
Authors: Maciej Zasuwa, Grzegorz Ptasinski, Antoni Kopyt
Abstract:
Nowadays flight simulators offer tremendous possibilities for safe and cost-effective pilot training, by utilization of powerful, computational tools. Due to technology outpacing methodology, vast majority of training related work is done by human instructors. It makes assessment not efficient, and vulnerable to instructors’ subjectivity. The research presents an Objective Assessment Tool (gOAT) developed at the Warsaw University of Technology, and tested on SW-4 helicopter flight simulator. The tool uses database of the predefined manoeuvres, defined and integrated to the virtual environment. These were implemented, basing on Aeronautical Design Standard Performance Specification Handling Qualities Requirements for Military Rotorcraft (ADS-33), with predefined Mission-Task-Elements (MTEs). The core element of the gOAT enhanced algorithm that provides instructor a new set of information. In details, a set of objective flight parameters fused with report about psychophysical state of the pilot. While the pilot performs the task, the gOAT system automatically calculates performance using the embedded algorithms, data registered by the simulator software (position, orientation, velocity, etc.), as well as measurements of physiological changes of pilot’s psychophysiological state (temperature, sweating, heart rate). Complete set of measurements is presented on-line to instructor’s station and shown in dedicated graphical interface. The presented tool is based on open source solutions, and flexible for editing. Additional manoeuvres can be easily added using guide developed by authors, and MTEs can be changed by instructor even during an exercise. Algorithm and measurements used allow not only to implement basic stress level measurements, but also to reduce instructor’s workload significantly. Tool developed can be used for training purpose, as well as periodical checks of the aircrew. Flexibility and ease of modifications allow the further development to be wide ranged, and the tool to be customized. Depending on simulation purpose, gOAT can be adjusted to support simulator of aircraft, helicopter, or unmanned aerial vehicle (UAV).
Keywords: Automated assessment, flight simulator, human factors, pilot training.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8081395 Analytical Analysis of Image Representation by Their Discrete Wavelet Transform
Authors: R. M. Farouk
Abstract:
In this paper, we present an analytical analysis of the representation of images as the magnitudes of their transform with the discrete wavelets. Such a representation plays as a model for complex cells in the early stage of visual processing and of high technical usefulness for image understanding, because it makes the representation insensitive to small local shifts. We found that if the signals are band limited and of zero mean, then reconstruction from the magnitudes is unique up to the sign for almost all signals. We also present an iterative reconstruction algorithm which yields very good reconstruction up to the sign minor numerical errors in the very low frequencies.Keywords: Wavelets, Image processing signal processing, Image reconstruction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13881394 A Genetic Algorithm Approach for Solving Fuzzy Linear and Quadratic Equations
Authors: M. Hadi Mashinchi, M. Reza Mashinchi, Siti Mariyam H. J. Shamsuddin
Abstract:
In this paper a genetic algorithms approach for solving the linear and quadratic fuzzy equations Ãx̃=B̃ and Ãx̃2 + B̃x̃=C̃ , where Ã, B̃, C̃ and x̃ are fuzzy numbers is proposed by genetic algorithms. Our genetic based method initially starts with a set of random fuzzy solutions. Then in each generation of genetic algorithms, the solution candidates converge more to better fuzzy solution x̃b . In this proposed method the final reached x̃b is not only restricted to fuzzy triangular and it can be fuzzy number.
Keywords: Fuzzy coefficient, fuzzy equation, genetic algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21901393 WDM-Based Storage Area Network (SAN) for Disaster Recovery Operations
Authors: Sandeep P. Abhang, Girish V. Chowdhay
Abstract:
This paper proposes a Wavelength Division Multiplexing (WDM) technology based Storage Area Network (SAN) for all type of Disaster recovery operation. It considers recovery when all paths failure in the network as well as the main SAN site failure also the all backup sites failure by the effect of natural disasters such as earthquakes, fires and floods, power outage, and terrorist attacks, as initially SAN were designed to work within distance limited environments[2]. Paper also presents a NEW PATH algorithm when path failure occurs. The simulation result and analysis is presented for the proposed architecture with performance consideration.Keywords: SAN, WDM, FC, Ring, IP, network load, iSCSI, miles, disaster.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19461392 Effective Context Lossless Image Coding Approach Based on Adaptive Prediction
Authors: Grzegorz Ulacha, Ryszard Stasiński
Abstract:
In the paper an effective context based lossless coding technique is presented. Three principal and few auxiliary contexts are defined. The predictor adaptation technique is an improved CoBALP algorithm, denoted CoBALP+. Cumulated predictor error combining 8 bias estimators is calculated. It is shown experimentally that indeed, the new technique is time-effective while it outperforms the well known methods having reasonable time complexity, and is inferior only to extremely computationally complex ones.Keywords: Adaptive prediction, context coding, image losslesscoding, prediction error bias correction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13511391 Paremaeter Determination of a Vehicle 5-DOF Model to Simulate Occupant Deceleration in a Frontal Crash
Authors: Javad Marzbanrad, Mostafa Pahlavani
Abstract:
