Search results for: BIBD
2 BIBD-s for (13, 5, 5), (16, 6, 5) and (21, 6, 4) Possessing Possibly an Automorphism of Order 3
Authors: Ivica Martinjak, Mario-Osvin Pavcevic
Abstract:
When trying to enumerate all BIBD-s for given parameters, their natural solution space appears to be huge and grows extremely with the number of points of the design. Therefore, constructive enumerations are often carried out by assuming additional constraints on design-s structure, automorphisms being mostly used ones. It remains a hard task to construct designs with trivial automorphism group – those with no additional symmetry – although it is believed that most of the BIBD-s belong to that case. In this paper, very many new designs with parameters 2-(13, 5, 5), 2-(16, 6, 5) and 2-(21, 6, 4) are constructed, assuming an action of an automorphism of order 3. Even more, it was possible to construct millions of such designs with no non-trivial automorphisms.Keywords: BIBD, incidence matrix, automorphism group, tactical decomposition, deterministic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13181 Some (v + 1, b + r + λ + 1, r + λ + 1, k, λ + 1) Balanced Incomplete Block Designs (BIBDs) from Lotto Designs (LDs)
Authors: Oluwaseun. A. Alawode, Timothy. A. Bamiduro, Adekunle. A. Eludire
Abstract:
The paper considered the construction of BIBDs using potential Lotto Designs (LDs) earlier derived from qualifying parent BIBDs. The study utilized Li’s condition pr t−1 ( t−1 2 ) + pr− pr t−1 (t−1) 2 < ( p 2 ) λ, to determine the qualification of a parent BIBD (v, b, r, k, λ) as LD (n, k, p, t) constrained on v ≥ k, v ≥ p, t ≤ min{k, p} and then considered the case k = t since t is the smallest number of tickets that can guarantee a win in a lottery. The (15, 140, 28, 3, 4) and (7, 7, 3, 3, 1) BIBDs were selected as parent BIBDs to illustrate the procedure. These BIBDs yielded three potential LDs each. Each of the LDs was completely generated and their properties studied. The three LDs from the (15, 140, 28, 3, 4) produced (9, 84, 28, 3, 7), (10, 120, 36, 3, 8) and (11, 165, 45, 3, 9) BIBDs while those from the (7, 7, 3, 3, 1) produced the (5, 10, 6, 3, 3), (6, 20, 10, 3, 4) and (7, 35, 15, 3, 5) BIBDs. The produced BIBDs follow the generalization (v + 1, b + r + λ + 1, r +λ+1, k, λ+1) where (v, b, r, k, λ) are the parameters of the (9, 84, 28, 3, 7) and (5, 10, 6, 3, 3) BIBDs. All the BIBDs produced are unreduced designs.
Keywords: Balanced Incomplete Block Designs, Lotto Designs, Unreduced Designs, Lottery games.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4089