Search results for: fault monitoring and detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2520

Search results for: fault monitoring and detection

240 An Inter-banking Auditing Security Solution for Detecting Unauthorised Financial Transactions entered by Authorised Insiders

Authors: C. A. Corzo, N. Zhang, F. Corzo

Abstract:

Insider abuse has recently been reported as one of the more frequently occurring security incidents, suggesting that more security is required for detecting and preventing unauthorised financial transactions entered by authorised users. To address the problem, and based on the observation that all authorised interbanking financial transactions trigger or are triggered by other transactions in a workflow, we have developed a security solution based on a redefined understanding of an audit workflow. One audit workflow where there is a log file containing the complete workflow activity of financial transactions directly related to one financial transaction (an electronic deal recorded at an e-trading system). The new security solution contemplates any two parties interacting on the basis of financial transactions recorded by their users in related but distinct automated financial systems. In the new definition interorganizational and intra-organization interactions can be described in one unique audit trail. This concept expands the current ideas of audit trails by adapting them to actual e-trading workflow activity, i.e. intra-organizational and inter-organizational activity. With the above, a security auditing service is designed to detect integrity drifts with and between organizations in order to detect unauthorised financial transactions entered by authorised users.

Keywords: Intrusion Detection and Prevention, Authentica-transtionand Identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541
239 Thermal and Visual Performance of Solar Control Film

Authors: Norzita Jaafar, Nor Zaini Zakaria, Azni Zain Ahmed, Razidah Ismail

Abstract:

The use of solar control film on windows as one of solar passive strategies for building have becoming important and is gaining recognition. Malaysia located close to equator is having warm humid climate with long sunshine hours and abundant solar radiation throughout the year. Hence, befitting solar control on windows is absolutely necessary to capture the daylight whilst moderating thermal impact and eliminating glare problems. This is one of the energy efficient strategies to achieve thermal and visual comfort in buildings. Therefore, this study was carried out to investigate the effect of window solar controls on thermal and visual performance of naturally ventilated buildings. This was conducted via field data monitoring using a test building facility. Four types of window glazing systems were used with three types of solar control films. Data were analysed for thermal and visual impact with reference to thermal and optical characteristics of the films. Results show that for each glazing system, the surface temperature of windows are influenced by the Solar Energy Absorption property, the indoor air temperature are influenced by the Solar Energy Transmittance and Solar Energy Reflectance, and the daylighting by Visible Light Transmission and Shading Coefficient. Further investigations are underway to determine the mathematical relation between thermal energy and visual performance with the thermal and optical characteristics of solar control films.

Keywords: window, solar control film, natural ventilation, thermal performance, visual performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2265
238 Inulinase Immobilization on Functionalized Magnetic Nanoparticles Prepared with Soy Protein Isolate Conjugated Bovine Serum Albumin for High Fructose Syrup Production

Authors: Homa Torabizadeh, Mohaddeseh Mikani

Abstract:

Inulinase from Aspergillus niger was covalently immobilized on magnetic nanoparticles (MNPs/Fe3O4) covered with soy protein isolate (SPI/Fe3O4) functionalized by bovine serum albumin (BSA) nanoparticles. MNPs are promising enzyme carriers because they separate easily under external magnetic fields and have enhanced immobilized enzyme reusability. As MNPs aggregate simply, surface coating strategy was employed. SPI functionalized by BSA was a suitable candidate for nanomagnetite coating due to its superior biocompatibility and hydrophilicity. Fe3O4@SPI-BSA nanoparticles were synthesized as a novel carrier with narrow particle size distribution. Step by step fabrication monitoring of Fe3O4@SPI-BSA nanoparticles was performed using field emission scanning electron microscopy and dynamic light scattering. The results illustrated that nanomagnetite with the spherical morphology was well monodispersed with the diameter of about 35 nm. The average size of the SPI-BSA nanoparticles was 80 to 90 nm, and their zeta potential was around −34 mV. Finally, the mean diameter of fabricated Fe3O4@SPI-BSA NPs was less than 120 nm. Inulinase enzyme from Aspergillus niger was covalently immobilized through gluteraldehyde on Fe3O4@SPI-BSA nanoparticles successfully. Fourier transform infrared spectra and field emission scanning electron microscopy images provided sufficient proof for the enzyme immobilization on the nanoparticles with 80% enzyme loading.

Keywords: High fructose syrup, inulinase immobilization, functionalized magnetic nanoparticles, soy protein isolate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1263
237 Building Information Modeling and Its Application in the State of Kuwait

Authors: Michael Gerges, Ograbe Ahiakwo, Martin Jaeger, Ahmad Asaad

Abstract:

Recent advances of Building Information Modeling (BIM) especially in the Middle East have increased remarkably. Dubai has been taking a lead on this by making it mandatory for BIM to be adopted for all projects that involve complex architecture designs. This is because BIM is a dynamic process that assists all stakeholders in monitoring the project status throughout different project phases with great transparency. It focuses on utilizing information technology to improve collaboration among project participants during the entire life cycle of the project from the initial design, to the supply chain, resource allocation, construction and all productivity requirements. In view of this trend, the paper examines the extent of applying BIM in the State of Kuwait, by exploring practitioners’ perspectives on BIM, especially their perspectives on main barriers and main advantages. To this end structured interviews were carried out based on questionnaires and with a range of different construction professionals. The results revealed that practitioners perceive improved communication and mitigated project risks by encouraged collaboration between project participants. However, it was also observed that the full implementation of BIM in the State of Kuwait requires concerted efforts to make clients demanding BIM, counteract resistance to change among construction professionals and offer more training for design team members. This paper forms part of an on-going research effort on BIM and its application in the State of Kuwait and it is on this basis that further research on the topic is proposed.

