Search results for: Linear Fredholm integral equations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3080

Search results for: Linear Fredholm integral equations

890 Hysteresis Modulation Based Sliding Mode Control for Positive Output Elementary Super Lift Luo Converter

Authors: K. Ramash Kumar, S. Jeevananthan

Abstract:

The Object of this paper is to design and analyze a Hysteresis modulation based sliding mode control (HMSMC) for positive output elementary super lift Luo converter (POESLLC), which is the start-of-the-art DC-DC converter. The positive output elementary super lift Luo converter performs the voltage conversion from positive source voltage to positive load voltage. This paper proposes a HMSMC capable of providing the good steady state and dynamic performance compared to conventional controllers. Dynamic equations describing the positive output elementary super lift luo converter are derived by using state space average method. The simulation model of the positive output elementary super lift Luo converter with its control circuit is implemented in Matlab/Simulink. The HMSMC for positive output elementary super lift Luo converter is tested for line changes, load changes and also for components variations.

Keywords: DC-DC converter, Positive output elementarysuper lift Luo converter (POESLLC), Hysteresis modulation basedsliding mode control (HMSMC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2235
889 Quasilinearization–Barycentric Approach for Numerical Investigation of the Boundary Value Fin Problem

Authors: Alireza Rezaei, Fatemeh Baharifard, Kourosh Parand

Abstract:

In this paper we improve the quasilinearization method by barycentric Lagrange interpolation because of its numerical stability and computation speed to achieve a stable semi analytical solution. Then we applied the improved method for solving the Fin problem which is a nonlinear equation that occurs in the heat transferring. In the quasilinearization approach the nonlinear differential equation is treated by approximating the nonlinear terms by a sequence of linear expressions. The modified QLM is iterative but not perturbative and gives stable semi analytical solutions to nonlinear problems without depending on the existence of a smallness parameter. Comparison with some numerical solutions shows that the present solution is applicable.

Keywords: Quasilinearization method, Barycentric lagrange interpolation, nonlinear ODE, fin problem, heat transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1855
888 Derivative Spectrophotometry Applied to the Determination of Triprolidine Hydrochloride and Pseudoephedrine Hydrochloride in Tablets and Dissolution Testing

Authors: L. Sriphong, A. Chaidedgumjorn, K. Chaisuroj

Abstract:

A spectrophotometric method was developed for simultaneous quantification of pseudoephedrine hydrochloride (PSE) triprolidine hydrochloride (TRI) using second derivative method (zero-crossing technique). The second derivative amplitudes of PSE and TRI were measured at 271 and 321 nm, respectively. The calibration curves were linear in the range of 200 to 1,000 g/ml for PSE and 10 to 50 g/ml for TRI. The method was validated for specificity, accuracy, precision, limit of detection and limit of quantitation. The proposed method was applied to the assaying and dissolution of PSE and TRI in commercial tablets without any chemical separation. The results were compared with those obtained by the official USP31 method and statistical tests showed that there is no significant between the methods at 95% confidence level. The proposed method is simple, rapid and suitable for the routine quality control application. KeywordsTriprolidine, Pseudoephedrine, Derivative spectrophotometry, Dissolution testing.

Keywords: Triprolidine, Pseudoephedrine, Derivative spectrophotometry, Dissolution testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2232
887 Uniform Solution on the Effect of Internal Heat Generation on Rayleigh-Benard Convection in Micropolar Fluid

Authors: Izzati K. Khalid, Nor Fadzillah M. Mokhtar, Norihan Md. Arifin

Abstract:

The effect of internal heat generation is applied to the Rayleigh-Benard convection in a horizontal micropolar fluid layer. The bounding surfaces of the liquids are considered to be rigid-free, rigid-rigid and free-free with the combination of isothermal on the spin-vanishing boundaries. A linear stability analysis is used and the Galerkin method is employed to find the critical stability parameters numerically. It is shown that the critical Rayleigh number decreases as the value of internal heat generation increase and hence destabilize the system.

