Search results for: Thought provoking techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2628

Search results for: Thought provoking techniques

318 Estimation of the Bit Side Force by Using Artificial Neural Network

Authors: Mohammad Heidari

Abstract:

Horizontal wells are proven to be better producers because they can be extended for a long distance in the pay zone. Engineers have the technical means to forecast the well productivity for a given horizontal length. However, experiences have shown that the actual production rate is often significantly less than that of forecasted. It is a difficult task, if not impossible to identify the real reason why a horizontal well is not producing what was forecasted. Often the source of problem lies in the drilling of horizontal section such as permeability reduction in the pay zone due to mud invasion or snaky well patterns created during drilling. Although drillers aim to drill a constant inclination hole in the pay zone, the more frequent outcome is a sinusoidal wellbore trajectory. The two factors, which play an important role in wellbore tortuosity, are the inclination and side force at bit. A constant inclination horizontal well can only be drilled if the bit face is maintained perpendicular to longitudinal axis of bottom hole assembly (BHA) while keeping the side force nil at the bit. This approach assumes that there exists no formation force at bit. Hence, an appropriate BHA can be designed if bit side force and bit tilt are determined accurately. The Artificial Neural Network (ANN) is superior to existing analytical techniques. In this study, the neural networks have been employed as a general approximation tool for estimation of the bit side forces. A number of samples are analyzed with ANN for parameters of bit side force and the results are compared with exact analysis. Back Propagation Neural network (BPN) is used to approximation of bit side forces. Resultant low relative error value of the test indicates the usability of the BPN in this area.

Keywords: Artificial Neural Network, BHA, Horizontal Well, Stabilizer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1977
317 Cutting Propagation Studies in Pennisetum divisum and Tamarix aucheriana as Native Plant Species of Kuwait

Authors: L. Almulla

Abstract:

Native plants are better adapted to the local environment providing a more natural effect on landscape projects; their use will both conserve natural resources and produce sustainable greenery. Continuation of evaluation of additional native plants is essential to increase diversity of plant resources for greenery projects. Therefore, in this project an effort was made to study the mass multiplication of further native plants for greenery applications. Standardization of vegetative propagation methods is essential for conservation and sustainable utilization of native plants in restoration projects. Moreover, these simple propagation methods can be readily adapted by the local nursery sector in Kuwait. In the present study, various treatments were used to mass multiply selected plants using vegetative parts to secure maximum rooting and initial growth. Soft or semi-hardwood cuttings of selected native plants were collected from mother plants and subjected to different treatments. Pennisetum divisum can be vegetatively propagated by cuttings/off-shoots. However, Tamarix aucheriana showed maximum number of rooted cuttings and stronger vigor seedlings with the lowest growth hormone concentration. Standardizing the propagation techniques for the native plant species will add to the rehabilitation and landscape revegetation projects in Kuwait.

Keywords: Kuwait desert, landscape, rooting percentage vegetative propagation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 746
316 A Rule-based Approach for Anomaly Detection in Subscriber Usage Pattern

Authors: Rupesh K. Gopal, Saroj K. Meher

Abstract:

In this report we present a rule-based approach to detect anomalous telephone calls. The method described here uses subscriber usage CDR (call detail record) data sampled over two observation periods: study period and test period. The study period contains call records of customers- non-anomalous behaviour. Customers are first grouped according to their similar usage behaviour (like, average number of local calls per week, etc). For customers in each group, we develop a probabilistic model to describe their usage. Next, we use maximum likelihood estimation (MLE) to estimate the parameters of the calling behaviour. Then we determine thresholds by calculating acceptable change within a group. MLE is used on the data in the test period to estimate the parameters of the calling behaviour. These parameters are compared against thresholds. Any deviation beyond the threshold is used to raise an alarm. This method has the advantage of identifying local anomalies as compared to techniques which identify global anomalies. The method is tested for 90 days of study data and 10 days of test data of telecom customers. For medium to large deviations in the data in test window, the method is able to identify 90% of anomalous usage with less than 1% false alarm rate.

Keywords: Subscription fraud, fraud detection, anomalydetection, maximum likelihood estimation, rule based systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2812
315 Information Retrieval: A Comparative Study of Textual Indexing Using an Oriented Object Database (db4o) and the Inverted File

Authors: Mohammed Erritali

Abstract:

The growth in the volume of text data such as books and articles in libraries for centuries has imposed to establish effective mechanisms to locate them. Early techniques such as abstraction, indexing and the use of classification categories have marked the birth of a new field of research called "Information Retrieval". Information Retrieval (IR) can be defined as the task of defining models and systems whose purpose is to facilitate access to a set of documents in electronic form (corpus) to allow a user to find the relevant ones for him, that is to say, the contents which matches with the information needs of the user. Most of the models of information retrieval use a specific data structure to index a corpus which is called "inverted file" or "reverse index". This inverted file collects information on all terms over the corpus documents specifying the identifiers of documents that contain the term in question, the frequency of each term in the documents of the corpus, the positions of the occurrences of the word... In this paper we use an oriented object database (db4o) instead of the inverted file, that is to say, instead to search a term in the inverted file, we will search it in the db4o database. The purpose of this work is to make a comparative study to see if the oriented object databases may be competing for the inverse index in terms of access speed and resource consumption using a large volume of data.

