

Abstract—This paper describes a UDP over IP based, server-

oriented redundant host configuration protocol (RHCP) that can be
used by collaborating embedded systems in an ad-hoc network to
acquire a dynamic IP address. The service is provided by a single
network device at a time and will be dynamically reassigned to one of
the other network clients if the primary provider fails. The protocol
also allows all participating clients to monitor the dynamic makeup of
the network over time. So far the algorithm has been implemented
and tested on an 8-bit embedded system architecture with a 10Mbit
Ethernet interface.

Keywords—Ad-Hoc Networks, Collaborating Embedded Sy-
stems, Dynamic Host Configuration, Redundancy.

I. INTRODUCTION

ONSIDER a secured ad-hoc network consisting of a number
of collaborating embedded systems (CES) that

communicate via a TCP/IP protocol stack. The network is
supposed to provide the following network services:

• Authentication of newly attached network
clients.

• Configuration of authenticated network clients.
• Propagation of available services that are

offered by individual clients.
• Secure point-to-point and broadcast/multicast

data communication between clients.
• Monitoring/logging of client and network

configurations.
All these services must the highly available and require
therefore a redundant implementation.
 Examples for such a network are a team of cooperative
robots that explore an unknown terrain or a set of wireless
clients that form a secure and highly available ad-hoc network.
 The focus of this paper is on configuration services and their

Manuscript received November 19, 2004.
Dr. Michael Schukat is a lecturer with the Department of Information

Technology, National University of Ireland, Galway (phone: +353-91-
512419; fax: +353-91-750501; e-mail: michael.schukat@nuigalway.ie).

Michael P. Cullen is a postgraduate student with the Department of
Information Technology, National University of Ireland, Galway (email:
michael.cullen@nuigalway.ie)

Declan O’Beirne is a postgraduate student with the Department of
Information Technology, National University of Ireland, Galway (email:
declan.obeirne@geminga.it.nuigalway.ie)

redundant implementation, as well as on methods to monitor
the dynamic make-up of an ad-hoc network.
 Configuration services under TCP/IP provide network
clients with a unique (static or dynamic) IPv4 network address,
a netmask and optional parameters (like the IP address of a
DNS server). The tracking of the assignment of dynamic IP
addresses over time is a desired monitoring feature that can be
used to analyse collaboration strategies of robots or to fulfill
liability issues of the participating clients in an ad-hoc
network.
 There are both server-oriented and server-less configuration
protocols defined. This paper will show that they provide
either enhanced availability or simple monitoring capabilities,
but not both. Consequently, a new configuration protocol will
be defined that fulfills both required features. The protocol is
loosely related to DHCP and can be easily implemented on an
embedded system with limited resources.

II. STATE OF THE ART

A. Server-Oriented Protocols

 DHCP (Dynamic Host Configuration Protocol) is a TCP/IP
service protocol that provides a mechanism for automating the
configuration of network devices [1]. The specification of the
base protocol can be found in RFC 2131 and RFC 2132.
 Whenever a client physically joins a network, it sends a UDP
broadcast request to a DHCP server, which in turn provides
the client via a UDP broadcast response message with a unique
IP address, a netmask and other parameters. Once a client has
accepted an offer by the DHCP server by returning a response
(followed by an acknowledgement by the server), it has to
renew its lease periodically.
 A DHCP server keeps a list with all allocated IP addresses,
the associated MAC addresses and the lease times. This
information can easily be logged solely by the server, but not
by other network clients.
 DHCP based on a single server does not provide the required
high-availability and will fail if the disabled network-client
runs the DHCP service. As a consequence newly attached
clients cannot get assigned an IP address, and existing clients
cannot renew their lease.

DHCP principally allows for multiple DHCP servers in a
network, whereby a client might get multiple offers after an
address request and has to make a choice. But there is no
mechanism defined through which servers can communicate

A Redundant Dynamic Host Configuration
Protocol for Collaborating Embedded Systems

M. Schukat, M.P. Cullen, and D. O’Beirne

C

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:3, 2007

580International Scholarly and Scientific Research & Innovation 1(3) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

3,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

55
3.

pd
f

with each other to keep their databases of assigned IP
addresses synchronised. Without an inter-server protocol,
servers are constrained to assign and renew addresses from
disjoint pools of available addresses. There is no redundancy
mechanism that allows one server to renew a license that has
been assigned by a different server before.