Keywords: Building Information Modeling, BIM, construction industry, Kuwait.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2953
236 Investigation of Crack Formation in Ordinary Reinforced Concrete Beams and in Beams Strengthened with Carbon Fiber Sheet: Theory and Experiment

Authors: Anton A. Bykov, Irina O. Glot, Igor N. Shardakov, Alexey P. Shestakov

Abstract:

This paper presents the results of experimental and theoretical investigations of the mechanisms of crack formation in reinforced concrete beams subjected to quasi-static bending. The boundary-value problem has been formulated in the framework of brittle fracture mechanics and has been solved by using the finite-element method. Numerical simulation of the vibrations of an uncracked beam and a beam with cracks of different size serves to determine the pattern of changes in the spectrum of eigenfrequencies observed during crack evolution. Experiments were performed on the sequential quasistatic four-point bending of the beam leading to the formation of cracks in concrete. At each loading stage, the beam was subjected to an impulse load to induce vibrations. Two stages of cracking were detected. At the first stage the conservative process of deformation is realized. The second stage is an active cracking, which is marked by a sharp change in eingenfrequencies. The boundary of a transition from one stage to another is well registered. The vibration behavior was examined for the beams strengthened by carbon-fiber sheet before loading and at the intermediate stage of loading after the grouting of initial cracks. The obtained results show that the vibrodiagnostic approach is an effective tool for monitoring of cracking and for assessing the quality of measures aimed at strengthening concrete structures.

Keywords: Crack formation. experiment. mathematical modeling. reinforced concrete. vibrodiagnostics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1278
235 Gas Detection via Machine Learning

Authors: Walaa Khalaf, Calogero Pace, Manlio Gaudioso

Abstract:

We present an Electronic Nose (ENose), which is aimed at identifying the presence of one out of two gases, possibly detecting the presence of a mixture of the two. Estimation of the concentrations of the components is also performed for a volatile organic compound (VOC) constituted by methanol and acetone, for the ranges 40-400 and 22-220 ppm (parts-per-million), respectively. Our system contains 8 sensors, 5 of them being gas sensors (of the class TGS from FIGARO USA, INC., whose sensing element is a tin dioxide (SnO2) semiconductor), the remaining being a temperature sensor (LM35 from National Semiconductor Corporation), a humidity sensor (HIH–3610 from Honeywell), and a pressure sensor (XFAM from Fujikura Ltd.). Our integrated hardware–software system uses some machine learning principles and least square regression principle to identify at first a new gas sample, or a mixture, and then to estimate the concentrations. In particular we adopt a training model using the Support Vector Machine (SVM) approach with linear kernel to teach the system how discriminate among different gases. Then we apply another training model using the least square regression, to predict the concentrations. The experimental results demonstrate that the proposed multiclassification and regression scheme is effective in the identification of the tested VOCs of methanol and acetone with 96.61% correctness. The concentration prediction is obtained with 0.979 and 0.964 correlation coefficient for the predicted versus real concentrations of methanol and acetone, respectively.

Keywords: Electronic nose, Least square regression, Mixture ofgases, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2539
234 Temporal Signal Processing by Inference Bayesian Approach for Detection of Abrupt Variation of Statistical Characteristics of Noisy Signals

Authors: Farhad Asadi, Hossein Sadati

Abstract:

In fields such as neuroscience and especially in cognition modeling of mental processes, uncertainty processing in temporal zone of signal is vital. In this paper, Bayesian online inferences in estimation of change-points location in signal are constructed. This method separated the observed signal into independent series and studies the change and variation of the regime of data locally with related statistical characteristics. We give conditions on simulations of the method when the data characteristics of signals vary, and provide empirical evidence to show the performance of method. It is verified that correlation between series around the change point location and its characteristics such as Signal to Noise Ratios and mean value of signal has important factor on fluctuating in finding proper location of change point. And one of the main contributions of this study is related to representing of these influences of signal statistical characteristics for finding abrupt variation in signal. There are two different structures for simulations which in first case one abrupt change in temporal section of signal is considered with variable position and secondly multiple variations are considered. Finally, influence of statistical characteristic for changing the location of change point is explained in details in simulation results with different artificial signals.