Keywords: Information Retrieval, indexation, oriented object database (db4o), inverted file.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734
314 AniMoveMineR: Animal Behavior Exploratory Analysis Using Association Rules Mining

Authors: Suelane Garcia Fontes, Silvio Luiz Stanzani, Pedro L. Pizzigatti Corrła Ronaldo G. Morato

Abstract:

Environmental changes and major natural disasters are most prevalent in the world due to the damage that humanity has caused to nature and these damages directly affect the lives of animals. Thus, the study of animal behavior and their interactions with the environment can provide knowledge that guides researchers and public agencies in preservation and conservation actions. Exploratory analysis of animal movement can determine the patterns of animal behavior and with technological advances the ability of animals to be tracked and, consequently, behavioral studies have been expanded. There is a lot of research on animal movement and behavior, but we note that a proposal that combines resources and allows for exploratory analysis of animal movement and provide statistical measures on individual animal behavior and its interaction with the environment is missing. The contribution of this paper is to present the framework AniMoveMineR, a unified solution that aggregates trajectory analysis and data mining techniques to explore animal movement data and provide a first step in responding questions about the animal individual behavior and their interactions with other animals over time and space. We evaluated the framework through the use of monitored jaguar data in the city of Miranda Pantanal, Brazil, in order to verify if the use of AniMoveMineR allows to identify the interaction level between these jaguars. The results were positive and provided indications about the individual behavior of jaguars and about which jaguars have the highest or lowest correlation.

Keywords: Data mining, data science, trajectory, animal behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 916
313 A Modular On-line Profit Sharing Approach in Multiagent Domains

Authors: Pucheng Zhou, Bingrong Hong

Abstract:

How to coordinate the behaviors of the agents through learning is a challenging problem within multi-agent domains. Because of its complexity, recent work has focused on how coordinated strategies can be learned. Here we are interested in using reinforcement learning techniques to learn the coordinated actions of a group of agents, without requiring explicit communication among them. However, traditional reinforcement learning methods are based on the assumption that the environment can be modeled as Markov Decision Process, which usually cannot be satisfied when multiple agents coexist in the same environment. Moreover, to effectively coordinate each agent-s behavior so as to achieve the goal, it-s necessary to augment the state of each agent with the information about other existing agents. Whereas, as the number of agents in a multiagent environment increases, the state space of each agent grows exponentially, which will cause the combinational explosion problem. Profit sharing is one of the reinforcement learning methods that allow agents to learn effective behaviors from their experiences even within non-Markovian environments. In this paper, to remedy the drawback of the original profit sharing approach that needs much memory to store each state-action pair during the learning process, we firstly address a kind of on-line rational profit sharing algorithm. Then, we integrate the advantages of modular learning architecture with on-line rational profit sharing algorithm, and propose a new modular reinforcement learning model. The effectiveness of the technique is demonstrated using the pursuit problem.

Keywords: Multi-agent learning; reinforcement learning; rationalprofit sharing; modular architecture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1445
312 Developing Pedotransfer Functions for Estimating Some Soil Properties using Artificial Neural Network and Multivariate Regression Approaches

Authors: Fereydoon Sarmadian, Ali Keshavarzi

Abstract:

Study of soil properties like field capacity (F.C.) and permanent wilting point (P.W.P.) play important roles in study of soil moisture retention curve. Although these parameters can be measured directly, their measurement is difficult and expensive. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data. In this investigation, 70 soil samples were collected from different horizons of 15 soil profiles located in the Ziaran region, Qazvin province, Iran. The data set was divided into two subsets for calibration (80%) and testing (20%) of the models and their normality were tested by Kolmogorov-Smirnov method. Both multivariate regression and artificial neural network (ANN) techniques were employed to develop the appropriate PTFs for predicting soil parameters using easily measurable characteristics of clay, silt, O.C, S.P, B.D and CaCO3. The performance of the multivariate regression and ANN models was evaluated using an independent test data set. In order to evaluate the models, root mean square error (RMSE) and R2 were used. The comparison of RSME for two mentioned models showed that the ANN model gives better estimates of F.C and P.W.P than the multivariate regression model. The value of RMSE and R2 derived by ANN model for F.C and P.W.P were (2.35, 0.77) and (2.83, 0.72), respectively. The corresponding values for multivariate regression model were (4.46, 0.68) and (5.21, 0.64), respectively. Results showed that ANN with five neurons in hidden layer had better performance in predicting soil properties than multivariate regression.

Keywords: Artificial neural network, Field capacity, Permanentwilting point, Pedotransfer functions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1818
311 Rapid Determination of Biochemical Oxygen Demand

Authors: Mayur Milan Kale, Indu Mehrotra

Abstract:

Biochemical Oxygen Demand (BOD) is a measure of the oxygen used in bacteria mediated oxidation of organic substances in water and wastewater. Theoretically an infinite time is required for complete biochemical oxidation of organic matter, but the measurement is made over 5-days at 20 0C or 3-days at 27 0C test period with or without dilution. Researchers have worked to further reduce the time of measurement. The objective of this paper is to review advancement made in BOD measurement primarily to minimize the time and negate the measurement difficulties. Survey of literature review in four such techniques namely BOD-BARTTM, Biosensors, Ferricyanidemediated approach, luminous bacterial immobilized chip method. Basic principle, method of determination, data validation and their advantage and disadvantages have been incorporated of each of the methods. In the BOD-BARTTM method the time lag is calculated for the system to change from oxidative to reductive state. BIOSENSORS are the biological sensing element with a transducer which produces a signal proportional to the analyte concentration. Microbial species has its metabolic deficiencies. Co-immobilization of bacteria using sol-gel biosensor increases the range of substrate. In ferricyanidemediated approach, ferricyanide has been used as e-acceptor instead of oxygen. In Luminous bacterial cells-immobilized chip method, bacterial bioluminescence which is caused by lux genes was observed. Physiological responses is measured and correlated to BOD due to reduction or emission. There is a scope to further probe into the rapid estimation of BOD.