Cisco Systems have implemented a failover protocol for
DHCP that is based on a primary and a secondary server [2]-
[3]. In normal operation, the primary server provides host
configuration services. It also sends a record of every
transaction to the secondary server. If the primary server fails,
the secondary server resumes its work, until the primary server
is operational again. Before the primary server takes over
again, it gets a list of transactions the secondary server has
performed during its downtime.

Although the Cisco implementation supports redundancy, it
is obvious that this protocol will fail if both the primary and
the secondary server are being removed from the system, as it
might happen in an ad-hoc network. Consequently, a fully
redundant host configuration protocol requires that every
client is a potential candidate to run this service.

B. Server-Less Implementations

There are a number of server-less protocols defined that
allow the dynamic assignment of an IP address without the
intervention of a DHCP server.

The IPv4 link-local autoconfiguration specification
(IPv4LL) by the Internet-Engineering Task Force (IETF)
Zeroconf Working Group describes a protocol that enables
clients to choose their IP address autonomously within the
169.254 / 16 IP address block [4]. It is widely accepted by the
software industry and currently being implemented in various
Apple, Windows and Unix operating systems.

With IPv4LL a client that is attached to a network chooses a
random IP address within the 169.254 / 16 range and verifies
via ARP, if another client already uses the address. Depending
on the response it gets it verifies either a new random address
or uses the chosen one.

Another approach, employed in the context of IPv6 stateless
autoconfiguration, uses the MAC-address of the host as a base
to generate a unique IP address [5].

In the context of mobile ad-hoc networks (MANETs), a
number of autoconfiguration protocols have been drafted [6] –
[7]. MANETs are more complex than cable-based networks
that are considered by IPv4LL and require therefore a more
sophisticated IP address verification scheme.

All approaches provide a highly available configuration
service, since every client has to configure itself. Since none of
the clients keep track of the entire network configuration, a
monitoring feature cannot be provided.

III. THE REDUNDANT HOST CONFIGURATION PROTOCOL

A. Overview

The proposed protocol provides both service redundancy
and a monitoring feature for all interested network clients. The

service is provided by one client at a time and runs concurrent
to other client-tasks. Since there are a number of candidates
that could run the service, clients have to compete against each
other to select the service-providing client. This implies that
all clients within the ad-hoc network trust each other, making
an authentication service as mentioned in Section I necessary.

The service is based on the connection-less transport-layer
protocol UDP using the sending port 4440 and the receiving
port 4442, whereby all packets are broadcasted using the IP
address 255.255.255.255. In its current implementation the
protocol is supposed to work on a single-segment network
providing 255 different dynamic IP addresses in the 192.168.n
/ 8 range. Relay agents as used in DHCP for multi-segment
coverage are not supported.

The main idea behind this algorithm is that one active
RHCP server manages all IP-address requests at a time.
Whenever a new IP address has been assigned, the server
updates its internal address table and distributes the updated
table via broadcasting to the other clients. Address leases do
not expire and it is up to the server to verify that a client with a
specific IP address is still attached to the network. Clients do
not give up their IP-address when detached due to the ad-hoc
nature of the network. Whenever a server is not reachable any
more, the residual network devices negotiate, which one will
take over to run the service. This selection process depends on
the age of the address table stored in each client and the
willingness of each client to run the service. Clients with
outdated address tables are not taken into consideration.
 The diagram in Figure 1 shows the various states a network
client can be in:

• Whenever it joins the network it enters the INIT state,
where a previous assigned IP address is discarded.

• From there on it moves unconditionally to the
QUERY state, where it sends a broadcast UPD
GET_IP request in order to get an IP address. The
currently active RHCP server receives the request and
selects a free address, which is then marked as used.
The IP address table is updated and the MAC address
stored. The server then returns a SET_IP packet via
broadcast, which will be specifically read by the
client to set its own IP address, but which will also be
used by the other clients to update their copy of the
address table.

• If the server cannot provide an IP address, it returns a
NO_IP packet to the client. The client will wait for 10
seconds before sending out another GET_IP request.
In the meantime the server checks if all IP addresses
are still being used. Therefore it polls each client by
sending up to three ICMP echo requests within three
seconds.

• A client moves to the PASSIVE state once it has got
its IP address.