Keywords: Internal heat generation, micropolar fluid, rayleighbenard convection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2417
886 Clamped-clamped Boundary Conditions for Analysis Free Vibration of Functionally Graded Cylindrical Shell with a Ring based on Third Order Shear Deformation Theory

Authors: M.Pourmahmoud, M.Salmanzadeh, M.Mehrani, M.R.Isvandzibaei

Abstract:

In this paper a study on the vibration of thin cylindrical shells with ring supports and made of functionally graded materials (FGMs) composed of stainless steel and nickel is presented. Material properties vary along the thickness direction of the shell according to volume fraction power law. The cylindrical shells have ring supports which are arbitrarily placed along the shell and impose zero lateral deflections. The study is carried out based on third order shear deformation shell theory (T.S.D.T). The analysis is carried out using Hamilton-s principle. The governing equations of motion of FGM cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of ring support position and the influence of boundary conditions. The present analysis is validated by comparing results with those available in the literature.

Keywords: Vibration, FGM, Cylindrical shell, Hamilton'sprinciple, Ring support.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596
885 Empirical Analytical Modelling of Average Bond Stress and Anchorage of Tensile Bars in Reinforced Concrete

Authors: Maruful H. Mazumder, Raymond I. Gilbert

Abstract:

The design specifications for calculating development and lapped splice lengths of reinforcement in concrete are derived from a conventional empirical modelling approach that correlates experimental test data using a single mathematical equation. This paper describes part of a recently completed experimental research program to assess the effects of different structural parameters on the development length requirements of modern high strength steel reinforcing bars, including the case of lapped splices in large-scale reinforced concrete members. The normalized average bond stresses for the different variations of anchorage lengths are assessed according to the general form of a typical empirical analytical model of bond and anchorage. Improved analytical modelling equations are developed in the paper that better correlate the normalized bond strength parameters with the structural parameters of an empirical model of bond and anchorage.

Keywords: Bond stress, Development length, Lapped splice length, Reinforced concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2261
884 Modified Functional Link Artificial Neural Network

Authors: Ashok Kumar Goel, Suresh Chandra Saxena, Surekha Bhanot

Abstract:

In this work, a Modified Functional Link Artificial Neural Network (M-FLANN) is proposed which is simpler than a Multilayer Perceptron (MLP) and improves upon the universal approximation capability of Functional Link Artificial Neural Network (FLANN). MLP and its variants: Direct Linear Feedthrough Artificial Neural Network (DLFANN), FLANN and M-FLANN have been implemented to model a simulated Water Bath System and a Continually Stirred Tank Heater (CSTH). Their convergence speed and generalization ability have been compared. The networks have been tested for their interpolation and extrapolation capability using noise-free and noisy data. The results show that M-FLANN which is computationally cheap, performs better and has greater generalization ability than other networks considered in the work.

Keywords: DLFANN, FLANN, M-FLANN, MLP

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783
883 Urban Planning Formulation Problems in China and the Corresponding Optimization Ideas under the Vision of the Hypercycle Theory

Authors: Hong Dongchen, Chen Qiuxiao, Wu Shuang

Abstract:

Systematic Science reveals the complex nonlinear mechanisms of behavior in urban system. However, when confronted with such system, most city planners in China are still utilizing simple linear thinking to learn and understand this open complex giant system. In this paper, the hypercycle theory was introduced, which is one of the basis theories of systematic science. Based on the analysis of the reasons for the failure of current urban planning in China, and in consideration of the nonlinear characteristics of the urban system as well, optimization ideas for urban planning formulation were presented such as the shift from blueprint planning to progressive planning and from the rigid urban planning management control to its dynamically monitor and in time feedback.

