Search results for: Social Network Sites
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4499

Search results for: Social Network Sites

2369 Multidimensional Sports Spectators Segmentation and Social Media Marketing

Authors: B. Schmid, C. Kexel, E. Djafarova

Abstract:

Understanding consumers is elementary for practitioners in marketing. Consumers of sports events, the sports spectators, are a particularly complex consumer crowd. In order to identify and define their profiles different segmentation approaches can be found in literature, one of them being multidimensional segmentation. Multidimensional segmentation models correspond to the broad range of attitudes, behaviours, motivations and beliefs of sports spectators, other than earlier models. Moreover, in sports there are some well-researched disciplines (e.g. football or North American sports) where consumer profiles and marketing strategies are elaborate and others where no research at all can be found. For example, there is almost no research on athletics spectators. This paper explores the current state of research on sports spectators segmentation. An in-depth literature review provides the framework for a spectators segmentation in athletics. On this basis, additional potential consumer groups and implications for social media marketing will be explored. The findings are the basis for further research.

Keywords: Multidimensional segmentation, social media, sports marketing, sports spectators segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2613
2368 Air Quality Forecast Based on Principal Component Analysis-Genetic Algorithm and Back Propagation Model

Authors: Bin Mu, Site Li, Shijin Yuan

Abstract:

Under the circumstance of environment deterioration, people are increasingly concerned about the quality of the environment, especially air quality. As a result, it is of great value to give accurate and timely forecast of AQI (air quality index). In order to simplify influencing factors of air quality in a city, and forecast the city’s AQI tomorrow, this study used MATLAB software and adopted the method of constructing a mathematic model of PCA-GABP to provide a solution. To be specific, this study firstly made principal component analysis (PCA) of influencing factors of AQI tomorrow including aspects of weather, industry waste gas and IAQI data today. Then, we used the back propagation neural network model (BP), which is optimized by genetic algorithm (GA), to give forecast of AQI tomorrow. In order to verify validity and accuracy of PCA-GABP model’s forecast capability. The study uses two statistical indices to evaluate AQI forecast results (normalized mean square error and fractional bias). Eventually, this study reduces mean square error by optimizing individual gene structure in genetic algorithm and adjusting the parameters of back propagation model. To conclude, the performance of the model to forecast AQI is comparatively convincing and the model is expected to take positive effect in AQI forecast in the future.

Keywords: AQI forecast, principal component analysis, genetic algorithm, back propagation neural network model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1029
2367 Organisational Blogging: Reviewing Its Effectiveness as an Organisational Learning Tool

Authors: Gavin J. Baxter, Mark H. Stansfield

Abstract:

This paper reviews the internal use of blogs and their potential effectiveness as organisational learning tools. Since the emergence of the concept of ‘Enterprise 2.0’ there remains a lack of empirical evidence associated with how organisations are applying social media tools and whether they are effective towards supporting organisational learning. Surprisingly, blogs, one of the more traditional social media tools, still remains under-researched in the context of ‘Enterprise 2.0’ and organisational learning. The aim of this paper is to identify the theoretical linkage between blogs and organisational learning in addition to reviewing prior research on organisational blogging exploring why this area remains underresearched. Through a literature review, one of the principal findings of this paper is that organisational blogs have a mutual compatibility with the interpretivist aspect of organisational learning. This paper further advocates that further empirical work in this subject area is required to substantiate this theoretical assumption.

Keywords: Blogs, Enterprise 2.0, Organisational Learning, Social Media Tools.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2122
2366 Implementing a Visual Servoing System for Robot Controlling

Authors: Maryam Vafadar, Alireza Behrad, Saeed Akbari

Abstract:

Nowadays, with the emerging of the new applications like robot control in image processing, artificial vision for visual servoing is a rapidly growing discipline and Human-machine interaction plays a significant role for controlling the robot. This paper presents a new algorithm based on spatio-temporal volumes for visual servoing aims to control robots. In this algorithm, after applying necessary pre-processing on video frames, a spatio-temporal volume is constructed for each gesture and feature vector is extracted. These volumes are then analyzed for matching in two consecutive stages. For hand gesture recognition and classification we tested different classifiers including k-Nearest neighbor, learning vector quantization and back propagation neural networks. We tested the proposed algorithm with the collected data set and results showed the correct gesture recognition rate of 99.58 percent. We also tested the algorithm with noisy images and algorithm showed the correct recognition rate of 97.92 percent in noisy images.