Keywords: Time series, fluctuation in statistical characteristics, optimal learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 564
233 Implementation of an Improved Secure System Detection for E-passport by using EPC RFID Tags

Authors: A. Baith Mohamed, Ayman Abdel-Hamid, Kareem Youssri Mohamed

Abstract:

Current proposals for E-passport or ID-Card is similar to a regular passport with the addition of tiny contactless integrated circuit (computer chip) inserted in the back cover, which will act as a secure storage device of the same data visually displayed on the photo page of the passport. In addition, it will include a digital photograph that will enable biometric comparison, through the use of facial recognition technology at international borders. Moreover, the e-passport will have a new interface, incorporating additional antifraud and security features. However, its problems are reliability, security and privacy. Privacy is a serious issue since there is no encryption between the readers and the E-passport. However, security issues such as authentication, data protection and control techniques cannot be embedded in one process. In this paper, design and prototype implementation of an improved E-passport reader is presented. The passport holder is authenticated online by using GSM network. The GSM network is the main interface between identification center and the e-passport reader. The communication data is protected between server and e-passport reader by using AES to encrypt data for protection will transferring through GSM network. Performance measurements indicate a 19% improvement in encryption cycles versus previously reported results.

Keywords: RFID "Radio Frequency Identification", EPC"Electronic Product Code", ICAO "International Civil Aviation Organization", IFF "Identify Friend or Foe"

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2601
232 Content and Resources based Mobile and Wireless Video Transcoding

Authors: Ashraf M. A. Ahmad

Abstract:

Delivering streaming video over wireless is an important component of many interactive multimedia applications running on personal wireless handset devices. Such personal devices have to be inexpensive, compact, and lightweight. But wireless channels have a high channel bit error rate and limited bandwidth. Delay variation of packets due to network congestion and the high bit error rate greatly degrades the quality of video at the handheld device. Therefore, mobile access to multimedia contents requires video transcoding functionality at the edge of the mobile network for interworking with heterogeneous networks and services. Therefore, to guarantee quality of service (QoS) delivered to the mobile user, a robust and efficient transcoding scheme should be deployed in mobile multimedia transporting network. Hence, this paper examines the challenges and limitations that the video transcoding schemes in mobile multimedia transporting network face. Then handheld resources, network conditions and content based mobile and wireless video transcoding is proposed to provide high QoS applications. Exceptional performance is demonstrated in the experiment results. These experiments were designed to verify and prove the robustness of the proposed approach. Extensive experiments have been conducted, and the results of various video clips with different bit rate and frame rate have been provided.

Keywords: Content, Object detection, Transcoding, Texture, Temporal, Video.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1347
231 A Simulated Environment Approach to Investigate the Effect of Adversarial Perturbations on Traffic Sign for Automotive Software-in-Loop Testing

Authors: Sunil Patel, Pallab Maji

Abstract:

To study the effect of adversarial attack environment must be controlled. Autonomous driving includes mainly 5 phases sense, perceive, map, plan, and drive. Autonomous vehicles sense their surrounding with the help of different sensors like cameras, radars, and lidars. Deep learning techniques are considered Blackbox and found to be vulnerable to adversarial attacks. In this research, we study the effect of the various known adversarial attacks with the help of the Unreal Engine-based, high-fidelity, real-time raytraced simulated environment. The goal of this experiment is to find out if adversarial attacks work in moving vehicles and if an unknown network may be targeted. We discovered that the existing Blackbox and Whitebox attacks have varying effects on different traffic signs. We observed that attacks that impair detection in static scenarios do not have the same effect on moving vehicles. It was found that some adversarial attacks with hardly noticeable perturbations entirely blocked the recognition of certain traffic signs. We observed that the daylight condition has a substantial impact on the model's performance by simulating the interplay of light on traffic signs. Our findings have been found to closely resemble outcomes encountered in the real world.

Keywords: Adversarial attack simulation, computer simulation, ray-traced environment, realistic simulation, unreal engine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 433
230 Changing the Way South Africa Think about Parking Provision at Tertiary Institutions

Authors: M. C. Venter, G. Hitge, S. C. Krygsman, J. Thiart

Abstract:

For decades, South Africa has been planning transportation systems from a supply, rather than a demand side, perspective. In terms of parking, this relates to requiring the minimum parking provision that is enforced by city officials. Newer insight is starting to indicate that South Africa needs to re-think this philosophy in light of a new policy environment that desires a different outcome. Urban policies have shifted from reliance on the private car for access, to employing a wide range of alternative modes. Car dominated travel is influenced by various parameters, of which the availability and location of parking plays a significant role. The question is therefore, what is the right strategy to achieve the desired transport outcomes for SA. The focus of this paper is used to assess this issue with regard to parking provision, and specifically at a tertiary institution. A parking audit was conducted at the Stellenbosch campus of Stellenbosch University, monitoring occupancy at all 60 parking areas, every hour during business hours over a five-day period. The data from this survey was compared with the prescribed number of parking bays according to the Stellenbosch Municipality zoning scheme (requiring a minimum of 0.4 bays per student). The analysis shows that by providing 0.09 bays per student, the maximum total daily occupation of all the parking areas did not exceed an 80% occupation rate. It is concluded that the prevailing parking standards are not supportive of the new urban and transport policy environment, but that it is extremely conservative from a practical demand point of view.

