Search results for: Genetic algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3635

Search results for: Genetic algorithm

1415 Scenario Recognition in Modern Building Automation

Authors: Roland Lang, Dietmar Bruckner, Rosemarie Velik, Tobias Deutsch

Abstract:

Modern building automation needs to deal with very different types of demands, depending on the use of a building and the persons acting in it. To meet the requirements of situation awareness in modern building automation, scenario recognition becomes more and more important in order to detect sequences of events and to react to them properly. We present two concepts of scenario recognition and their implementation, one based on predefined templates and the other applying an unsupervised learning algorithm using statistical methods. Implemented applications will be described and their advantages and disadvantages will be outlined.

Keywords: Building automation, ubiquitous computing, scenariorecognition, surveillance system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644
1414 Robot Cell Planning

Authors: Allan Tubaileh, Ibrahim Hammad, Loay Al Kafafi

Abstract:

A new approach to determine the machine layout in flexible manufacturing cell, and to find the feasible robot configuration of the robot to achieve minimum cycle time is presented in this paper. The location of the input/output location and the optimal robot configuration is obtained for all sequences of work tasks of the robot within a specified period of time. A more realistic approach has been presented to model the problem using the robot joint space. The problem is formulated as a nonlinear optimization problem and solved using Sequential Quadratic Programming algorithm.

Keywords: Robotics, Layout.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2044
1413 Biodiversity of Micromycetes Isolated from Soils of Different Agricultures in Kazakhstan and Their Plant Growth Promoting Potential

Authors: L. V. Ignatova, Y. V. Brazhnikova, T. D. Mukasheva, A. A. Omirbekova, R. Zh. Berzhanova, R. K. Sydykbekova, T. A. Karpenyuk, A. V. Goncharova

Abstract:

The comparative analysis of different taxonomic groups of microorganisms isolated from dark chernozem soils under different agricultures (alfalfa, melilot, sainfoin, soybean, rapeseed) at Almaty region of Kazakhstan was conducted. It was shown that the greatest number of micromycetes was typical to the soil planted with alfalfa and canola. Species diversity of micromycetes markedly decreases as it approaches the surface of the root, so that the species composition in the rhizosphere is much more uniform than in the virgin soil. Promising strains of microscopic fungi and yeast with plant growth-promoting activity to agricultures were selected. Among the selected fungi there are representatives of Penicillium bilaiae, Trichoderma koningii, Fusarium equiseti, Aspergillus ustus. The highest rates of growth and development of seedlings of plants observed under the influence of yeasts Aureobasidium pullulans, Rhodotorula mucilaginosa, Metschnikovia pulcherrima. Using molecular - genetic techniques confirmation of the identification results of selected micromycetes was conducted.

Keywords: Agricultures, biodiversity, micromycetes, plant growth-promoting microorganisms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2649
1412 Evaluation of a PSO Approach for Optimum Design of a First-Order Controllers for TCP/AQM Systems

Authors: Sana Testouri, Karim Saadaoui, Mohamed Benrejeb

Abstract:

This paper presents a Particle Swarm Optimization (PSO) method for determining the optimal parameters of a first-order controller for TCP/AQM system. The model TCP/AQM is described by a second-order system with time delay. First, the analytical approach, based on the D-decomposition method and Lemma of Kharitonov, is used to determine the stabilizing regions of a firstorder controller. Second, the optimal parameters of the controller are obtained by the PSO algorithm. Finally, the proposed method is implemented in the Network Simulator NS-2 and compared with the PI controller.

Keywords: AQM, first-order controller, time delay, stability, PSO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763
1411 Combining Bagging and Additive Regression

Authors: Sotiris B. Kotsiantis

Abstract:

Bagging and boosting are among the most popular re-sampling ensemble methods that generate and combine a diversity of regression models using the same learning algorithm as base-learner. Boosting algorithms are considered stronger than bagging on noise-free data. However, there are strong empirical indications that bagging is much more robust than boosting in noisy settings. For this reason, in this work we built an ensemble using an averaging methodology of bagging and boosting ensembles with 10 sub-learners in each one. We performed a comparison with simple bagging and boosting ensembles with 25 sub-learners on standard benchmark datasets and the proposed ensemble gave better accuracy.

