Isolation of a Bacterial Community with High Removal Efficiencies of the Insecticide Bendiocarb
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Isolation of a Bacterial Community with High Removal Efficiencies of the Insecticide Bendiocarb

Authors: Eusebio A. Jiménez-Arévalo, Deifilia Ahuatzi-Chacón, Juvencio Galíndez-Mayer, Cleotilde Juárez-Ramírez, Nora Ruiz-Ordaz

Abstract:

Bendiocarb is a known toxic xenobiotic that presents acute and chronic risks for freshwater invertebrates and estuarine and marine biota; thus, the treatment of water contaminated with the insecticide is of concern. In this paper, a bacterial community with the capacity to grow in bendiocarb as its sole carbon and nitrogen source was isolated by enrichment techniques in batch culture, from samples of a composting plant located in the northeast of Mexico City. Eight cultivable bacteria were isolated from the microbial community, by PCR amplification of 16 rDNA; Pseudoxanthomonas spadix (NC_016147.2, 98%), Ochrobacterium anthropi (NC_009668.1, 97%), Staphylococcus capitis (NZ_CP007601.1, 99%), Bosea thiooxidans. (NZ_LMAR01000067.1, 99%), Pseudomonas denitrificans. (NC_020829.1, 99%), Agromyces sp. (NZ_LMKQ01000001.1, 98%), Bacillus thuringiensis. (NC_022873.1, 97%), Pseudomonas alkylphenolia (NZ_CP009048.1, 98%). NCBI accession numbers and percentage of similarity are indicated in parentheses. These bacteria were regarded as the isolated species for having the best similarity matches. The ability to degrade bendiocarb by the immobilized bacterial community in a packed bed biofilm reactor, using as support volcanic stone fragments (tezontle), was evaluated. The reactor system was operated in batch using mineral salts medium and 30 mg/L of bendiocarb as carbon and nitrogen source. With this system, an overall removal efficiency (ηbend) rounding 90%, was reached.

Keywords: Bendiocarb, biodegradation, biofilm reactor, carbamate insecticide.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1128249

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1154

References:


[1] A. Wood, “Compendium of Pesticide Common Names, Index, Bendiocarb”, London, Accesed Nov. 2016.
[2] Pesticide Action Network UK, Pesticides News, no. 68, pp. 20-21, Jun. 2005.
[3] R.E.D. Facts. “Bendiocarb”, EPA, USA, pp. 1-5. Sept. 1999.
[4] C. R. Worthing, “The Pesticide Manual: A World Compedium,” 7th ed. Lavenham Press Ltd, Lavenham, Suffelk, 1983.
[5] S. Lozano-Fuentes, M.H. Hayden, C. Welsh-Rodriguez, C. Ochoa-Martinez, B. Tapia-Santos, K.C. Kobylinski, C.K. Uejio, E. Zielinski-Gutierrez, L.D. Monache, A.J. Monaghan, D.F. Steinhoff and L. Eisen., “The dengue virus mosquito vector Aedes aegypti at high elevation in Mexico,” Am. J. Trop. Med. Hyg., vol. 87, no. 5, pp. 902-909, Nov. 2012.
[6] M.D. Martin Cetron, “Revision to CDC’S Zika travel notices: minimal likelihood for mosquito-borne Zika virus transmission at elevations above 2,000 meters,” M.M.W.R., vol. 65, no. 10, pp. 267-268, March. 2016.
[7] M. Dhimal, I. Gautam, H.D. Joshi, R.B. O’Hara, B. Harens, U. Kuch, “Risk factors for the presence of chikungunya and dengue vectors (Aedes aegypti and Aedes albopictus), their altitudinal distribution and climatic determinants of their abundance in central Nepal,” PLoS. Negl. Trop. Dis., vol. 9, no. 3, e0003545, March. 2015.
[8] Secretaría de Salud. Centro Nacional de Programas Preventivos y Control de Enfermedades (CENAPRECE). “Monitoreo de Resistencia a Insecticidas (Adulticidas) Utilizados en el Programa de Enferemedades Transmitidas por Vectores en México,” 2016.
[9] E. Petrovova, H. Purzyc, D. Mazensky, L. Luptakova, N. Torma, I. Sopoliga, D. Sedmera, “Morphometric Alterations, Steatosis, Fibrosis and Active Caspase-3 Detection in Carbamate Bendiocarb Treated Rabbit Liver,” Environ. Toxicol., vol. 30, no. 2, pp. 212-222, Feb. 2015.
[10] K. A. Delahaut, IPM Outreach Specialist, “Bendiocarb to lose registration,” University of Wisconsin Urban Horticultural Website, Dec. 2001.
[11] M. Miyajima, M. Matsuda, S. Haga, S. Kagawa, B.C. Millar, J.e. Moore, “Cloning and sequencing of 16S rDNA and 16S-23S rDNA interna spacer region (ISR) from urease-positive thermophilic Campylobacter (UPTC),” Letters in Applied Microbiology,” vol. 34, pp. 287-289, Jan. 2002.
[12] D. J. Lane, “16S/23S rRNA sequencing,” in Nucleic acid techniques in bacterial systematics, E. Stackebrandt, M. Goodfellow, Ed. New York. John Wiley and Sons, 1991, pp. 115-175.
[13] S. P. Galíndez-Nájera, M.A. Llamas-Martínez, N. Ruiz-Ordaz, C. Juárez-Ramírez, M.E. Mondragón-Parada, D. Ahuatzi-Chacón, J. Galíndez-Mayer, “Cyanuric acid biodegradation by a mixed bacterial culture of Agrobacterium tumefaciens and Acinetobacter sp. in a packed bed biofilm reactor,” J. Ind. Microbiol. Biotechnol, vol. 36, pp. 275-284, 2009.
[14] A. Gómez-De Jesús, F.J. Romano-Baez, L. Leyva-Amezcua, C. Juárez-Ramírez, N. Ruiz-Ordaz, J. Galíndez-Mayer, “Biodegradation of 2,4,6-trichlorophenol in a packed-bed biofilm reactor equipped with an internal net draft tube riser for aeration and liquid circulation,” J. Hazard. Mat., vol. 161, pp. 1140-1149, Apr. 2008.
[15] T. Pérez-Ruiz, C. Martínez-Lozano, M.D. García, “Determination of N-methylcarbamate pesticides in environmental samples by an automated solid-phase extraction and liquid chromatographic method based on post-column photolysis and chemiluminescence detection,” J. Chromatogr. A., vol.1164, pp. 174-180, July 2007.
[16] Hach Water Analysis Handbook. Hach Company, Loveland. 2012.