This study has investigated a vehicle Lumped Parameter Model (LPM) in frontal crash. There are several ways for determining spring and damper characteristics and type of problem shall be considered as system identification. This study use Genetic Algorithm (GA) procedure, being an effective procedure in case of optimization issues, for optimizing errors, between target data (experimental data) and calculated results (being obtained by analytical solving). In this study analyzed model in 5-DOF then compared our results with 5-DOF serial model. Finally, the response of model due to external excitement is investigated.Keywords: Vehicle, Lumped-Parameter Model, GeneticAlgorithm, Optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16821390 Response of a Bridge Crane during an Earthquake
Authors: F. Fekak, A. Gravouil, M. Brun, B. Depale
Abstract:
During an earthquake, a bridge crane may be subjected to multiple impacts between crane wheels and rail. In order to model such phenomena, a time-history dynamic analysis with a multi-scale approach is performed. The high frequency aspect of the impacts between wheels and rails is taken into account by a Lagrange explicit event-capturing algorithm based on a velocity-impulse formulation to resolve contacts and impacts. An implicit temporal scheme is used for the rest of the structure. The numerical coupling between the implicit and the explicit schemes is achieved with a heterogeneous asynchronous time-integrator.Keywords: Earthquake, bridge crane, heterogeneous asynchronous time-integrator, impacts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14341389 A Multi Steps Algorithm for Sperm Segmentation in Microscopic Image
Authors: Fereidoon Nowshiravan Rahatabad, Mohammad Hassan Moradi, Vahid Reza Nafisi
Abstract:
Nothing that an effective cure for infertility happens when we can find a unique solution, a great deal of study has been done in this field and this is a hot research subject for to days study. So we could analyze the men-s seaman and find out about fertility and infertility and from this find a true cure for this, since this will be a non invasive and low risk procedure, it will be greatly welcomed. In this research, the procedure has been based on few Algorithms enhancement and segmentation of images which has been done on the images taken from microscope in different fertility institution and have obtained a suitable result from the computer images which in turn help us to distinguish these sperms from fluids and its surroundings.Keywords: Computer-Assisted Sperm Analysis (CASA), Spermidentification, Segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16381388 NANCY: Combining Adversarial Networks with Cycle-Consistency for Robust Multi-Modal Image Registration
Authors: Mirjana Ruppel, Rajendra Persad, Amit Bahl, Sanja Dogramadzi, Chris Melhuish, Lyndon Smith
Abstract:
Multimodal image registration is a profoundly complex task which is why deep learning has been used widely to address it in recent years. However, two main challenges remain: Firstly, the lack of ground truth data calls for an unsupervised learning approach, which leads to the second challenge of defining a feasible loss function that can compare two images of different modalities to judge their level of alignment. To avoid this issue altogether we implement a generative adversarial network consisting of two registration networks GAB, GBA and two discrimination networks DA, DB connected by spatial transformation layers. GAB learns to generate a deformation field which registers an image of the modality B to an image of the modality A. To do that, it uses the feedback of the discriminator DB which is learning to judge the quality of alignment of the registered image B. GBA and DA learn a mapping from modality A to modality B. Additionally, a cycle-consistency loss is implemented. For this, both registration networks are employed twice, therefore resulting in images ˆA, ˆB which were registered to ˜B, ˜A which were registered to the initial image pair A, B. Thus the resulting and initial images of the same modality can be easily compared. A dataset of liver CT and MRI was used to evaluate the quality of our approach and to compare it against learning and non-learning based registration algorithms. Our approach leads to dice scores of up to 0.80 ± 0.01 and is therefore comparable to and slightly more successful than algorithms like SimpleElastix and VoxelMorph.Keywords: Multimodal image registration, GAN, cycle consistency, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8111387 An Induction Motor Drive System with Intelligent Supervisory Control for Water Networks Including Storage Tank
Authors: O. S. Ebrahim, K. O. Shawky, M. A. Badr, P. K. Jain
Abstract:
This paper describes an efficient; low-cost; high-availability; induction motor (IM) drive system with intelligent supervisory control for water distribution networks including storage tank. To increase the operational efficiency and reduce cost, the IM drive system includes main pumping unit and an auxiliary voltage source inverter (VSI) fed unit. The main unit comprises smart star/delta starter, regenerative fluid clutch, switched VAR compensator, and hysteresis liquid-level controller. Three-state energy saving mode (ESM) is defined at no-load and a logic algorithm is developed for best energetic cost reduction. To reduce voltage sag, the supervisory controller operates the switched VAR compensator upon motor starting. To provide smart star/delta starter at low cost, a method based on current sensing is developed for interlocking, malfunction detection, and life–cycles counting and used to synthesize an improved fuzzy logic (FL) based availability assessment scheme. Furthermore, a recurrent neural network (RNN) full state estimator is proposed to provide sensor fault-tolerant algorithm for the feedback control. The auxiliary unit is working at low flow rates and improves the system efficiency and flexibility for distributed generation during islanding mode. Compared with doubly-fed IM, the proposed one ensures 30% working throughput under main motor/pump fault conditions, higher efficiency, and marginal cost difference. This is critically important in case of water networks. Theoretical analysis, computer simulations, cost study, as well as efficiency evaluation, using timely cascaded energy-conservative systems, are performed on IM experimental setup to demonstrate the validity and effectiveness of the proposed drive and control.
Keywords: Artificial Neural Network, ANN, Availability Assessment, Cloud Computing, Energy Saving, Induction Machine, IM, Supervisory Control, Fuzzy Logic, FL, Pumped Storage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 630