Keywords: Regressors, statistical learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1641
1410 Enhancement of Stereo Video Pairs Using SDNs To Aid In 3D Reconstruction

Authors: Lewis E. Hibell, Honghai Liu, David J. Brown

Abstract:

This paper presents the results of enhancing images from a left and right stereo pair in order to increase the resolution of a 3D representation of a scene generated from that same pair. A new neural network structure known as a Self Delaying Dynamic Network (SDN) has been used to perform the enhancement. The advantage of SDNs over existing techniques such as bicubic interpolation is their ability to cope with motion and noise effects. SDNs are used to generate two high resolution images, one based on frames taken from the left view of the subject, and one based on the frames from the right. This new high resolution stereo pair is then processed by a disparity map generator. The disparity map generated is compared to two other disparity maps generated from the same scene. The first is a map generated from an original high resolution stereo pair and the second is a map generated using a stereo pair which has been enhanced using bicubic interpolation. The maps generated using the SDN enhanced pairs match more closely the target maps. The addition of extra noise into the input images is less problematic for the SDN system which is still able to out perform bicubic interpolation.

Keywords: Genetic Evolution, Image Enhancement, Neuron Networks, Stereo Vision

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425
1409 Using Interval Trees for Approximate Indexing of Instances

Authors: Khalil el Hindi

Abstract:

This paper presents a simple and effective method for approximate indexing of instances for instance based learning. The method uses an interval tree to determine a good starting search point for the nearest neighbor. The search stops when an early stopping criterion is met. The method proved to be very effective especially when only the first nearest neighbor is required.

Keywords: Instance based learning, interval trees, the knn algorithm, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1511
1408 Numerical Inverse Laplace Transform Using Chebyshev Polynomial

Authors: Vinod Mishra, Dimple Rani

Abstract:

In this paper, numerical approximate Laplace transform inversion algorithm based on Chebyshev polynomial of second kind is developed using odd cosine series. The technique has been tested for three different functions to work efficiently. The illustrations show that the new developed numerical inverse Laplace transform is very much close to the classical analytic inverse Laplace transform.

Keywords: Chebyshev polynomial, Numerical inverse Laplace transform, Odd cosine series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1402
1407 Price Prediction Line, Investment Signals and Limit Conditions Applied for the German Financial Market

Authors: Cristian Păuna

Abstract:

In the first decades of the 21st century, in the electronic trading environment, algorithmic capital investments became the primary tool to make a profit by speculations in financial markets. A significant number of traders, private or institutional investors are participating in the capital markets every day using automated algorithms. The autonomous trading software is today a considerable part in the business intelligence system of any modern financial activity. The trading decisions and orders are made automatically by computers using different mathematical models. This paper will present one of these models called Price Prediction Line. A mathematical algorithm will be revealed to build a reliable trend line, which is the base for limit conditions and automated investment signals, the core for a computerized investment system. The paper will guide how to apply these tools to generate entry and exit investment signals, limit conditions to build a mathematical filter for the investment opportunities, and the methodology to integrate all of these in automated investment software. The paper will also present trading results obtained for the leading German financial market index with the presented methods to analyze and to compare different automated investment algorithms. It was found that a specific mathematical algorithm can be optimized and integrated into an automated trading system with good and sustained results for the leading German Market. Investment results will be compared in order to qualify the presented model. In conclusion, a 1:6.12 risk was obtained to reward ratio applying the trigonometric method to the DAX Deutscher Aktienindex on 24 months investment. These results are superior to those obtained with other similar models as this paper reveal. The general idea sustained by this paper is that the Price Prediction Line model presented is a reliable capital investment methodology that can be successfully applied to build an automated investment system with excellent results.

Keywords: Algorithmic trading, automated investment system, DAX Deutscher Aktienindex.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 696
1406 Pin type Clamping Attachment for Remote Setup of Machining Process

Authors: Afzeri, R. Muhida, Darmawan, A. N. Berahim

Abstract:

Sharing the manufacturing facility through remote operation and monitoring of a machining process is challenge for effective use the production facility. Several automation tools in term of hardware and software are necessary for successfully remote operation of a machine. This paper presents a prototype of workpiece holding attachment for remote operation of milling process by self configuration the workpiece setup. The prototype is designed with mechanism to reorient the work surface into machining spindle direction with high positioning accuracy. Variety of parts geometry is hold by attachment to perform single setup machining. Pin type with array pattern additionally clamps the workpiece surface from two opposite directions for increasing the machining rigidity. Optimum pins configuration for conforming the workpiece geometry with minimum deformation is determined through hybrid algorithms, Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). Prototype with intelligent optimization technique enables to hold several variety of workpiece geometry which is suitable for machining low of repetitive production in remote operation.