Keywords: Systematic science, hypercycle theory, urban planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2325
882 A New Nonlinear Excitation Controller for Transient Stability Enhancement in Power Systems

Authors: M. Ouassaid, A. Nejmi, M. Cherkaoui, M. Maaroufi

Abstract:

The very nonlinear nature of the generator and system behaviour following a severe disturbance precludes the use of classical linear control technique. In this paper, a new approach of nonlinear control is proposed for transient and steady state stability analysis of a synchronous generator. The control law of the generator excitation is derived from the basis of Lyapunov stability criterion. The overall stability of the system is shown using Lyapunov technique. The application of the proposed controller to simulated generator excitation control under a large sudden fault and wide range of operating conditions demonstrates that the new control strategy is superior to conventional automatic voltage regulator (AVR), and show very promising results.

Keywords: Excitation control, Lyapunov technique, non linearcontrol, synchronous generator, transient stability, voltage regulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2598
881 A Hybrid Method for Determination of Effective Poles Using Clustering Dominant Pole Algorithm

Authors: Anuj Abraham, N. Pappa, Daniel Honc, Rahul Sharma

Abstract:

In this paper, an analysis of some model order reduction techniques is presented. A new hybrid algorithm for model order reduction of linear time invariant systems is compared with the conventional techniques namely Balanced Truncation, Hankel Norm reduction and Dominant Pole Algorithm (DPA). The proposed hybrid algorithm is known as Clustering Dominant Pole Algorithm (CDPA), is able to compute the full set of dominant poles and its cluster center efficiently. The dominant poles of a transfer function are specific eigenvalues of the state space matrix of the corresponding dynamical system. The effectiveness of this novel technique is shown through the simulation results.

Keywords: Balanced truncation, Clustering, Dominant pole, Hankel norm, Model reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2672
880 Non-Linear Control Based on State Estimation for the Convoy of Autonomous Vehicles

Authors: M-M. Mohamed Ahmed, Nacer K. M’Sirdi, Aziz Naamane

Abstract:

In this paper, a longitudinal and lateral control approach based on a nonlinear observer is proposed for a convoy of autonomous vehicles to follow a desired trajectory. To authors best knowledge, this topic has not yet been sufficiently addressed in the literature for the control of multi vehicles. The modeling of the convoy of the vehicles is revisited using a robotic method for simulation purposes and control design. With these models, a sliding mode observer is proposed to estimate the states of each vehicle in the convoy from the available sensors, then a sliding mode control based on this observer is used to control the longitudinal and lateral movement. The validation and performance evaluation are done using the well-known driving simulator Scanner-Studio. The results are presented for different maneuvers of 5 vehicles.

Keywords: Autonomous vehicles, convoy, nonlinear control, nonlinear observer, sliding mode.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 710
879 On the Development of a Homogenized Earthquake Catalogue for Northern Algeria

Authors: I. Grigoratos, R. Monteiro

Abstract:

Regions with a significant percentage of non-seismically designed buildings and reduced urban planning are particularly vulnerable to natural hazards. In this context, the project ‘Improved Tools for Disaster Risk Mitigation in Algeria’ (ITERATE) aims at seismic risk mitigation in Algeria. Past earthquakes in North Algeria caused extensive damages, e.g. the El Asnam 1980 moment magnitude (Mw) 7.1 and Boumerdes 2003 Mw 6.8 earthquakes. This paper will address a number of proposed developments and considerations made towards a further improvement of the component of seismic hazard. In specific, an updated earthquake catalog (until year 2018) is compiled, and new conversion equations to moment magnitude are introduced. Furthermore, a network-based method for the estimation of the spatial and temporal distribution of the minimum magnitude of completeness is applied. We found relatively large values for Mc, due to the sparse network, and a nonlinear trend between Mw and body wave (mb) or local magnitude (ML), which are the most common scales reported in the region. Lastly, the resulting b-value of the Gutenberg-Richter distribution is sensitive to the declustering method.

Keywords: Conversion equation, magnitude of completeness, seismic events, seismic hazard.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 796
878 The Economic Lot Scheduling Problem in Flow Lines with Sequence-Dependent Setups

Authors: M. Heydari, S. A. Torabi

Abstract:

The problem of lot sizing, sequencing and scheduling multiple products in flow line production systems has been studied by several authors. Almost all of the researches in this area assumed that setup times and costs are sequence –independent even though sequence dependent setups are common in practice. In this paper we present a new mixed integer non linear program (MINLP) and a heuristic method to solve the problem in sequence dependent case. Furthermore, a genetic algorithm has been developed which applies this constructive heuristic to generate initial population. These two proposed solution methods are compared on randomly generated problems. Computational results show a clear superiority of our proposed GA for majority of the test problems.