• If a client in the QUERY state gets SET_IP responses
from more than one server or gets no SET_IP
response at all after sending out five GET_IP requests

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:3, 2007

581International Scholarly and Scientific Research & Innovation 1(3) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

3,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

55
3.

pd
f

over five seconds, it broadcasts a REQ_ERR packet
and moves to the NEGOTIATE state.

• Any client that receives a REQ_ERR packet or a
CLIENT_STAT packet will move to the
NEGOTIATE state. Within this state, all clients
broadcast three CLIENT_STAT packets that contain
their MAC address, the age of their own copy of the
address table and their willingness to run the service.
A client that has not received an address table yet
uses zero for the age entry. The client with the newest
table and the highest availability wins the race and
becomes the new server. If there are two or more
candidates, the client with the lowest MAC address is
chosen. If there are only clients with no local address
table, the chosen client will initialise its address table
and will assign itself an IP address. The new RHCP
server moves to the ACTIVE state and broadcasts a
NEW_SERV packet to inform all clients about the
decision. Since all clients run the same algorithm,
they accept the decision and update their address
table if required (the table is part of the NEW_SERV
packet payload). The clients move to the PASSIVE

state or the QUERY state if the client has not received
an IP address yet. A client that disagrees with the
decision can initiate the selection process one more
time by broadcasting another REQ_ERR packet.

Figure 1: State transitions of a network device.

• Whenever a client moves from the NEGOTIATE

state to the PASSIVE state, it verifies the address
table in the NEW_SERV packet. If it is not
registered in the table it has to go back to the INIT

state.
• A client that moves from the NEGOTIATE state back

to the QUERY state resends a GET_IP packet.
• Whenever a client receives a SET_IP packet it

checks if its own assigned IP address is properly set
in the attached address table. If there is a mismatch
the client moves to the QUERY state.

B. Protocol Details

The address table, which is stored by all network clients and
which is part of the SET_IP and the NEW_SERV packets, has
the following format:

• An 8-bit value n to describe the range of IP addresses
to be assigned (e.g. 192.168.n / 8). This value is
fixed and does not change over the lifetime of an ad-
hoc network.

• An 8-bit value count describing the number of IP
addresses already being assigned.

• A 16-bit age counter that is increased by one,
whenever the table changes. The value zero indicates
that the table is empty.

• A 255-bit wide bitvector that describes which
address in the 192.168.n / 8 range is currently being
used. Exactly count bits of this vector are set to one.

• An array containing count MAC addresses. They are
listed in the appropriate order to map them to IP
addresses by parsing the bitvector.

A GET_IP packet consists of an 8-bit packet identifier
(10001111b) and the (unique) MAC address of the sending
client. The MAC address will be copied into the address table
of the server to associate an IP address with the MAC address.

A SET_IP packet response by the server consists of
• an 8-bit packet identifier (10001100b),
• the MAC address of the client,
• an 8-bit address suffix x that completes the client’s

IP address to 192.168.n.x,
• an 8-bit address suffix v that completes the server’s

IP address to 192.168.n.v and
• a copy of the address table.

The advantage of this packet format is that both IP address
assignment and table updates are done simultaneously. If the
server is disconnected while sending out the packet, neither the
inquiring client nor the other network devices will receive a
message. The client is forced to resend another GET_ID
request or a REQ_ERR packet. The dual-server approach as
suggested by Cisco in contrast updates the secondary server
after an IP address assignment. This results in an address
assignment inconsistency, if the server is disabled between
these two steps.
A client has to accept any assigned IP address. An additional

QUERY

INIT

NEGO-

TIATE

PASSIVE ACTIVE

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:3, 2007

582International Scholarly and Scientific Research & Innovation 1(3) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

3,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

55
3.

pd
f

handshake between client and server (i.e. the exchange of
DHCPREQUEST and DHCPACK packets as mentioned in
Section II.A. and as specified in RFC 2131) would make a
redundant implementation of this service very complex, since a
server failure during this handshake had to be taken into
account.

The NO_IP packet response consists of an 8-bit packet
identifier (10000011b) and the MAC address of the rejected
client. Since multiple clients can send IP_GET packets
simultaneously, the MAC address is used to identify the
receiver of the packet.