Keywords: Parking provision, parking requirements, travel behaviour, travel demand management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 681
229 Detection of Linkages Between Extreme Flow Measures and Climate Indices

Authors: Mohammed Sharif, Donald Burn

Abstract:

Large scale climate signals and their teleconnections can influence hydro-meteorological variables on a local scale. Several extreme flow and timing measures, including high flow and low flow measures, from 62 hydrometric stations in Canada are investigated to detect possible linkages with several large scale climate indices. The streamflow data used in this study are derived from the Canadian Reference Hydrometric Basin Network and are characterized by relatively pristine and stable land-use conditions with a minimum of 40 years of record. A composite analysis approach was used to identify linkages between extreme flow and timing measures and climate indices. The approach involves determining the 10 highest and 10 lowest values of various climate indices from the data record. Extreme flow and timing measures for each station were examined for the years associated with the 10 largest values and the years associated with the 10 smallest values. In each case, a re-sampling approach was applied to determine if the 10 values of extreme flow measures differed significantly from the series mean. Results indicate that several stations are impacted by the large scale climate indices considered in this study. The results allow the determination of any relationship between stations that exhibit a statistically significant trend and stations for which the extreme measures exhibit a linkage with the climate indices.

Keywords: flood analysis, low-flow events, climate change, trend analysis, Canada

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1603
228 Vision-Based Collision Avoidance for Unmanned Aerial Vehicles by Recurrent Neural Networks

Authors: Yao-Hong Tsai

Abstract:

Due to the sensor technology, video surveillance has become the main way for security control in every big city in the world. Surveillance is usually used by governments for intelligence gathering, the prevention of crime, the protection of a process, person, group or object, or the investigation of crime. Many surveillance systems based on computer vision technology have been developed in recent years. Moving target tracking is the most common task for Unmanned Aerial Vehicle (UAV) to find and track objects of interest in mobile aerial surveillance for civilian applications. The paper is focused on vision-based collision avoidance for UAVs by recurrent neural networks. First, images from cameras on UAV were fused based on deep convolutional neural network. Then, a recurrent neural network was constructed to obtain high-level image features for object tracking and extracting low-level image features for noise reducing. The system distributed the calculation of the whole system to local and cloud platform to efficiently perform object detection, tracking and collision avoidance based on multiple UAVs. The experiments on several challenging datasets showed that the proposed algorithm outperforms the state-of-the-art methods.

Keywords: Unmanned aerial vehicle, object tracking, deep learning, collision avoidance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 953
227 Through Biometric Card in Romania: Person Identification by Face, Fingerprint and Voice Recognition

Authors: Hariton N. Costin, Iulian Ciocoiu, Tudor Barbu, Cristian Rotariu

Abstract:

In this paper three different approaches for person verification and identification, i.e. by means of fingerprints, face and voice recognition, are studied. Face recognition uses parts-based representation methods and a manifold learning approach. The assessment criterion is recognition accuracy. The techniques under investigation are: a) Local Non-negative Matrix Factorization (LNMF); b) Independent Components Analysis (ICA); c) NMF with sparse constraints (NMFsc); d) Locality Preserving Projections (Laplacianfaces). Fingerprint detection was approached by classical minutiae (small graphical patterns) matching through image segmentation by using a structural approach and a neural network as decision block. As to voice / speaker recognition, melodic cepstral and delta delta mel cepstral analysis were used as main methods, in order to construct a supervised speaker-dependent voice recognition system. The final decision (e.g. “accept-reject" for a verification task) is taken by using a majority voting technique applied to the three biometrics. The preliminary results, obtained for medium databases of fingerprints, faces and voice recordings, indicate the feasibility of our study and an overall recognition precision (about 92%) permitting the utilization of our system for a future complex biometric card.

Keywords: Biometry, image processing, pattern recognition, speech analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944
226 Discrete and Stationary Adaptive Sub-Band Threshold Method for Improving Image Resolution

Authors: P. Joyce Beryl Princess, Y. Harold Robinson

Abstract:

Image Processing is a structure of Signal Processing for which the input is the image and the output is also an image or parameter of the image. Image Resolution has been frequently referred as an important aspect of an image. In Image Resolution Enhancement, images are being processed in order to obtain more enhanced resolution. To generate highly resoluted image for a low resoluted input image with high PSNR value. Stationary Wavelet Transform is used for Edge Detection and minimize the loss occurs during Downsampling. Inverse Discrete Wavelet Transform is to get highly resoluted image. Highly resoluted output is generated from the Low resolution input with high quality. Noisy input will generate output with low PSNR value. So Noisy resolution enhancement technique has been used for adaptive sub-band thresholding is used. Downsampling in each of the DWT subbands causes information loss in the respective subbands. SWT is employed to minimize this loss. Inverse Discrete wavelet transform (IDWT) is to convert the object which is downsampled using DWT into a highly resoluted object. Used Image denoising and resolution enhancement techniques will generate image with high PSNR value. Our Proposed method will improve Image Resolution and reached the optimized threshold.