Keywords: BOD, Four methods, Rapid estimation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3639
310 Integration of Virtual Learning of Induction Machines for Undergraduates

Authors: Rajesh Kumar, Puneet Aggarwal

Abstract:

In context of understanding problems faced by undergraduate students while carrying out laboratory experiments dealing with high voltages, it was found that most of the students are hesitant to work directly on machine. The reason is that error in the circuitry might lead to deterioration of machine and laboratory instruments. So, it has become inevitable to include modern pedagogic techniques for undergraduate students, which would help them to first carry out experiment in virtual system and then to work on live circuit. Further advantages include that students can try out their intuitive ideas and perform in virtual environment, hence leading to new research and innovations. In this paper, virtual environment used is of MATLAB/Simulink for three-phase induction machines. The performance analysis of three-phase induction machine is carried out using virtual environment which includes Direct Current (DC) Test, No-Load Test, and Block Rotor Test along with speed torque characteristics for different rotor resistances and input voltage, respectively. Further, this paper carries out computer aided teaching of basic Voltage Source Inverter (VSI) drive circuitry. Hence, this paper gave undergraduates a clearer view of experiments performed on virtual machine (No-Load test, Block Rotor test and DC test, respectively). After successful implementation of basic tests, VSI circuitry is implemented, and related harmonic distortion (THD) and Fast Fourier Transform (FFT) of current and voltage waveform are studied.

Keywords: Block rotor test, DC test, no-load test, virtual environment, VSI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 884
309 Magneto-Thermo-Mechanical Analysis of Electromagnetic Devices Using the Finite Element Method

Authors: Michael G. Pantelyat

Abstract:

Fundamental basics of pure and applied research in the area of magneto-thermo-mechanical numerical analysis and design of innovative electromagnetic devices (modern induction heaters, novel thermoelastic actuators, rotating electrical machines, induction cookers, electrophysical devices) are elaborated. Thus, mathematical models of magneto-thermo-mechanical processes in electromagnetic devices taking into account main interactions of interrelated phenomena are developed. In addition, graphical representation of coupled (multiphysics) phenomena under consideration is proposed. Besides, numerical techniques for nonlinear problems solution are developed. On this base, effective numerical algorithms for solution of actual problems of practical interest are proposed, validated and implemented in applied 2D and 3D computer codes developed. Many applied problems of practical interest regarding modern electrical engineering devices are numerically solved. Investigations of the influences of various interrelated physical phenomena (temperature dependences of material properties, thermal radiation, conditions of convective heat transfer, contact phenomena, etc.) on the accuracy of the electromagnetic, thermal and structural analyses are conducted. Important practical recommendations on the choice of rational structures, materials and operation modes of electromagnetic devices under consideration are proposed and implemented in industry.

Keywords: Electromagnetic devices, multiphysics, numerical analysis, simulation and design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717
308 Image Restoration in Non-Linear Filtering Domain using MDB approach

Authors: S. K. Satpathy, S. Panda, K. K. Nagwanshi, C. Ardil

Abstract:

This paper proposes a new technique based on nonlinear Minmax Detector Based (MDB) filter for image restoration. The aim of image enhancement is to reconstruct the true image from the corrupted image. The process of image acquisition frequently leads to degradation and the quality of the digitized image becomes inferior to the original image. Image degradation can be due to the addition of different types of noise in the original image. Image noise can be modeled of many types and impulse noise is one of them. Impulse noise generates pixels with gray value not consistent with their local neighborhood. It appears as a sprinkle of both light and dark or only light spots in the image. Filtering is a technique for enhancing the image. Linear filter is the filtering in which the value of an output pixel is a linear combination of neighborhood values, which can produce blur in the image. Thus a variety of smoothing techniques have been developed that are non linear. Median filter is the one of the most popular non-linear filter. When considering a small neighborhood it is highly efficient but for large window and in case of high noise it gives rise to more blurring to image. The Centre Weighted Mean (CWM) filter has got a better average performance over the median filter. However the original pixel corrupted and noise reduction is substantial under high noise condition. Hence this technique has also blurring affect on the image. To illustrate the superiority of the proposed approach, the proposed new scheme has been simulated along with the standard ones and various restored performance measures have been compared.

Keywords: Filtering, Minmax Detector Based (MDB), noise, centre weighted mean filter, PSNR, restoration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2739
307 A Case Study of Clinicians’ Perceptions of Enterprise Content Management at Tygerberg Hospital

Authors: Temitope O. Tokosi

Abstract:

Healthcare is a human right. The sensitivity of health issues has necessitated the introduction of Enterprise Content Management (ECM) at district hospitals in the Western Cape Province of South Africa. The objective is understanding clinicians’ perception of ECM at their workplace. It is a descriptive case study design of constructivist paradigm. It employed a phenomenological data analysis method using a pattern matching deductive based analytical procedure. Purposive and s4nowball sampling techniques were applied in selecting participants. Clinicians expressed concerns and frustrations using ECM such as, non-integration with other hospital systems. Inadequate access points to ECM. Incorrect labelling of notes and bar-coding causes more time wasted in finding information. System features and/or functions (such as search and edit) are not possible. Hospital management and clinicians are not constantly interacting and discussing. Information turnaround time is unacceptably lengthy. Resolving these problems would involve a positive working relationship between hospital management and clinicians. In addition, prioritising the problems faced by clinicians in relation to relevance can ensure problem-solving in order to meet clinicians’ expectations and hospitals’ objective. Clinicians’ perception should invoke attention from hospital management with regards technology use. The study’s results can be generalised across clinician groupings exposed to ECM at various district hospitals because of professional and hospital homogeneity.