Keywords: Optimization, Remote machining, GeneticAlgorithms, Machining Fixture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2639
1405 An Implementation of Stipple Operations

Authors: Nakhoon Baek

Abstract:

Stipples are desired for pattern fillings and transparency effects. In contrast, some graphics standards, including OpenGL ES 1.1 and 2.0, omitted this feature. We represent details of providing line stipples and polygon stipples, through combining texture mapping and alpha blending functions. We start from the OpenGL-specified stipple-related API functions. The details of mathematical transformations are explained to get the correct texture coordinates. Then, the overall algorithm is represented, and its implementation results are followed. We accomplished both of line and polygon stipples, and verified its result with conformance test routines.

Keywords: Stipple operation, OpenGL ES, Implementation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3081
1404 Realization of Autonomous Guidance Service by Integrating Information from NFC and MEMS

Authors: Dawei Cai

Abstract:

In this paper, we present an autonomous guidance service by combinating the position information from NFC and the orientation information from 6 a 6 axis acceleration and terrestrial magnetism sensor. We developed an algorithm to calculate the device orientation  based on the data from acceleration and terrestrial magnetism sensor.With this function, a autonomous guidance service can be provided, according the visitors's position and orientation. This service may be convient for old people or disables or children.

Keywords: NFC, Ubiquitous Computing, Guide Sysem, MEMS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657
1403 Image-Based UAV Vertical Distance and Velocity Estimation Algorithm during the Vertical Landing Phase Using Low-Resolution Images

Authors: Seyed-Yaser Nabavi-Chashmi, Davood Asadi, Karim Ahmadi, Eren Demir

Abstract:

The landing phase of a UAV is very critical as there are many uncertainties in this phase, which can easily entail a hard landing or even a crash. In this paper, the estimation of relative distance and velocity to the ground, as one of the most important processes during the landing phase, is studied. Using accurate measurement sensors as an alternative approach can be very expensive for sensors like LIDAR, or with a limited operational range, for sensors like ultrasonic sensors. Additionally, absolute positioning systems like GPS or IMU cannot provide distance to the ground independently. The focus of this paper is to determine whether we can measure the relative distance and velocity of UAV and ground in the landing phase using just low-resolution images taken by a monocular camera. The Lucas-Konda feature detection technique is employed to extract the most suitable feature in a series of images taken during the UAV landing. Two different approaches based on Extended Kalman Filters (EKF) have been proposed, and their performance in estimation of the relative distance and velocity are compared. The first approach uses the kinematics of the UAV as the process and the calculated optical flow as the measurement. On the other hand, the second approach uses the feature’s projection on the camera plane (pixel position) as the measurement while employing both the kinematics of the UAV and the dynamics of variation of projected point as the process to estimate both relative distance and relative velocity. To verify the results, a sequence of low-quality images taken by a camera that is moving on a specifically developed testbed has been used to compare the performance of the proposed algorithm. The case studies show that the quality of images results in considerable noise, which reduces the performance of the first approach. On the other hand, using the projected feature position is much less sensitive to the noise and estimates the distance and velocity with relatively high accuracy. This approach also can be used to predict the future projected feature position, which can drastically decrease the computational workload, as an important criterion for real-time applications.

Keywords: Automatic landing, multirotor, nonlinear control, parameters estimation, optical flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 527
1402 Performance Evaluation of Packet Scheduling with Channel Conditioning Aware Based On WiMAX Networks

Authors: Elmabruk Laias, Abdalla M. Hanashi, Mohammed Alnas

Abstract:

Worldwide Interoperability for Microwave Access (WiMAX) became one of the most challenging issues, since it was responsible for distributing available resources of the network among all users this leaded to the demand of constructing and designing high efficient scheduling algorithms in order to improve the network utilization, to increase the network throughput, and to minimize the end-to-end delay. In this study, the proposed algorithm focuses on an efficient mechanism to serve non_real time traffic in congested networks by considering channel status.