[17] K. Ramanand, M. Sharmila, Neera Singh, N. Sethunathan, “Metabolism of Carbamate Insecticides by Resting Cells and Cell-Free Preparations of a Soil Bacterium, Arthrobacter sp.,” Bull. Environ. Contam. Toxicol., vol. 46, pp. 380-386, 1991.
[18] Neera Singh, Anusmita Sahoo, Debjani Misra, V. R. Rao, N. Sethunathan, “Synergistic interaction between two bacterial isolates in the degradation of carbofuran,” Biodegradation, vol. 4, pp. 115-123, Jan. 1993.
[19] Seung Hyeon Lee, Hyun Mi Jin, Hyo Jung Lee, Jeong Myeong Kim, Che Ok Jeon, “Complete Gnome Sequence of the BTEX-Degrading Bacterium Pseudoxanthomonas spadix BD-a59,” J. Bacteriol. asm. org, pp. 544. Nov. 2011.
[20] Slavomíra Murínová, Katarína Dercová, “Potential Use of Newly Isolated Bacterial Strain Ochrobactrum anthropi in Bioremediation of Polychlorinated Biphenyls,” Water, Air, & Soil Pollution, vol. 225, pp. 1980, Jun. 2014.
[21] I.T. Ermakova, N.I. Kiseleva, T. Shushkova, M. Zharikov, G.A. Zharikov, A.A. Leontievsky, “Bioremediation of glyphosate-contaminated soils,” Appl. Microibiol. Biotechnol., vol. 88, no. 2, pp. 585-594, Sep. 2010.
[22] L. U. Obi, H. I. Atagana, R. A. Adeleke, “Isolation and characterization of crude oil sludge degrading bacteria,” Springer Plus, vol.5:1946, pp. 1-13.
[23] K. Yasuhira, Y. Tanaka, H. Shibata, Y. Kawashima, A. Ohara, D. Kato, M. Takeo, S. Negoro, “6-Aminohexanoate Oligomer Hydrolases from the Alkalophilic Bacteria Agromyces sp. Strain KY5R and Kocuria sp. Strain KY2,” Appl. Environ. Microbiol., vol. 73, no. 21, pp. 7099-7102. Nov. 2007.
[24] S. K. Das, A. K. Mishra, B. J. Tindall, F. A. Rainey, E. Stackebrandt, “Oxidation of Thiosulfate by a New Bacterirum, Bosea thiooxidans (strain BI-42) gen. nov., sp. nov.: Analysis of Phylogeny Based o Chemotaxonomy and 16S Ribosomal DNA Sequencing,” Int. J. Syst. Bact., vol. 46, no. 4, pp. 981-987. Oct. 1996.
[25] K. Girish, A.A. Mohammad Kunhi, “Microbial degradation of gamma-hexachlorocyclohexane (lindane),” African J. Microbiol Res., vol. 7, no. 17, pp. 1635-1643. April 2013.
[26] A. Zahoor, A. Rehman, “Isolation of Cr(VI) reducing bacteria from industrial effluents and their potential use in bioremediation of chromium containing wastewater,” J. Environ. Sci., vol. 21, no. 6, pp. 814-820. 2009.
[27] A. Barbarán-Vilela, D. Cieza-Diaz, R. Guillén-Domínguez, F. Joaquín-Neira, F. Montenegro-Saavedra, E. Geldres-Vigil, “Biorremediator effect of Bacillus thuringiensis on fruit crops soils contaminated with herbicides 2,4 dichlorophenoxyacetic acid,” REFI UPN, vol.3, no. 2, pp. 7-17. Nov. 2015.
[28] S. Chen, Y. Deng, Ch. Chang, J. Lee, Y. Cheng, Z. Cui, J. Zhou, F. He, M. Hu, L-H, Zhang, “Pathway and kinetics of cyhalothrin biodegradation by Bacillus thuringiensis strain ZS-19,” Scientific Reports, vol.5:8784, pp.1-10. March. 2015.
[29] A.E. Aceves-Diez, K.J.,Estrada-Castañeda, L.M. Castañeda-Sandoval, “Use of Bacillus thuringiensis supernatant from a fermentation process to improve bioremediation of chlorpyrifos in contaminated soils,” J. Environ. Manage., vol. 157, pp. 213-219. Jul. 2015.
[30] K. Lee, E. J. Lim, K. S. Kim, S. Huang, Y. Veeranagouda, B. H.A. Rehm, “An alginate-like exopolysaccharide biosynthesis gene cluster involved in biofilm aerial structure formation by Pseudomonas alkylphenolia,” Appl. Microbiol. Biotechnol, vol.98, no. 9, pp.4137-4148. Feb. 2014.
[31] R. Sánchez-Sánchez, D. Ahuatzi-Chacón, J. Galíndez-Mayer, N. Ruiz-Ordaz, A. Salmerón-Alcocer, “Removal of triazine herbicides from aqueous systems by a biofilm reactor continuously or intermittently operated,” J. Environ, Management, vol. 128, pp. 421-426. Jun. 2013.