Keywords: Economic lot scheduling problem, finite horizon, genetic algorithm, mixed zero-one nonlinear programming, sequence-dependent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
877 Development of a Real Time Axial Force Measurement System and IoT-Based Monitoring for Smart Bearing

Authors: Hassam Ahmed, Yuanzhi Liu, Yassine Selami, Wei Tao, Hui Zhao

Abstract:

The purpose of this research is to develop a real time axial force measurement system for a smart bearing through the use of strain-gauges, whereby the data acquisition is performed by an Arduino microcontroller due to its easy manipulation and low-cost. The measured signal is acquired and then discretized using a Wheatstone Bridge and an Analog-Digital Converter (ADC) respectively. For bearing monitoring, a real time monitoring system based on Internet of things (IoT) and Bluetooth were developed. Experimental tests were performed on a bearing within a force range up to 600 kN. The experimental results show that there is a proportional linear relationship between the applied force and the output voltage, and the error R squared is within 0.9878 based on the regression analysis.

Keywords: Bearing, force measurement, IoT, strain gauge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 663
876 Determinants of the U.S. Current Account

Authors: Shuh Liang

Abstract:

This article provides empirical evidence on the effect of domestic and international factors on the U.S. current account deficit. Linear dynamic regression and vector autoregression models are employed to estimate the relationships during the period from 1986 to 2011. The findings of this study suggest that the current and lagged private saving rate and foreign current account for East Asian economies have played a vital role in affecting the U.S. current account. Additionally, using Granger causality tests and variance decompositions, the change of the productivity growth and foreign domestic demand are determined to influence significantly the change of the U.S. current account. To summarize, the empirical relationship between the U.S. current account deficit and its determinants is sensitive to alternative regression models and specifications.

Keywords: Current account deficit, productivity growth, foreign demand, vector autoregression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1699
875 Effect of Low Frequency Memory on High Power 12W LDMOS Transistors Intermodulation Distortion

Authors: A. Alghanim, J. Benedikt, P. J. Tasker

Abstract:

The increasing demand for higher data rates in wireless communication systems has led to the more effective and efficient use of all allocated frequency bands. In order to use the whole bandwidth at maximum efficiency, one needs to have RF power amplifiers with a higher linear level and memory-less performance. This is considered to be a major challenge to circuit designers. In this thesis the linearity and memory are studied and examined via the behavior of the intermodulation distortion (IMD). A major source of the in-band distortion can be shown to be influenced by the out-of-band impedances presented at either the input or the output of the device, especially those impedances terminated the low frequency (IF) components. Thus, in order to regulate the in-band distortion, the out of-band distortion must be controllable. These investigations are performed on a 12W LDMOS device characterised at 2.1 GHz within a purpose built, high-power measurement system.

Keywords: Low Frequency Memory, IntermodulationDistortion (IMD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1938
874 Analyzing of Noise inside a Simple Vehicle Cabin using Boundary Element Method

Authors: A. Soltani, M. Karimi Demneh

Abstract:

In this paper, modeling of an acoustic enclosed vehicle cabin has been carried out by using boundary element method. Also, the second purpose of this study is analyzing of linear wave equation in an acoustic field. The resultants of this modeling consist of natural frequencies that have been compared with resultants derived from finite element method. By using numerical method (boundary element method) and after solution of wave equation inside an acoustic enclosed cabin, this method has been progressed to simulate noise inside a simple vehicle cabin.