Keywords: WiMAX, Quality of Services (QoS), OPNE, Diff-Serv (DS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835
1401 Visualization of Searching and Sorting Algorithms

Authors: Bremananth R, Radhika.V, Thenmozhi.S

Abstract:

Sequences of execution of algorithms in an interactive manner using multimedia tools are employed in this paper. It helps to realize the concept of fundamentals of algorithms such as searching and sorting method in a simple manner. Visualization gains more attention than theoretical study and it is an easy way of learning process. We propose methods for finding runtime sequence of each algorithm in an interactive way and aims to overcome the drawbacks of the existing character systems. System illustrates each and every step clearly using text and animation. Comparisons of its time complexity have been carried out and results show that our approach provides better perceptive of algorithms.

Keywords: Algorithms, Searching, Sorting, Visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2114
1400 Integrating Low and High Level Object Recognition Steps

Authors: András Barta, István Vajk

Abstract:

In pattern recognition applications the low level segmentation and the high level object recognition are generally considered as two separate steps. The paper presents a method that bridges the gap between the low and the high level object recognition. It is based on a Bayesian network representation and network propagation algorithm. At the low level it uses hierarchical structure of quadratic spline wavelet image bases. The method is demonstrated for a simple circuit diagram component identification problem.

Keywords: Object recognition, Bayesian network, Wavelets, Document processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1485
1399 A Frugal Bidding Procedure for Replicating WWW Content

Authors: Samee Ullah Khan, C. Ardil

Abstract:

Fine-grained data replication over the Internet allows duplication of frequently accessed data objects, as opposed to entire sites, to certain locations so as to improve the performance of largescale content distribution systems. In a distributed system, agents representing their sites try to maximize their own benefit since they are driven by different goals such as to minimize their communication costs, latency, etc. In this paper, we will use game theoretical techniques and in particular auctions to identify a bidding mechanism that encapsulates the selfishness of the agents, while having a controlling hand over them. In essence, the proposed game theory based mechanism is the study of what happens when independent agents act selfishly and how to control them to maximize the overall performance. A bidding mechanism asks how one can design systems so that agents- selfish behavior results in the desired system-wide goals. Experimental results reveal that this mechanism provides excellent solution quality, while maintaining fast execution time. The comparisons are recorded against some well known techniques such as greedy, branch and bound, game theoretical auctions and genetic algorithms.

Keywords: Internet, data content replication, static allocation, mechanism design, equilibrium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404
1398 A Two-Stage Multi-Agent System to Predict the Unsmoothed Monthly Sunspot Numbers

Authors: Mak Kaboudan

Abstract:

A multi-agent system is developed here to predict monthly details of the upcoming peak of the 24th solar magnetic cycle. While studies typically predict the timing and magnitude of cycle peaks using annual data, this one utilizes the unsmoothed monthly sunspot number instead. Monthly numbers display more pronounced fluctuations during periods of strong solar magnetic activity than the annual sunspot numbers. Because strong magnetic activities may cause significant economic damages, predicting monthly variations should provide different and perhaps helpful information for decision-making purposes. The multi-agent system developed here operates in two stages. In the first, it produces twelve predictions of the monthly numbers. In the second, it uses those predictions to deliver a final forecast. Acting as expert agents, genetic programming and neural networks produce the twelve fits and forecasts as well as the final forecast. According to the results obtained, the next peak is predicted to be 156 and is expected to occur in October 2011- with an average of 136 for that year.

Keywords: Computational techniques, discrete wavelet transformations, solar cycle prediction, sunspot numbers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1329
1397 Local Image Descriptor using VQ-SIFT for Image Retrieval

Authors: Qiu Chen, Feifei Lee, Koji Kotani, Tadahiro Ohmi

Abstract:

In this paper, we present local image descriptor using VQ-SIFT for more effective and efficient image retrieval. Instead of SIFT's weighted orientation histograms, we apply vector quantization (VQ) histogram as an alternate representation for SIFT features. Experimental results show that SIFT features using VQ-based local descriptors can achieve better image retrieval accuracy than the conventional algorithm while the computational cost is significantly reduced.