Keywords: Clinician, electronic content management, hospital, perception, technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1050
306 Choice Experiment Approach on Evaluation of Non-Market Farming System Outputs: First Results from Lithuanian Case Study

Authors: A. Novikova, L. Rocchi, G. Startiene

Abstract:

Market and non-market outputs are produced jointly in agriculture. Their supply depends on the intensity and type of production. The role of agriculture as an economic activity and its effects are important for the Lithuanian case study, as agricultural land covers more than a half of country. Positive and negative externalities, created in agriculture are not considered in the market. Therefore, specific techniques such as stated preferences methods, in particular choice experiments (CE) are used for evaluation of non-market outputs in agriculture. The main aim of this paper is to present construction of the research path for evaluation of non-market farming system outputs in Lithuania. The conventional and organic farming, covering crops (including both cereal and industrial crops) and livestock (including dairy and cattle) production has been selected. The CE method and nested logit (NL) model were selected as appropriate for evaluation of non-market outputs of different farming systems in Lithuania. A pilot survey was implemented between October–November 2018, in order to test and improve the CE questionnaire. The results of the survey showed that the questionnaire is accepted and well understood by the respondents. The econometric modelling showed that the selected NL model could be used for the main survey. The understanding of the differences between organic and conventional farming by residents was identified. It was revealed that they are more willing to choose organic farming in comparison to conventional farming.

Keywords: Choice experiments, farming system, Lithuania market outputs, non-market outputs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 599
305 Swarm Intelligence based Optimal Linear Phase FIR High Pass Filter Design using Particle Swarm Optimization with Constriction Factor and Inertia Weight Approach

Authors: Sangeeta Mandal, Rajib Kar, Durbadal Mandal, Sakti Prasad Ghoshal

Abstract:

In this paper, an optimal design of linear phase digital high pass finite impulse response (FIR) filter using Particle Swarm Optimization with Constriction Factor and Inertia Weight Approach (PSO-CFIWA) has been presented. In the design process, the filter length, pass band and stop band frequencies, feasible pass band and stop band ripple sizes are specified. FIR filter design is a multi-modal optimization problem. The conventional gradient based optimization techniques are not efficient for digital filter design. Given the filter specifications to be realized, the PSO-CFIWA algorithm generates a set of optimal filter coefficients and tries to meet the ideal frequency response characteristic. In this paper, for the given problem, the designs of the optimal FIR high pass filters of different orders have been performed. The simulation results have been compared to those obtained by the well accepted algorithms such as Parks and McClellan algorithm (PM), genetic algorithm (GA). The results justify that the proposed optimal filter design approach using PSOCFIWA outperforms PM and GA, not only in the accuracy of the designed filter but also in the convergence speed and solution quality.

Keywords: FIR Filter; PSO-CFIWA; PSO; Parks and McClellanAlgorithm, Evolutionary Optimization Technique; MagnitudeResponse; Convergence; High Pass Filter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553
304 Supersonic Flow around a Dihedral Airfoil: Modeling and Experimentation Investigation

Authors: A. Naamane, M. Hasnaoui

Abstract:

Numerical modeling of fluid flows, whether compressible or incompressible, laminar or turbulent presents a considerable contribution in the scientific and industrial fields. However, the development of an approximate model of a supersonic flow requires the introduction of specific and more precise techniques and methods. For this purpose, the object of this paper is modeling a supersonic flow of inviscid fluid around a dihedral airfoil. Based on the thin airfoils theory and the non-dimensional stationary Steichen equation of a two-dimensional supersonic flow in isentropic evolution, we obtained a solution for the downstream velocity potential of the oblique shock at the second order of relative thickness that characterizes a perturbation parameter. This result has been dealt with by the asymptotic analysis and characteristics method. In order to validate our model, the results are discussed in comparison with theoretical and experimental results. Indeed, firstly, the comparison of the results of our model has shown that they are quantitatively acceptable compared to the existing theoretical results. Finally, an experimental study was conducted using the AF300 supersonic wind tunnel. In this experiment, we have considered the incident upstream Mach number over a symmetrical dihedral airfoil wing. The comparison of the different Mach number downstream results of our model with those of the existing theoretical data (relative margin between 0.07% and 4%) and with experimental results (concordance for a deflection angle between 1° and 11°) support the validation of our model with accuracy.