The REQ_ERR packet consists of an 8-bit packet identifier
(01001111b), the MAC address of the sending client and an 8-
bit field describing the reason for the forced service
renegotiation. Valid entries for this field are

• MULTIPLE_SERVER_RESPONSES
(00001111b),

• NO_SERVER_RESPONSE (00001100b) and
• NEW_SERVER_REJECTION (0001001b).

A CLIENT_STAT packet consists of
• an 8-bit packet identifier (00101111b),
• the MAC address of the client,
• a 16-bit age counter copied from the address table

and
• an 8-bit value describing the availability of the

client, whereby 0x00 describes highest and 0xFF
lowest willingness to become the new RHCP
server.

Since CLIENT_STAT packets are broadcasted by all clients,
each of them can check individually, if it’s own aptitude to
become the new service provider is rated higher than the
aptitude of it’s competitors.

Finally a NEW_SERV packet as send by the new RHCP
server consists of

• an 8-bit packet identifier (00011111b),
• an 8-bit address suffix v that completes the server’s

IP address to 192.168.n.v and
• a copy of its address table.

Every client can use he NEW_SERV packet to update its local
copy of the address table.

The IP address of the server is not required to run the
service, but it provides all clients with an additional piece of
information for the status monitoring.

Every client does the status monitoring individually. In it’s
simplest implementation each client copies every updated
address table together with a timestamp into a log file that is
stored locally on-board on non-volatile memory. The
timestamp is based on each client’s system clock.

IV. RESULTS AND FUTURE WORK

The RHCP protocol is currently being implemented and tested
on a Rabbit 2000 architecture with integrated 10 Mbit Ethernet

Figure 2: Components of the testbed.

interface. The Rabbit 2000 is an 8-bit microcontroller based on
the Z180 processor core with a clock speed of 30 MHz. The
IDE consists of a C-compiler, linker, debugger and a number

of libraries including a TCP/IP stack and a µC/OS-II real-time
operating system kernel [8].
A network with star topology is used as testbed. It consists of
three collaborating Rabbit systems and a hub (see Figure 2).
Preliminary tests have shown, that the protocol provides the
envisaged redundancy in a dynamic ad-hoc network as
simulated with the testbed.
The work on this protocol is still ongoing. Future tasks will
include

• the seamless integration of a redundant directory
service like SLP (Service Location Protocol),

• the definition and implementation of authentication
procedures suitable for embedded systems in an ad-
hoc network,

• the integration of secure inter-client communication
mechanisms like IPSec transport mode SAs and

• the implementation of enhanced monitoring/logging
features.

REFERENCES

[1] R. Droms, “Automated Configuration of TCP/IP with DHCP”, IEEE
Internet Computing, July-August 1999, pp. 45-53.

[2] Cisco Systems, “DHCP failover”, 2000. Available:
http://www,cisco.com/univercd/cc/td/doc/product/rtrmgmt/ciscoasu/nr/n
r3.0/concepts/cg03.htm.

[3] K. Kinnear and R. Droms, “Network Working Group Internet Draft –
DHCP Failover Protocol”, 2003. Available:
http://www.ietf.org/ids.by.wg/dhc.html.

[4] S. Cheshire and B. Aboba, “Dynamic Configuration of IPv4 Link-local
Addresses”, Internet draft, Internet Engineering Task Force, Zeroconf
Working Group, March 2001.

[5] S. Thomson and T. Narten, “IPv6 Stateless Address Auto-
configuration”, RFC 2462, Internet Engineering Task Force, Zeroconf
Working Group, December 1998.

[6] S. Nesargi and R. Prakash,, “MANETconf: Configuration of Hosts in a
Mobile Ad Hoc Network”, IEEE Infocom 2002, pp. 1060-1068.

[7] C.E. Perkins, J.T. Malinen, R. Wakikawa, E.M. Belding-Royer and Y.
Sun, “IP Address Autoconfiguration for Ad Hoc Networks”, Internet
Engineering Task Force, MANET Working Group, July 2000.

[8] J.J. Labrosse, “MicroC/OS-II, The Real-Time Kernel”, 2nd Edition, CMP
Books, 2002, ISBN 1-57820-103-9.

Hub
CES #1 CES #2

CES #3

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:3, 2007

583International Scholarly and Scientific Research & Innovation 1(3) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

3,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

55
3.

pd
f