Keywords: Image Processing, Inverse Discrete wavelet transform, PSNR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
225 The Dynamics of Microorganisms in Dried Yogurt Storages at Different Temperatures

Authors: Jaruwan Chutrtong

Abstract:

Yoghurt is a fermented milk product. The process of making yogurt involves fermenting milk with live and active bacterial cultures by adding bacteria directly to the dairy product. It is usually made with a culture of Lactobacillus sp. (L. acidophilus or L. bulgaricus) and Streptococcus thermophilus. Many people like to eat it plain or flavored and it's also use as ingredient in many dishes. Yogurt is rich in nutrients including the microorganism which have important role in balancing the digestion and absorption of the boy.Consumers will benefit from lactic acid bacteria more or less depending on the amount of bacteria that lives in yogurt while eating. When purchasing yogurt, consumers should always check the label for live cultures. Yoghurt must keep in refrigerator at 4°C for up to ten days. After this amount of time, the cultures often become weak. This research studied freezing dry yogurt storage by monitoring on the survival of microorganisms when stored at different temperatures. At 300C, representative room temperature of country in equator zone, number of lactic acid bacteria reduced 4 log cycles in 10 week. At 400C, representative temperature in summer of country in equator zone, number of lactic acid bacteria also dropped 4 log cycle in 10 week, similar as storage at 300C. But drying yogurt storage at 400C couldn’t reformed to be good character yogurt as good as storage at 400C only 4 week storage too. After 1 month, it couldn’t bring back the yogurt form. So if it is inevitable to keep yogurt powder at a temperature of 40°C, yoghurt is maintained only up to 4 weeks.

Keywords: Dynamic, dry yoghurt, storage, temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1948
224 Environmental Impact Assessment of Gotv and Hydro-Electric Dam on the Karoon River Using ICOLD Technique

Authors: A. Sayadi, A. Khodadadi D., S. Partani

Abstract:

Today Environmental Impact Assessment (EIA) is known as one of the most important tools for decision makers in the construction of civil and industrial projects towards sustainable development. In the past, projects were evaluated based on cost and benefit analysis regardless of the physical and biological environmental effects and its socio-economical impacts. According to the Department of Environment (DOE) of Iran's regulations, the construction of hydroelectric dams is an activity that requires an EIA report. In this paper the environmental impact assessment of the Gotvand hydro-electrical dam has been evaluated in the three environment elements, biological, Physical-chemical and cultural units. This dam is one of the largest dams in Iran with a volume of 4500 MCM and is going to be the last dam on the Karoon River in the south of Iran. In this paper the ICOLD (International Commission on Large Dams) technique was employed for the environmental impact assessment of the dam. The research includes all socio economical and environmental effects of the dam during the construction and operation of the hydro electric dam and Environmental management, monitoring and mitigation of negative impacts were analyzed. In this project the results led to using some techniques to protect the destructive impacts on biological aspects beside the effective long time period impacts on the biological aspects. The impacts on physical aspects are temporary and negative commonly that could be restored and rehabilitated in natural process in the long time in operation period.

Keywords: "Gotvand Hydro Electric Dam", "EIA", "ICOLD and Leopold matrices"

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3387
223 Satellite Data Classification Accuracy Assessment Based from Reference Dataset

Authors: Mohd Hasmadi Ismail, Kamaruzaman Jusoff

Abstract:

In order to develop forest management strategies in tropical forest in Malaysia, surveying the forest resources and monitoring the forest area affected by logging activities is essential. There are tremendous effort has been done in classification of land cover related to forest resource management in this country as it is a priority in all aspects of forest mapping using remote sensing and related technology such as GIS. In fact classification process is a compulsory step in any remote sensing research. Therefore, the main objective of this paper is to assess classification accuracy of classified forest map on Landsat TM data from difference number of reference data (200 and 388 reference data). This comparison was made through observation (200 reference data), and interpretation and observation approaches (388 reference data). Five land cover classes namely primary forest, logged over forest, water bodies, bare land and agricultural crop/mixed horticultural can be identified by the differences in spectral wavelength. Result showed that an overall accuracy from 200 reference data was 83.5 % (kappa value 0.7502459; kappa variance 0.002871), which was considered acceptable or good for optical data. However, when 200 reference data was increased to 388 in the confusion matrix, the accuracy slightly improved from 83.5% to 89.17%, with Kappa statistic increased from 0.7502459 to 0.8026135, respectively. The accuracy in this classification suggested that this strategy for the selection of training area, interpretation approaches and number of reference data used were importance to perform better classification result.

Keywords: Image Classification, Reference Data, Accuracy Assessment, Kappa Statistic, Forest Land Cover

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3141
222 A Trainable Neural Network Ensemble for ECG Beat Classification

Authors: Atena Sajedin, Shokoufeh Zakernejad, Soheil Faridi, Mehrdad Javadi, Reza Ebrahimpour

Abstract:

This paper illustrates the use of a combined neural network model for classification of electrocardiogram (ECG) beats. We present a trainable neural network ensemble approach to develop customized electrocardiogram beat classifier in an effort to further improve the performance of ECG processing and to offer individualized health care. We process a three stage technique for detection of premature ventricular contraction (PVC) from normal beats and other heart diseases. This method includes a denoising, a feature extraction and a classification. At first we investigate the application of stationary wavelet transform (SWT) for noise reduction of the electrocardiogram (ECG) signals. Then feature extraction module extracts 10 ECG morphological features and one timing interval feature. Then a number of multilayer perceptrons (MLPs) neural networks with different topologies are designed. The performance of the different combination methods as well as the efficiency of the whole system is presented. Among them, Stacked Generalization as a proposed trainable combined neural network model possesses the highest recognition rate of around 95%. Therefore, this network proves to be a suitable candidate in ECG signal diagnosis systems. ECG samples attributing to the different ECG beat types were extracted from the MIT-BIH arrhythmia database for the study.