Keywords: Asymptotic modelling, dihedral airfoil, supersonic flow, supersonic wind tunnel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 714
303 Speech Enhancement Using Wavelet Coefficients Masking with Local Binary Patterns

Authors: Christian Arcos, Marley Vellasco, Abraham Alcaim

Abstract:

In this paper, we present a wavelet coefficients masking based on Local Binary Patterns (WLBP) approach to enhance the temporal spectra of the wavelet coefficients for speech enhancement. This technique exploits the wavelet denoising scheme, which splits the degraded speech into pyramidal subband components and extracts frequency information without losing temporal information. Speech enhancement in each high-frequency subband is performed by binary labels through the local binary pattern masking that encodes the ratio between the original value of each coefficient and the values of the neighbour coefficients. This approach enhances the high-frequency spectra of the wavelet transform instead of eliminating them through a threshold. A comparative analysis is carried out with conventional speech enhancement algorithms, demonstrating that the proposed technique achieves significant improvements in terms of PESQ, an international recommendation of objective measure for estimating subjective speech quality. Informal listening tests also show that the proposed method in an acoustic context improves the quality of speech, avoiding the annoying musical noise present in other speech enhancement techniques. Experimental results obtained with a DNN based speech recognizer in noisy environments corroborate the superiority of the proposed scheme in the robust speech recognition scenario.

Keywords: Binary labels, local binary patterns, mask, wavelet coefficients, speech enhancement, speech recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1015
302 Stochastic Risk Analysis Framework for Building Construction Projects

Authors: Abdulkadir Abu Lawal

Abstract:

The study was carried out to establish the probability density function of some selected building construction projects of similar complexity delivered using Bill of Quantities (BQ) and Lump Sum (LS) forms of contract, and to draw a reliability scenario for each form of contract. 30 of such delivered projects are analyzed for each of the contract forms using Weibull Analysis, and their Weibull functions (α, and β) are determined based on their completion times. For the BQ form of contract delivered projects, α is calculated as 1.6737E20 and β as + 0.0115 and for the LS form, α is found to be 5.6556E03 and β is determined as + 0.4535. Using these values, respective probability density functions are calculated and plotted, as handy tool for risk analysis of future projects of similar characteristics. By input of variables from other projects, decision making processes can be made for a whole project or its components using EVM Analysis in project evaluation and review techniques. This framework, as a quantitative approach, depends on the assumption of normality in projects completion time, it can help greatly in determining the completion time probability for veritable projects using any of the contract forms under consideration. Projects aspects that are not amenable to measurement, on the other hand, can be analyzed using fuzzy sets and fuzzy logic. This scenario can be drawn for different types of building construction projects, and using different suitable forms of contract in projects delivery.

Keywords: Building construction, Projects, Forms of contract, Probability density function, Reliability scenario.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 780
301 Application of Powder Metallurgy Technologies for Gas Turbine Engine Wheel Production

Authors: Liubov Magerramova, Eugene Kratt, Pavel Presniakov

Abstract:

A detailed analysis has been performed for several schemes of Gas Turbine Wheels production based on additive and powder technologies including metal, ceramic, and stereolithography 3-D printing. During the process of development and debugging of gas turbine engine components, different versions of these components must be manufactured and tested. Cooled blades of the turbine are among of these components. They are usually produced by traditional casting methods. This method requires long and costly design and manufacture of casting molds. Moreover, traditional manufacturing methods limit the design possibilities of complex critical parts of engine, so capabilities of Powder Metallurgy Techniques (PMT) were analyzed to manufacture the turbine wheel with air-cooled blades. PMT dramatically reduce time needed for such production and allow creating new complex design solutions aimed at improving the technical characteristics of the engine: improving fuel efficiency and environmental performance, increasing reliability, and reducing weight. To accelerate and simplify the blades manufacturing process, several options based on additive technologies were used. The options were implemented in the form of various casting equipment for the manufacturing of blades. Methods of powder metallurgy were applied for connecting the blades with the disc. The optimal production scheme and a set of technologies for the manufacturing of blades and turbine wheel and other parts of the engine can be selected on the basis of the options considered.

Keywords: Additive technologies, gas turbine engine, powder technology, turbine wheel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918
300 A Real-Time Simulation Environment for Avionics Software Development and Qualification

Authors: U. Tancredi, D. Accardo, M. Grassi, G. Fasano, A. E. Tirri, A. Vitale, N. Genito, F. Montemari, L. Garbarino

Abstract:

The development of guidance, navigation and control algorithms and avionic procedures requires the disposability of suitable analysis and verification tools, such as simulation environments, which support the design process and allow detecting potential problems prior to the flight test, in order to make new technologies available at reduced cost, time and risk. This paper presents a simulation environment for avionic software development and qualification, especially aimed at equipment for general aviation aircrafts and unmanned aerial systems. The simulation environment includes models for short and medium-range radio-navigation aids, flight assistance systems, and ground control stations. All the software modules are able to simulate the modeled systems both in fast-time and real-time tests, and were implemented following component oriented modeling techniques and requirement based approach. The paper describes the specific models features, the architectures of the implemented software systems and its validation process. Performed validation tests highlighted the capability of the simulation environment to guarantee in real-time the required functionalities and performance of the simulated avionics systems, as well as to reproduce the interaction between these systems, thus permitting a realistic and reliable simulation of a complete mission scenario.