Keywords: Back propagation neural network, Feature vector, Hand gesture recognition, k-Nearest Neighbor, Learning vector quantization neural network, Robot control, Spatio-temporal volume, Visual servoing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670
2365 Digital Sites- Performative Views

Authors: Gavin Perin, Linda Matthews

Abstract:

Webcam systems now function as the new privileged vantage points from which to view the city. This transformation of CCTV technology from surveillance to promotional tool is significant because its'scopic regime' presents, back to the public, a new virtual 'site' that sits alongside its real-time counterpart. Significantly, thisraw 'image' data can, in fact,be co-optedand processed so as to disrupt their original purpose. This paper will demonstrate this disruptive capacity through an architectural project. It will reveal how the adaption the webcam image offers a technical springboard by which to initiate alternate urban form making decisions and subvert the disciplinary reliance on the 'flat' orthographic plan. In so doing, the paper will show how this 'digital material' exceeds the imagistic function of the image; shiftingit from being a vehicle of signification to a site of affect.

Keywords: Surveillance, virtual, scopic, additive

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1285
2364 Deep Learning Application for Object Image Recognition and Robot Automatic Grasping

Authors: Shiuh-Jer Huang, Chen-Zon Yan, C. K. Huang, Chun-Chien Ting

Abstract:

Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.

Keywords: Deep learning, image processing, convolution neural network, YOLOv2, 7A6 series manipulator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1095
2363 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets

Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi

Abstract:

Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.

Keywords: Breast cancer, health diagnosis, Machine Learning, biomarker classification, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 321
2362 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks

Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone

Abstract:

Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.

Keywords: Artificial Neural Network, Data Mining, Electroencephalogram, Epilepsy, Feature Extraction, Seizure Detection, Signal Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1314
2361 Corporate Social Responsibility in an Experimental Market

Authors: Nikolaos Georgantzis, Efi Vasileiou

Abstract:

We present results from experimental price-setting oligopolies in which green firms undertake different levels of energy-saving investments motivated by public subsidies and demand-side advantages. We find that consumers reveal higher willingness to pay for greener sellers’ products. This observation in conjunction to the fact that greener sellers set higher prices is compatible with the use and interpretation of energy-saving behaviour as a differentiation strategy. However, sellers do not exploit the resulting advantage through sufficiently high price-cost margins, because they seem trapped into “run to stay still” competition. Regarding the use of public subsidies to energy-saving sellers we uncover an undesirable crowding-out effect of consumers’ intrinsic tendency to support green manufacturers. Namely, consumers may be less willing to support a green seller whose energy-saving strategy entails a direct financial benefit. Finally, we disentangle two alternative motivations for consumer’s attractions to pro-social firms; first, the self-interested recognition of the firm’s contribution to the public and private welfare and, second, the need to compensate a firm for the cost entailed in each pro-social action. Our results show the prevalence of the former over the latter.

Keywords: Corporate social responsibility, energy savings, public good, experiments, vertical differentiation, altruism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2115
2360 Addictive Use Due to Personality: Focused on Big Five Personality Traits and Game Addiction

Authors: Eui Jun Jeong, Hye Rim Lee

Abstract:

This study examined whether big five personality traits affect game addiction with control of psychological, social, and demographic factors. Specifically, using data from a survey of 789 game users in Korea, we conducted a regression analysis to see the associations of psychological (loneliness/depression), social (activities with family/friends), self-efficacy (game/general), gaming (daily gaming time/perception), demographic (age/gender), and personality traits (extraversion, neuroticism conscientiousness, agreeableness, & openness) with the degree of game addiction. Results showed that neuroticism increase game addiction with no effect of extraversion on the addiction. General self-efficacy negatively affected game addiction, whereas game self-efficacy increased the degree of game addiction. Loneliness enhanced game addiction while depression showed a negative effect on the addiction. Results and implications are discussed.