Keywords: Boundary element method, natural frequency, noise, vehicle cabin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2525
873 Dynamics of the Moving Ship at Complex and Sudden Impact of External Forces

Authors: Bo Liu, Liangtian Gao, Idrees Qasim

Abstract:

The impact of the storm leads to accidents even in the case of vessels that meet the computed safety criteria for stability. That is why, in order to clarify the causes of the accident and shipwreck, it is necessary to study the dynamics of the ship under the complex sudden impact of external forces. The task is to determine the movement and landing of the ship in the complex and sudden impact of external forces, i.e. when the ship's load changes over a relatively short period of time. For the solution, a technique was used to study the ship's dynamics, which is based on the compilation of a system of differential equations of motion. A coordinate system was adopted for the equation of motion of the hull and the determination of external forces. As a numerical method of integration, the 4th order Runge-Kutta method was chosen. The results of the calculation show that dynamic deviations were lower for high-altitude vessels. The study of the movement of the hull under a difficult situation is performed: receiving of cargo, impact of a flurry of wind and subsequent displacement of the cargo. The risk of overturning and flooding was assessed.

Keywords: Dynamics, statics, roll, trim, dynamic load, tilt, vertical displacement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 625
872 A Novel Approach of Route Choice in Stochastic Time-varying Networks

Authors: Siliang Wang, Minghui Wang

Abstract:

Many exist studies always use Markov decision processes (MDPs) in modeling optimal route choice in stochastic, time-varying networks. However, taking many variable traffic data and transforming them into optimal route decision is a computational challenge by employing MDPs in real transportation networks. In this paper we model finite horizon MDPs using directed hypergraphs. It is shown that the problem of route choice in stochastic, time-varying networks can be formulated as a minimum cost hyperpath problem, and it also can be solved in linear time. We finally demonstrate the significant computational advantages of the introduced methods.

Keywords: Markov decision processes (MDPs), stochastictime-varying networks, hypergraphs, route choice.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
871 Mathematical Modelling of Partially Filled Fluid Coupling Behaviour

Authors: A. M. Maqableh

Abstract:

Modelling techniques for a fluid coupling taken from published literature have been extended to include the effects of the filling and emptying of the coupling with oil and the variation in losses when the coupling is partially full. In the model, the fluid flow inside the coupling is considered to have two principal velocity components; one circumferentially about the coupling axis (centrifugal head) and the other representing the secondary vortex within the coupling itself (vortex head). The calculation of liquid mass flow rate circulating between the two halves of the coupling is based on: the assumption of a linear velocity variation in the circulating vortex flow; the head differential in the fluid due to the speed difference between the two shafts; and the losses in the circulating vortex flow as a result of the impingement of the flow with the blades in the coupling and friction within the passages between the blades.

Keywords: Fluid Coupling, Mathematical Modelling, partially filled.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2069
870 Angle of Arrival Estimation Using Maximum Likelihood Method

Authors: H. K. Hwang, Zekeriya Aliyazicioglu, Solomon Wu, Hung Lu, Nick Wilkins, Daniel Kerr

Abstract:

Multiple-input multiple-output (MIMO) radar has received increasing attention in recent years. MIMO radar has many advantages over conventional phased array radar such as target detection,resolution enhancement, and interference suppression. In this paper, the results are presented from a simulation study of MIMO uniformly-spaced linear array (ULA) antennas. The performance is investigated under varied parameters, including varied array size, pseudo random (PN) sequence length, number of snapshots, and signal to noise ratio (SNR). The results of MIMO are compared to a traditional array antenna.

Keywords: Multiple-input multiple-output (MIMO) radar, phased array antenna, target detection, radar signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2788
869 The Performance Improvement of the Target Position Determining System in Laser Tracking Based on 4Q Detector using Neural Network

Authors: A. Salmanpour, Sh. Mohammad Nejad

Abstract:

One of the methods for detecting the target position error in the laser tracking systems is using Four Quadrant (4Q) detectors. If the coordinates of the target center is yielded through the usual relations of the detector outputs, the results will be nonlinear, dependent on the shape, target size and its position on the detector screen. In this paper we have designed an algorithm with using neural network that coordinates of the target center in laser tracking systems is calculated by using detector outputs obtained from visual modeling. With this method, the results except from the part related to the detector intrinsic limitation, are linear and dependent from the shape and target size.