Keywords: SIFT feature, Vector quantization histogram, Localdescriptor, Image retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2403
1396 High Resolution Methods Based On Rank Revealing Triangular Factorizations

Authors: M. Bouri, S. Bourennane

Abstract:

In this paper, we propose a novel method for subspace estimation used high resolution method without eigendecomposition where the sample Cross-Spectral Matrix (CSM) is replaced by upper triangular matrix obtained from LU factorization. This novel method decreases the computational complexity. The method relies on a recently published result on Rank-Revealing LU (RRLU) factorization. Simulation results demonstrates that the new algorithm outperform the Householder rank-revealing QR (RRQR) factorization method and the MUSIC in the low Signal to Noise Ratio (SNR) scenarios.

Keywords: Factorization, Localization, Matrix, Signalsubspace.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1360
1395 A New Approach to Signal Processing for DC-Electromagnetic Flowmeters

Authors: Michael Schukat

Abstract:

Electromagnetic flowmeters with DC excitation are used for a wide range of fluid measurement tasks, but are rarely found in dosing applications with short measurement cycles due to the achievable accuracy. This paper will identify a number of factors that influence the accuracy of this sensor type when used for short-term measurements. Based on these results a new signal-processing algorithm will be described that overcomes the identified problems to some extend. This new method allows principally a higher accuracy of electromagnetic flowmeters with DC excitation than traditional methods.

Keywords: Electromagnetic Flowmeter, Kalman Filter, ShortMeasurement Cycles, Signal Estimation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
1394 Atrial Fibrillation Analysis Based on Blind Source Separation in 12-lead ECG

Authors: Pei-Chann Chang, Jui-Chien Hsieh, Jyun-Jie Lin, Feng-Ming Yeh

Abstract:

Atrial Fibrillation is the most common sustained arrhythmia encountered by clinicians. Because of the invisible waveform of atrial fibrillation in atrial activation for human, it is necessary to develop an automatic diagnosis system. 12-Lead ECG now is available in hospital and is appropriate for using Independent Component Analysis to estimate the AA period. In this research, we also adopt a second-order blind identification approach to transform the sources extracted by ICA to more precise signal and then we use frequency domain algorithm to do the classification. In experiment, we gather a significant result of clinical data.

Keywords: 12-Lead ECG, Atrial Fibrillation, Blind SourceSeparation, Kurtosis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
1393 A Fast Replica Placement Methodology for Large-scale Distributed Computing Systems

Authors: Samee Ullah Khan, C. Ardil

Abstract:

Fine-grained data replication over the Internet allows duplication of frequently accessed data objects, as opposed to entire sites, to certain locations so as to improve the performance of largescale content distribution systems. In a distributed system, agents representing their sites try to maximize their own benefit since they are driven by different goals such as to minimize their communication costs, latency, etc. In this paper, we will use game theoretical techniques and in particular auctions to identify a bidding mechanism that encapsulates the selfishness of the agents, while having a controlling hand over them. In essence, the proposed game theory based mechanism is the study of what happens when independent agents act selfishly and how to control them to maximize the overall performance. A bidding mechanism asks how one can design systems so that agents- selfish behavior results in the desired system-wide goals. Experimental results reveal that this mechanism provides excellent solution quality, while maintaining fast execution time. The comparisons are recorded against some well known techniques such as greedy, branch and bound, game theoretical auctions and genetic algorithms.

Keywords: Data replication, auctions, static allocation, pricing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
1392 Algorithm for Bleeding Determination Based On Object Recognition and Local Color Features in Capsule Endoscopy

Authors: Yong-Gyu Lee, Jin Hee Park, Youngdae Seo, Gilwon Yoon

Abstract:

Automatic determination of blood in less bright or noisy capsule endoscopic images is difficult due to low S/N ratio. Especially it may not be accurate to analyze these images due to the influence of external disturbance. Therefore, we proposed detection methods that are not dependent only on color bands. In locating bleeding regions, the identification of object outlines in the frame and features of their local colors were taken into consideration. The results showed that the capability of detecting bleeding was much improved.