Keywords: ADS-B, avionics, NAVAIDs, real time simulation, TCAS, UAS ground control station.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 856
299 Building Blocks for the Next eGovernment Era: Exploratory Study Based on Dubai and UAE’s Ministry of Happiness Communication in 2020

Authors: Diamantino Ribeiro, António Pedro Costa, Jorge Remondes

Abstract:

Dubai and the UAE governments have been investing in technology and digital communication for a long time. These governments are pioneers in introducing innovative strategies, policies and projects. They are also recognized worldwide for defining and implementing long term public programs. In terms of eGovernment Dubai and the UAE rank among the world’s most advanced. Both governments have surprised the world a few years ago by creating a Happiness Ministry. This paper focuses on UAE’s government digital strategies and its approach to the next era. The main goal of this exploratory study is to understand the new era of eGovernment and transfer of the happiness and wellness programs. Data were collected from the corpus latente and analysis was anchored in qualitative methodology using content analysis and observation as analysis techniques. The study allowed to highlight that the 2020 government reshuffle has a strong focus on digital reorganisation and digital sustainability, one of the newest trends in sustainability. Regarding happiness and wellbeing portfolio, we were able to observe that there has been a major change within the government organisation: The Ministry of Happiness was extinct and the Ministry of Community Development will manage the so-called ‘Happiness Portfolio’. Additionally, our observation allowed to note the government dual approach to governance: one through digital transformation, thus enhancing the digital sustainability process and, the second one trough government development.

Keywords: Ministry of Happiness, eGovernment, communication, digital sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 501
298 Applying Theory of Inventive Problem Solving to Develop Innovative Solutions: A Case Study

Authors: Y. H. Wang, C. C. Hsieh

Abstract:

Good service design can increase organization revenue and consumer satisfaction while reducing labor and time costs. The problems facing consumers in the original serve model for eyewear and optical industry includes the following issues: 1. Insufficient information on eyewear products 2. Passively dependent on recommendations, insufficient selection 3. Incomplete records on progression of vision conditions 4. Lack of complete customer records. This study investigates the case of Kobayashi Optical, applying the Theory of Inventive Problem Solving (TRIZ) to develop innovative solutions for eyewear and optical industry. Analysis results raise the following conclusions and management implications: In order to provide customers with improved professional information and recommendations, Kobayashi Optical is suggested to establish customer purchasing records. Overall service efficiency can be enhanced by applying data mining techniques to analyze past consumer preferences and purchase histories. Furthermore, Kobayashi Optical should continue to develop a 3D virtual trial service which can allow customers for easy browsing of different frame styles and colors. This 3D virtual trial service will save customer waiting times in during peak service times at stores.

Keywords: Theory of inventive problem solving, service design, augmented reality, eyewear and optical industry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
297 Mining User-Generated Contents to Detect Service Failures with Topic Model

Authors: Kyung Bae Park, Sung Ho Ha

Abstract:

Online user-generated contents (UGC) significantly change the way customers behave (e.g., shop, travel), and a pressing need to handle the overwhelmingly plethora amount of various UGC is one of the paramount issues for management. However, a current approach (e.g., sentiment analysis) is often ineffective for leveraging textual information to detect the problems or issues that a certain management suffers from. In this paper, we employ text mining of Latent Dirichlet Allocation (LDA) on a popular online review site dedicated to complaint from users. We find that the employed LDA efficiently detects customer complaints, and a further inspection with the visualization technique is effective to categorize the problems or issues. As such, management can identify the issues at stake and prioritize them accordingly in a timely manner given the limited amount of resources. The findings provide managerial insights into how analytics on social media can help maintain and improve their reputation management. Our interdisciplinary approach also highlights several insights by applying machine learning techniques in marketing research domain. On a broader technical note, this paper illustrates the details of how to implement LDA in R program from a beginning (data collection in R) to an end (LDA analysis in R) since the instruction is still largely undocumented. In this regard, it will help lower the boundary for interdisciplinary researcher to conduct related research.

Keywords: Latent Dirichlet allocation, R program, text mining, topic model, user generated contents, visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1215
296 A Metric-Set and Model Suggestion for Better Software Project Cost Estimation

Authors: Murat Ayyıldız, Oya Kalıpsız, Sırma Yavuz

Abstract:

Software project effort estimation is frequently seen as complex and expensive for individual software engineers. Software production is in a crisis. It suffers from excessive costs. Software production is often out of control. It has been suggested that software production is out of control because we do not measure. You cannot control what you cannot measure. During last decade, a number of researches on cost estimation have been conducted. The metric-set selection has a vital role in software cost estimation studies; its importance has been ignored especially in neural network based studies. In this study we have explored the reasons of those disappointing results and implemented different neural network models using augmented new metrics. The results obtained are compared with previous studies using traditional metrics. To be able to make comparisons, two types of data have been used. The first part of the data is taken from the Constructive Cost Model (COCOMO'81) which is commonly used in previous studies and the second part is collected according to new metrics in a leading international company in Turkey. The accuracy of the selected metrics and the data samples are verified using statistical techniques. The model presented here is based on Multi-Layer Perceptron (MLP). Another difficulty associated with the cost estimation studies is the fact that the data collection requires time and care. To make a more thorough use of the samples collected, k-fold, cross validation method is also implemented. It is concluded that, as long as an accurate and quantifiable set of metrics are defined and measured correctly, neural networks can be applied in software cost estimation studies with success

Keywords: Software Metrics, Software Cost Estimation, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956
295 Effects of Process Parameters on the Yield of Oil from Coconut Fruit

Authors: Ndidi F. Amulu, Godian O. Mbah, Maxwel I. Onyiah, Callistus N. Ude

Abstract:

Analysis of the properties of coconut (Cocos nucifera) and its oil was evaluated in this work using standard analytical techniques. The analyses carried out include proximate composition of the fruit, extraction of oil from the fruit using different process parameters and physicochemical analysis of the extracted oil. The results showed the percentage (%) moisture, crude lipid, crude protein, ash and carbohydrate content of the coconut as 7.59, 55.15, 5.65, 7.35 and 19.51 respectively. The oil from the coconut fruit was odourless and yellowish liquid at room temperature (30oC). The treatment combinations used (leaching time, leaching temperature and solute: solvent ratio) showed significant differences (P<0.05) in the yield of oil from coconut flour. The oil yield ranged between 36.25%-49.83%. Lipid indices of the coconut oil indicated the acid value (AV) as 10.05Na0H/g of oil, free fatty acid (FFA) as 5.03%, saponification values (SV) as 183.26mgKOH-1g of oil, iodine value (IV) as 81.00 I2/g of oil, peroxide value (PV) as 5.00 ml/ g of oil and viscosity (V) as 0.002. A standard statistical package minitab version 16.0 program was used in the regression analysis and analysis of variance (ANOVA). The statistical software mentioned above was also used to generate various plots such as single effect plot, interactions effect plot and contour plot. The response or yield of oil from the coconut flour was used to develop a mathematical model that correlates the yield to the process variables studied. The maximum conditions obtained that gave the highest yield of coconut oil were leaching time of 2hrs, leaching temperature of 50oC and solute/solvent ratio of 0.05g/ml.

Keywords: Coconut, oil-extraction, optimization, physicochemical, proximate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2650
294 On Methodologies for Analysing Sickness Absence Data: An Insight into a New Method

Authors: Xiaoshu Lu, Päivi Leino-Arjas, Kustaa Piha, Akseli Aittomäki, Peppiina Saastamoinen, Ossi Rahkonen, Eero Lahelma

Abstract:

Sickness absence represents a major economic and social issue. Analysis of sick leave data is a recurrent challenge to analysts because of the complexity of the data structure which is often time dependent, highly skewed and clumped at zero. Ignoring these features to make statistical inference is likely to be inefficient and misguided. Traditional approaches do not address these problems. In this study, we discuss model methodologies in terms of statistical techniques for addressing the difficulties with sick leave data. We also introduce and demonstrate a new method by performing a longitudinal assessment of long-term absenteeism using a large registration dataset as a working example available from the Helsinki Health Study for municipal employees from Finland during the period of 1990-1999. We present a comparative study on model selection and a critical analysis of the temporal trends, the occurrence and degree of long-term sickness absences among municipal employees. The strengths of this working example include the large sample size over a long follow-up period providing strong evidence in supporting of the new model. Our main goal is to propose a way to select an appropriate model and to introduce a new methodology for analysing sickness absence data as well as to demonstrate model applicability to complicated longitudinal data.

Keywords: Sickness absence, longitudinal data, methodologies, mix-distribution model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2270
293 Isolation of a Bacterial Community with High Removal Efficiencies of the Insecticide Bendiocarb

Authors: Eusebio A. Jiménez-Arévalo, Deifilia Ahuatzi-Chacón, Juvencio Galíndez-Mayer, Cleotilde Juárez-Ramírez, Nora Ruiz-Ordaz

Abstract:

Bendiocarb is a known toxic xenobiotic that presents acute and chronic risks for freshwater invertebrates and estuarine and marine biota; thus, the treatment of water contaminated with the insecticide is of concern. In this paper, a bacterial community with the capacity to grow in bendiocarb as its sole carbon and nitrogen source was isolated by enrichment techniques in batch culture, from samples of a composting plant located in the northeast of Mexico City. Eight cultivable bacteria were isolated from the microbial community, by PCR amplification of 16 rDNA; Pseudoxanthomonas spadix (NC_016147.2, 98%), Ochrobacterium anthropi (NC_009668.1, 97%), Staphylococcus capitis (NZ_CP007601.1, 99%), Bosea thiooxidans. (NZ_LMAR01000067.1, 99%), Pseudomonas denitrificans. (NC_020829.1, 99%), Agromyces sp. (NZ_LMKQ01000001.1, 98%), Bacillus thuringiensis. (NC_022873.1, 97%), Pseudomonas alkylphenolia (NZ_CP009048.1, 98%). NCBI accession numbers and percentage of similarity are indicated in parentheses. These bacteria were regarded as the isolated species for having the best similarity matches. The ability to degrade bendiocarb by the immobilized bacterial community in a packed bed biofilm reactor, using as support volcanic stone fragments (tezontle), was evaluated. The reactor system was operated in batch using mineral salts medium and 30 mg/L of bendiocarb as carbon and nitrogen source. With this system, an overall removal efficiency (ηbend) rounding 90%, was reached.