Keywords: ECG beat Classification; Combining Classifiers;Premature Ventricular Contraction (PVC); Multi Layer Perceptrons;Wavelet Transform

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2216
221 Enhanced Planar Pattern Tracking for an Outdoor Augmented Reality System

Authors: L. Yu, W. K. Li, S. K. Ong, A. Y. C. Nee

Abstract:

In this paper, a scalable augmented reality framework for handheld devices is presented. The presented framework is enabled by using a server-client data communication structure, in which the search for tracking targets among a database of images is performed on the server-side while pixel-wise 3D tracking is performed on the client-side, which, in this case, is a handheld mobile device. Image search on the server-side adopts a residual-enhanced image descriptors representation that gives the framework a scalability property. The tracking algorithm on the client-side is based on a gravity-aligned feature descriptor which takes the advantage of a sensor-equipped mobile device and an optimized intensity-based image alignment approach that ensures the accuracy of 3D tracking. Automatic content streaming is achieved by using a key-frame selection algorithm, client working phase monitoring and standardized rules for content communication between the server and client. The recognition accuracy test performed on a standard dataset shows that the method adopted in the presented framework outperforms the Bag-of-Words (BoW) method that has been used in some of the previous systems. Experimental test conducted on a set of video sequences indicated the real-time performance of the tracking system with a frame rate at 15-30 frames per second. The presented framework is exposed to be functional in practical situations with a demonstration application on a campus walk-around.

Keywords: Augmented reality framework, server-client model, vision-based tracking, image search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1140
220 Linear Prediction System in Measuring Glucose Level in Blood

Authors: Intan Maisarah Abd Rahim, Herlina Abdul Rahim, Rashidah Ghazali

Abstract:

Diabetes is a medical condition that can lead to various diseases such as stroke, heart disease, blindness and obesity. In clinical practice, the concern of the diabetic patients towards the blood glucose examination is rather alarming as some of the individual describing it as something painful with pinprick and pinch. As for some patient with high level of glucose level, pricking the fingers multiple times a day with the conventional glucose meter for close monitoring can be tiresome, time consuming and painful. With these concerns, several non-invasive techniques were used by researchers in measuring the glucose level in blood, including ultrasonic sensor implementation, multisensory systems, absorbance of transmittance, bio-impedance, voltage intensity, and thermography. This paper is discussing the application of the near-infrared (NIR) spectroscopy as a non-invasive method in measuring the glucose level and the implementation of the linear system identification model in predicting the output data for the NIR measurement. In this study, the wavelengths considered are at the 1450 nm and 1950 nm. Both of these wavelengths showed the most reliable information on the glucose presence in blood. Then, the linear Autoregressive Moving Average Exogenous model (ARMAX) model with both un-regularized and regularized methods was implemented in predicting the output result for the NIR measurement in order to investigate the practicality of the linear system in this study. However, the result showed only 50.11% accuracy obtained from the system which is far from the satisfying results that should be obtained.

Keywords: Diabetes, glucose level, linear, near-infrared (NIR), non-invasive, prediction system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 874
219 Texture Based Weed Detection Using Multi Resolution Combined Statistical and Spatial Frequency (MRCSF)

Authors: R.S.Sabeenian, V.Palanisamy

Abstract:

Texture classification is a trendy and a catchy technology in the field of texture analysis. Textures, the repeated patterns, have different frequency components along different orientations. Our work is based on Texture Classification and its applications. It finds its applications in various fields like Medical Image Classification, Computer Vision, Remote Sensing, Agricultural Field, and Textile Industry. Weed control has a major effect on agriculture. A large amount of herbicide has been used for controlling weeds in agriculture fields, lawns, golf courses, sport fields, etc. Random spraying of herbicides does not meet the exact requirement of the field. Certain areas in field have more weed patches than estimated. So, we need a visual system that can discriminate weeds from the field image which will reduce or even eliminate the amount of herbicide used. This would allow farmers to not use any herbicides or only apply them where they are needed. A machine vision precision automated weed control system could reduce the usage of chemicals in crop fields. In this paper, an intelligent system for automatic weeding strategy Multi Resolution Combined Statistical & spatial Frequency is used to discriminate the weeds from the crops and to classify them as narrow, little and broad weeds.