Keywords: four quadrant detector, laser tracking system, rangefinder, tracking sensor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2188
868 Numerical Solution of a Laminar Viscous Flow Boundary Layer Equation Using Uniform Haar Wavelet Quasi-linearization Method

Authors: Harpreet Kaur, Vinod Mishra, R. C. Mittal

Abstract:

In this paper, we have proposed a Haar wavelet quasilinearization method to solve the well known Blasius equation. The method is based on the uniform Haar wavelet operational matrix defined over the interval [0, 1]. In this method, we have proposed the transformation for converting the problem on a fixed computational domain. The Blasius equation arises in the various boundary layer problems of hydrodynamics and in fluid mechanics of laminar viscous flows. Quasi-linearization is iterative process but our proposed technique gives excellent numerical results with quasilinearization for solving nonlinear differential equations without any iteration on selecting collocation points by Haar wavelets. We have solved Blasius equation for 1≤α ≤ 2 and the numerical results are compared with the available results in literature. Finally, we conclude that proposed method is a promising tool for solving the well known nonlinear Blasius equation.

Keywords: Boundary layer Blasius equation, collocation points, quasi-linearization process, uniform haar wavelets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3256
867 Application of BP Neural Network Model in Sports Aerobics Performance Evaluation

Authors: Shuhe Shao

Abstract:

This article provides partial evaluation index and its standard of sports aerobics, including the following 12 indexes: health vitality, coordination, flexibility, accuracy, pace, endurance, elasticity, self-confidence, form, control, uniformity and musicality. The three-layer BP artificial neural network model including input layer, hidden layer and output layer is established. The result shows that the model can well reflect the non-linear relationship between the performance of 12 indexes and the overall performance. The predicted value of each sample is very close to the true value, with a relative error fluctuating around of 5%, and the network training is successful. It shows that BP network has high prediction accuracy and good generalization capacity if being applied in sports aerobics performance evaluation after effective training.

Keywords: BP neural network, sports aerobics, performance, evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604
866 A Compact Quasi-Zero Stiffness Vibration Isolator Using Flexure-Based Spring Mechanisms Capable of Tunable Stiffness

Authors: Thanh-Phong Dao, Shyh-Chour Huang

Abstract:

This study presents a quasi-zero stiffness (QZS) vibration isolator using flexure-based spring mechanisms which afford both negative and positive stiffness elements, which enable self-adjustment. The QZS property of the isolator is achieved at the equilibrium position. A nonlinear mathematical model is then developed, based on the pre-compression of the flexure-based spring mechanisms. The dynamics are further analyzed using the Harmonic Balance method. The vibration attention efficiency is illustrated using displacement transmissibility, which is then compared with the corresponding linear isolator. The effects of parameters on performance are also investigated by numerical solutions. The flexure-based spring mechanisms are subsequently designed using the concept of compliant mechanisms, with evaluation by ANSYS software, and simulations of the QZS isolator.

Keywords: Vibration isolator, quasi-zero stiffness, flexure-based spring mechanisms, compliant mechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2122
865 60 GHz Multi-Sector Antenna Array with Switchable Radiation-Beams for Small Cell 5G Networks

Authors: N. Ojaroudi Parchin, H. Jahanbakhsh Basherlou, Y. Al-Yasir, A. M. Abdulkhaleq, R. A. Abd-Alhameed, P. S. Excell

Abstract:

A compact design of multi-sector patch antenna array for 60 GHz applications is presented and discussed in details. The proposed design combines five 1x8 linear patch antenna arrays, referred to as sectors, in a multi-sector configuration. The coaxial-fed radiation elements of the multi-sector array are designed on 0.2 mm Rogers RT5880 dielectrics. The array operates in the frequency range of 58-62 GHz and provides switchable directional/omnidirectional radiation beams with high gain and high directivity characteristics. The designed multi-sector array exhibits good performances and could be used in the fifth generation (5G) cellular networks.