Keywords: Bendiocarb, biodegradation, biofilm reactor, carbamate insecticide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1149
292 Using Field Indices of Rill and Gully in order to Erosion Estimating and Sediment Analysis (Case Study: Menderjan Watershed in Isfahan Province, Iran)

Authors: Masoud Nasri, Sadat Feiznia, Mohammad Jafari, Hasan Ahmadi

Abstract:

Today, incorrect use of lands and land use changes, excessive grazing, no suitable using of agricultural farms, plowing on steep slopes, road construct, building construct, mine excavation etc have been caused increasing of soil erosion and sediment yield. For erosion and sediment estimation one can use statistical and empirical methods. This needs to identify land unit map and the map of effective factors. However, these empirical methods are usually time consuming and do not give accurate estimation of erosion. In this study, we applied GIS techniques to estimate erosion and sediment of Menderjan watershed at upstream Zayandehrud river in center of Iran. Erosion faces at each land unit were defined on the basis of land use, geology and land unit map using GIS. The UTM coordinates of each erosion type that showed more erosion amounts such as rills and gullies were inserted in GIS using GPS data. The frequency of erosion indicators at each land unit, land use and their sediment yield of these indices were calculated. Also using tendency analysis of sediment yield changes in watershed outlet (Menderjan hydrometric gauge station), was calculated related parameters and estimation errors. The results of this study according to implemented watershed management projects can be used for more rapid and more accurate estimation of erosion than traditional methods. These results can also be used for regional erosion assessment and can be used for remote sensing image processing.

Keywords: Erosion and sedimentation, Gully, Rill, GIS, GPS, Menderjan Watershed

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906
291 Temperature Evolution, Microstructure and Mechanical Properties of Heat-Treatable Aluminum Alloy Welded by Friction Stir Welding: Comparison with Tungsten Inert Gas

Authors: Saliha Gachi, Mouloud Aissani, Fouad Boubenider

Abstract:

Friction Stir Welding (FSW) is a solid-state welding technique that can join material without melting the plates to be welded. In this work, we are interested to demonstrate the potentiality of FSW for joining the heat-treatable aluminum alloy 2024-T3 which is reputed as difficult to be welded by fusion techniques. Thereafter, the FSW joint is compared with another one obtained from a conventional fusion process Tungsten Inert Gas (TIG). FSW welds are made up using an FSW tool mounted on a milling machine. Single pass welding was applied to fabricated TIG joint. The comparison between the two processes has been made on the temperature evolution, mechanical and microstructure behavior. The microstructural examination revealed that FSW weld is composed of four zones: Base metal (BM), Heat affected zone (HAZ), Thermo-mechanical affected zone (THAZ) and the nugget zone (NZ). The NZ exhibits a recrystallized equiaxed refined grains that induce better mechanical properties and good ductility compared to TIG joint where the grains have a larger size in the welded region compared with the BM due to the elevated heat input. The microhardness results show that, in FSW weld, the THAZ contains the lowest microhardness values and increase in the NZ; however, in TIG process, the lowest values are localized on the NZ.

Keywords: Friction stir welding, tungsten inert gaz, aluminum, microstructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 780
290 Software Vulnerability Markets: Discoverers and Buyers

Authors: Abdullah M. Algarni, Yashwant K. Malaiya

Abstract:

Some of the key aspects of vulnerability—discovery, dissemination, and disclosure—have received some attention recently. However, the role of interaction among the vulnerability discoverers and vulnerability acquirers has not yet been adequately addressed. Our study suggests that a major percentage of discoverers, a majority in some cases, are unaffiliated with the software developers and thus are free to disseminate the vulnerabilities they discover in any way they like. As a result, multiple vulnerability markets have emerged. In some of these markets, the exchange is regulated, but in others, there is little or no regulation. In recent vulnerability discovery literature, the vulnerability discoverers have remained anonymous individuals. Although there has been an attempt to model the level of their efforts, information regarding their identities, modes of operation, and what they are doing with the discovered vulnerabilities has not been explored.

Reports of buying and selling of the vulnerabilities are now appearing in the press; however, the existence of such markets requires validation, and the natures of the markets need to be analyzed. To address this need, we have attempted to collect detailed information. We have identified the most prolific vulnerability discoverers throughout the past decade and examined their motivation and methods. A large percentage of these discoverers are located in Eastern and Western Europe and in the Far East. We have contacted several of them in order to collect firsthand information regarding their techniques, motivations, and involvement in the vulnerability markets. We examine why many of the discoverers appear to retire after a highly successful vulnerability-finding career. The paper identifies the actual vulnerability markets, rather than the hypothetical ideal markets that are often examined. The emergence of worldwide government agencies as vulnerability buyers has significant implications. We discuss potential factors that can impact the risk to society and the need for detailed exploration.

Keywords: Risk management, software security, vulnerability discoverers, vulnerability markets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3262
289 A Machine Learning Approach for Earthquake Prediction in Various Zones Based on Solar Activity

Authors: Viacheslav Shkuratskyy, Aminu Bello Usman, Michael O’Dea, Mujeeb Ur Rehman, Saifur Rahman Sabuj

Abstract:

This paper examines relationships between solar activity and earthquakes, it applied machine learning techniques: K-nearest neighbour, support vector regression, random forest regression, and long short-term memory network. Data from the SILSO World Data Center, the NOAA National Center, the GOES satellite, NASA OMNIWeb, and the United States Geological Survey were used for the experiment. The 23rd and 24th solar cycles, daily sunspot number, solar wind velocity, proton density, and proton temperature were all included in the dataset. The study also examined sunspots, solar wind, and solar flares, which all reflect solar activity, and earthquake frequency distribution by magnitude and depth. The findings showed that the long short-term memory network model predicts earthquakes more correctly than the other models applied in the study, and solar activity is more likely to effect earthquakes of lower magnitude and shallow depth than earthquakes of magnitude 5.5 or larger with intermediate depth and deep depth

.

Keywords: K-Nearest Neighbour, Support Vector Regression, Random Forest Regression, Long Short-Term Memory Network, earthquakes, solar activity, sunspot number, solar wind, solar flares.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 200