Keywords: crop weed discrimination, MRCSF, MRFM, Weeddetection, Spatial Frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827
218 A Multi-Science Study of Modern Synergetic War and Its Information Security Component

Authors: Alexander G. Yushchenko

Abstract:

From a multi-science point of view, we analyze threats to security resulting from globalization of international information space and information and communication aggression of Russia. A definition of Ruschism is formulated as an ideology supporting aggressive actions of modern Russia against the Euro-Atlantic community. Stages of the hybrid war Russia is leading against Ukraine are described, including the elements of subversive activity of the special services, the activation of the military phase and the gradual shift of the focus of confrontation to the realm of information and communication technologies. We reveal an emergence of a threat for democratic states resulting from the destabilizing impact of a target state’s mass media and social networks being exploited by Russian secret services under freedom-of-speech disguise. Thus, we underline the vulnerability of cyber- and information security of the network society in regard of hybrid war. We propose to define the latter a synergetic war. Our analysis is supported with a long-term qualitative monitoring of representation of top state officials on popular TV channels and Facebook. From the memetics point of view, we have detected a destructive psycho-information technology used by the Kremlin, a kind of information catastrophe, the essence of which is explained in detail. In the conclusion, a comprehensive plan for information protection of the public consciousness and mentality of Euro-Atlantic citizens from the aggression of the enemy is proposed.

Keywords: Cyber and information security, psycho-information technology, hybrid war, synergetic war, WWIII, Ruschism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1011
217 Applying the Regression Technique for Prediction of the Acute Heart Attack

Authors: Paria Soleimani, Arezoo Neshati

Abstract:

Myocardial infarction is one of the leading causes of death in the world. Some of these deaths occur even before the patient reaches the hospital. Myocardial infarction occurs as a result of impaired blood supply. Because the most of these deaths are due to coronary artery disease, hence the awareness of the warning signs of a heart attack is essential. Some heart attacks are sudden and intense, but most of them start slowly, with mild pain or discomfort, then early detection and successful treatment of these symptoms is vital to save them. Therefore, importance and usefulness of a system designing to assist physicians in early diagnosis of the acute heart attacks is obvious. The main purpose of this study would be to enable patients to become better informed about their condition and to encourage them to seek professional care at an earlier stage in the appropriate situations. For this purpose, the data were collected on 711 heart patients in Iran hospitals. 28 attributes of clinical factors can be reported by patients; were studied. Three logistic regression models were made on the basis of the 28 features to predict the risk of heart attacks. The best logistic regression model in terms of performance had a C-index of 0.955 and with an accuracy of 94.9%. The variables, severe chest pain, back pain, cold sweats, shortness of breath, nausea and vomiting, were selected as the main features.

Keywords: Coronary heart disease, acute heart attacks, prediction, logistic regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2425
216 Combating Money Laundering in the Banking Industry: Malaysian Experience

Authors: Aspalella A. Rahman

Abstract:

Money laundering has been described by many as the lifeblood of crime and is a major threat to the economic and social well-being of societies. It has been recognized that the banking system has long been the central element of money laundering. This is in part due to the complexity and confidentiality of the banking system itself. It is generally accepted that effective anti-money laundering (AML) measures adopted by banks will make it tougher for criminals to get their "dirty money" into the financial system. In fact, for law enforcement agencies, banks are considered to be an important source of valuable information for the detection of money laundering. However, from the banks- perspective, the main reason for their existence is to make as much profits as possible. Hence their cultural and commercial interests are totally distinct from that of the law enforcement authorities. Undoubtedly, AML laws create a major dilemma for banks as they produce a significant shift in the way banks interact with their customers. Furthermore, the implementation of the laws not only creates significant compliance problems for banks, but also has the potential to adversely affect the operations of banks. As such, it is legitimate to ask whether these laws are effective in preventing money launderers from using banks, or whether they simply put an unreasonable burden on banks and their customers. This paper attempts to address these issues and analyze them against the background of the Malaysian AML laws. It must be said that effective coordination between AML regulator and the banking industry is vital to minimize problems faced by the banks and thereby to ensure effective implementation of the laws in combating money laundering.

Keywords: Banking Industry, Bank Negara Money, Laundering, Malaysia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4287
215 Performance Assessment of Computational Gridon Weather Indices from HOAPS Data

Authors: Madhuri Bhavsar, Anupam K Singh, Shrikant Pradhan

Abstract:

Long term rainfall analysis and prediction is a challenging task especially in the modern world where the impact of global warming is creating complications in environmental issues. These factors which are data intensive require high performance computational modeling for accurate prediction. This research paper describes a prototype which is designed and developed on grid environment using a number of coupled software infrastructural building blocks. This grid enabled system provides the demanding computational power, efficiency, resources, user-friendly interface, secured job submission and high throughput. The results obtained using sequential execution and grid enabled execution shows that computational performance has enhanced among 36% to 75%, for decade of climate parameters. Large variation in performance can be attributed to varying degree of computational resources available for job execution. Grid Computing enables the dynamic runtime selection, sharing and aggregation of distributed and autonomous resources which plays an important role not only in business, but also in scientific implications and social surroundings. This research paper attempts to explore the grid enabled computing capabilities on weather indices from HOAPS data for climate impact modeling and change detection.