Keywords: MM-wave communications, multi-sector array, patch antenna, small cell networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 947
864 Solving Partially Monotone Problems with Neural Networks

Authors: Marina Velikova, Hennie Daniels, Ad Feelders

Abstract:

In many applications, it is a priori known that the target function should satisfy certain constraints imposed by, for example, economic theory or a human-decision maker. Here we consider partially monotone problems, where the target variable depends monotonically on some of the predictor variables but not all. We propose an approach to build partially monotone models based on the convolution of monotone neural networks and kernel functions. The results from simulations and a real case study on house pricing show that our approach has significantly better performance than partially monotone linear models. Furthermore, the incorporation of partial monotonicity constraints not only leads to models that are in accordance with the decision maker's expertise, but also reduces considerably the model variance in comparison to standard neural networks with weight decay.

Keywords: Mixture models, monotone neural networks, partially monotone models, partially monotone problems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1606
863 Analysis of Heart Beat Dynamics through Singularity Spectrum

Authors: Harish Kumar, Hussein Yahia, Oriol Pont, Michel Haissaguerre, Nicolas Derval, Meleze Hocini

Abstract:

The analysis to detect arrhythmias and life-threatening conditions are highly essential in today world and this analysis can be accomplished by advanced non-linear processing methods for accurate analysis of the complex signals of heartbeat dynamics. In this perspective, recent developments in the field of multiscale information content have lead to the Microcanonical Multiscale Formalism (MMF). We show that such framework provides several signal analysis techniques that are especially adapted to the study of heartbeat dynamics. In this paper, we just show first hand results of whether the considered heartbeat dynamics signals have the multiscale properties by computing local preticability exponents (LPEs) and the Unpredictable Points Manifold (UPM), and thereby computing the singularity spectrum.

Keywords: Microcanonical Multiscale Formalism (MMF), UnpredictablePoints Manifold (UPM), Heartbeat Dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1503
862 Comparison of Back-Projection with Non-Uniform Fast Fourier Transform for Real-Time Photoacoustic Tomography

Authors: Moung Young Lee, Chul Gyu Song

Abstract:

Photoacoustic imaging is the imaging technology that combines the optical imaging and ultrasound. This provides the high contrast and resolution due to optical imaging and ultrasound imaging, respectively. We developed the real-time photoacoustic tomography (PAT) system using linear-ultrasound transducer and digital acquisition (DAQ) board. There are two types of algorithm for reconstructing the photoacoustic signal. One is back-projection algorithm, the other is FFT algorithm. Especially, we used the non-uniform FFT algorithm. To evaluate the performance of our system and algorithms, we monitored two wires that stands at interval of 2.89 mm and 0.87 mm. Then, we compared the images reconstructed by algorithms. Finally, we monitored the two hairs crossed and compared between these algorithms.

Keywords: Back-projection, image comparison, non-uniform FFT, photoacoustic tomography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1871
861 Risk Assessment in Durations and Costs for Construction of Industrial Facilities in Egypt Using Equations and Computer

Authors: M. Kamal Elbokl, Negadi Kheira

Abstract:

Risk Evaluation is an important step in protecting your workers and your business, as well as complying with the law. It helps you focus on the risks that really matter in your workplace – the ones with the potential to cause real harm. We are in this paper introduce basics of risk assessment then we mention some of ways to risk evaluation by computer especially Monte Carlo simulation and Microsoft project.

We use Program Evaluation and Review Technique (PERT) to deal with Risks in Industrial Facilities in Evaluation and Assessment for this risk. Using PERT Technique in Microsoft Project by the PERT toolbar and using PERTMASTER Program with Primavera Program we evaluate many hazards and make calculations for that by mathematical equation to make right decisions. We define and calculate risk factor and risk severity to ranking the type of the risk then dealing with it using in that many ways like probability computation, curves, and tables. By introducing variables in the equation of functions in computer programs we calculate the risk in the time and the cost in general case and then mention some examples in industrial facilities field.

Keywords: Risk, Industrial Facilities, PERT, Monte Carlo Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1934