Keywords: Endoscopy, object recognition, bleeding, image processing, RGB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939
1391 A Family of Affine Projection Adaptive Filtering Algorithms With Selective Regressors

Authors: Mohammad Shams Esfand Abadi, Nader Hadizadeh Kashani, Vahid Mehrdad

Abstract:

In this paper we present a general formalism for the establishment of the family of selective regressor affine projection algorithms (SR-APA). The SR-APA, the SR regularized APA (SR-RAPA), the SR partial rank algorithm (SR-PRA), the SR binormalized data reusing least mean squares (SR-BNDR-LMS), and the SR normalized LMS with orthogonal correction factors (SR-NLMS-OCF) algorithms are established by this general formalism. We demonstrate the performance of the presented algorithms through simulations in acoustic echo cancellation scenario.

Keywords: Adaptive filter, affine projection, selective regressor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574
1390 Tool for Fast Detection of Java Code Snippets

Authors: Tomáš Bublík, Miroslav Virius

Abstract:

This paper presents general results on the Java source code snippet detection problem. We propose the tool which uses graph and subgraph isomorphism detection. A number of solutions for all of these tasks have been proposed in the literature. However, although that all these solutions are really fast, they compare just the constant static trees. Our solution offers to enter an input sample dynamically with the Scripthon language while preserving an acceptable speed. We used several optimizations to achieve very low number of comparisons during the matching algorithm.

Keywords: AST, Java, tree matching, Scripthon, source code recognition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959
1389 Efficient Tuning Parameter Selection by Cross-Validated Score in High Dimensional Models

Authors: Yoonsuh Jung

Abstract:

As DNA microarray data contain relatively small sample size compared to the number of genes, high dimensional models are often employed. In high dimensional models, the selection of tuning parameter (or, penalty parameter) is often one of the crucial parts of the modeling. Cross-validation is one of the most common methods for the tuning parameter selection, which selects a parameter value with the smallest cross-validated score. However, selecting a single value as an ‘optimal’ value for the parameter can be very unstable due to the sampling variation since the sample sizes of microarray data are often small. Our approach is to choose multiple candidates of tuning parameter first, then average the candidates with different weights depending on their performance. The additional step of estimating the weights and averaging the candidates rarely increase the computational cost, while it can considerably improve the traditional cross-validation. We show that the selected value from the suggested methods often lead to stable parameter selection as well as improved detection of significant genetic variables compared to the tradition cross-validation via real data and simulated data sets.

Keywords: Cross Validation, Parameter Averaging, Parameter Selection, Regularization Parameter Search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572
1388 Integrating Low and High Level Object Recognition Steps by Probabilistic Networks

Authors: András Barta, István Vajk

Abstract:

In pattern recognition applications the low level segmentation and the high level object recognition are generally considered as two separate steps. The paper presents a method that bridges the gap between the low and the high level object recognition. It is based on a Bayesian network representation and network propagation algorithm. At the low level it uses hierarchical structure of quadratic spline wavelet image bases. The method is demonstrated for a simple circuit diagram component identification problem.

Keywords: Object recognition, Bayesian network, Wavelets, Document processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
1387 SystemC Modeling of Adaptive Least Mean Square Filter

Authors: Kyu Han Kim, Soon Kyu Kwon, Heung Sun Yoon, Jong Tae Kim

Abstract:

In this paper, we demonstrate the adaptive least-mean-square (LMS) filter modeling using SystemC. SystemC is a modeling language that allows designer to model both hardware and software component and makes it possible to design from high level system of abstraction to low level system of abstraction. We produced five adaptive least-mean-square filter models that are classed as five abstraction levels using SystemC proceeding from the abstract model to the more concrete model.

Keywords: Adaptive Filter, Least-Mean-Square Algorithm, SystemC, Transversal Fir Filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2536
1386 Time-Derivative Estimation of Noisy Movie Data using Adaptive Control Theory

Authors: Soon-Hyun Park, Takami Matsuo

Abstract:

This paper presents an adaptive differentiator of sequential data based on the adaptive control theory. The algorithm is applied to detect moving objects by estimating a temporal gradient of sequential data at a specified pixel. We adopt two nonlinear intensity functions to reduce the influence of noises. The derivatives of the nonlinear intensity functions are estimated by an adaptive observer with σ-modification update law.

Keywords: Adaptive estimation, parameter adjustmentlaw, motion detection, temporal gradient, differential filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1873