Keywords: Climate model, Computational Grid, GridApplication, Heterogeneous Grid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443
214 Automatic Segmentation of Dermoscopy Images Using Histogram Thresholding on Optimal Color Channels

Authors: Rahil Garnavi, Mohammad Aldeen, M. Emre Celebi, Alauddin Bhuiyan, Constantinos Dolianitis, George Varigos

Abstract:

Automatic segmentation of skin lesions is the first step towards development of a computer-aided diagnosis of melanoma. Although numerous segmentation methods have been developed, few studies have focused on determining the most discriminative and effective color space for melanoma application. This paper proposes a novel automatic segmentation algorithm using color space analysis and clustering-based histogram thresholding, which is able to determine the optimal color channel for segmentation of skin lesions. To demonstrate the validity of the algorithm, it is tested on a set of 30 high resolution dermoscopy images and a comprehensive evaluation of the results is provided, where borders manually drawn by four dermatologists, are compared to automated borders detected by the proposed algorithm. The evaluation is carried out by applying three previously used metrics of accuracy, sensitivity, and specificity and a new metric of similarity. Through ROC analysis and ranking the metrics, it is shown that the best results are obtained with the X and XoYoR color channels which results in an accuracy of approximately 97%. The proposed method is also compared with two state-ofthe- art skin lesion segmentation methods, which demonstrates the effectiveness and superiority of the proposed segmentation method.

Keywords: Border detection, Color space analysis, Dermoscopy, Histogram thresholding, Melanoma, Segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2085
213 Support Vector Machine Prediction Model of Early-stage Lung Cancer Based on Curvelet Transform to Extract Texture Features of CT Image

Authors: Guo Xiuhua, Sun Tao, Wu Haifeng, He Wen, Liang Zhigang, Zhang Mengxia, Guo Aimin, Wang Wei

Abstract:

Purpose: To explore the use of Curvelet transform to extract texture features of pulmonary nodules in CT image and support vector machine to establish prediction model of small solitary pulmonary nodules in order to promote the ratio of detection and diagnosis of early-stage lung cancer. Methods: 2461 benign or malignant small solitary pulmonary nodules in CT image from 129 patients were collected. Fourteen Curvelet transform textural features were as parameters to establish support vector machine prediction model. Results: Compared with other methods, using 252 texture features as parameters to establish prediction model is more proper. And the classification consistency, sensitivity and specificity for the model are 81.5%, 93.8% and 38.0% respectively. Conclusion: Based on texture features extracted from Curvelet transform, support vector machine prediction model is sensitive to lung cancer, which can promote the rate of diagnosis for early-stage lung cancer to some extent.

Keywords: CT image, Curvelet transform, Small pulmonary nodules, Support vector machines, Texture extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2766
212 Assisted Prediction of Hypertension Based on Heart Rate Variability and Improved Residual Networks

Authors: Yong Zhao, Jian He, Cheng Zhang

Abstract:

Cardiovascular disease resulting from hypertension poses a significant threat to human health, and early detection of hypertension can potentially save numerous lives. Traditional methods for detecting hypertension require specialized equipment and are often incapable of capturing continuous blood pressure fluctuations. To address this issue, this study starts by analyzing the principle of heart rate variability (HRV) and introduces the utilization of sliding window and power spectral density (PSD) techniques to analyze both temporal and frequency domain features of HRV. Subsequently, a hypertension prediction network that relies on HRV is proposed, combining Resnet, attention mechanisms, and a multi-layer perceptron. The network leverages a modified ResNet18 to extract frequency domain features, while employing an attention mechanism to integrate temporal domain features, thus enabling auxiliary hypertension prediction through the multi-layer perceptron. The proposed network is trained and tested using the publicly available SHAREE dataset from PhysioNet. The results demonstrate that the network achieves a high prediction accuracy of 92.06% for hypertension, surpassing traditional models such as K Near Neighbor (KNN), Bayes, Logistic regression, and traditional Convolutional Neural Network (CNN).

Keywords: Feature extraction, heart rate variability, hypertension, residual networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 195
211 Prediction of the Epileptic Events 'Epileptic Seizures' by Neural Networks and Expert Systems

Authors: Kifah Tout, Nisrine Sinno, Mohamad Mikati

Abstract:

Many studies have focused on the nonlinear analysis of electroencephalography (EEG) mainly for the characterization of epileptic brain states. It is assumed that at least two states of the epileptic brain are possible: the interictal state characterized by a normal apparently random, steady-state EEG ongoing activity; and the ictal state that is characterized by paroxysmal occurrence of synchronous oscillations and is generally called in neurology, a seizure. The spatial and temporal dynamics of the epileptogenic process is still not clear completely especially the most challenging aspects of epileptology which is the anticipation of the seizure. Despite all the efforts we still don-t know how and when and why the seizure occurs. However actual studies bring strong evidence that the interictal-ictal state transition is not an abrupt phenomena. Findings also indicate that it is possible to detect a preseizure phase. Our approach is to use the neural network tool to detect interictal states and to predict from those states the upcoming seizure ( ictal state). Analysis of the EEG signal based on neural networks is used for the classification of EEG as either seizure or non-seizure. By applying prediction methods it will be possible to predict the upcoming seizure from non-seizure EEG. We will study the patients admitted to the epilepsy monitoring unit for the purpose of recording their seizures. Preictal, ictal, and post ictal EEG recordings are available on such patients for analysis The system will be induced by taking a body of samples then validate it using another. Distinct from the two first ones a third body of samples is taken to test the network for the achievement of optimum prediction. Several methods will be tried 'Backpropagation ANN' and 'RBF'.

Keywords: Artificial neural network (ANN), automatic prediction, epileptic seizures analysis, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1540