Keywords: Game addiction, big five personality, social activities, self-efficacy, loneliness, depression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4965
2359 Data Projects for “Social Good”: Challenges and Opportunities

Authors: Mikel Niño, Roberto V. Zicari, Todor Ivanov, Kim Hee, Naveed Mushtaq, Marten Rosselli, Concha Sánchez-Ocaña, Karsten Tolle, José Miguel Blanco, Arantza Illarramendi, Jörg Besier, Harry Underwood

Abstract:

One of the application fields for data analysis techniques and technologies gaining momentum is the area of social good or “common good”, covering cases related to humanitarian crises, global health care, or ecology and environmental issues, among others. The promotion of data-driven projects in this field aims at increasing the efficacy and efficiency of social initiatives, improving the way these actions help humanity in general and people in need in particular. This application field, however, poses its own barriers and challenges when developing data-driven projects, lagging behind in comparison with other scenarios. These challenges derive from aspects such as the scope and scale of the social issue to solve, cultural and political barriers, the skills of main stakeholders and the technological resources available, the motivation to be engaged in such projects, or the ethical and legal issues related to sensitive data. This paper analyzes the application of data projects in the field of social good, reviewing its current state and noteworthy initiatives, and presenting a framework covering the key aspects to analyze in such projects. The goal is to provide guidelines to understand the main challenges and opportunities for this type of data project, as well as identifying the main differential issues compared to “classical” data projects in general. A case study is presented on the initial steps and stakeholder analysis of a data project for the inclusion of refugees in the city of Frankfurt, Germany, in order to empirically confront the framework with a real example.

Keywords: Data-Driven projects, humanitarian operations, personal and sensitive data, social good, stakeholders analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1795
2358 Intellectual Capital Research through Corporate Social Responsibility: (Re) Constructing the Agenda

Authors: Camelia Iuliana Lungu, Chirața Caraiani, Cornelia Dascălu

Abstract:

The business strategy of any company wanting to be competitive on the market should be designed around the concept of intangibles, with an increasingly decisive role in knowledge transfer of the biggest corporations. Advancing the research in these areas, this study integrates the two approaches, emphasizing the relationships between the components of intellectual capital and corporate social responsibility. The three dimensions of intellectual capital in terms of sustainability requirements are debated. The paper introduces the concept of sustainable intellectual capital and debates it within an assessment model designed on the base of key performance indicators. The results refer to the assessment of possible ways for including the information on intellectual capital and corporate responsibility within the corporate strategy. The conclusions enhance the need for companies to be ready to support the integration of this type of information the knowledge transfer process, in order to develop competitive advantage on the market.

Keywords: Corporate social responsibility, corporate strategy, intellectual capital, sustainability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2677
2357 A Security Model of Voice Eavesdropping Protection over Digital Networks

Authors: Supachai Tangwongsan, Sathaporn Kassuvan

Abstract:

The purpose of this research is to develop a security model for voice eavesdropping protection over digital networks. The proposed model provides an encryption scheme and a personal secret key exchange between communicating parties, a so-called voice data transformation system, resulting in a real-privacy conversation. The operation of this system comprises two main steps as follows: The first one is the personal secret key exchange for using the keys in the data encryption process during conversation. The key owner could freely make his/her choice in key selection, so it is recommended that one should exchange a different key for a different conversational party, and record the key for each case into the memory provided in the client device. The next step is to set and record another personal option of encryption, either taking all frames or just partial frames, so-called the figure of 1:M. Using different personal secret keys and different sets of 1:M to different parties without the intervention of the service operator, would result in posing quite a big problem for any eavesdroppers who attempt to discover the key used during the conversation, especially in a short period of time. Thus, it is quite safe and effective to protect the case of voice eavesdropping. The results of the implementation indicate that the system can perform its function accurately as designed. In this regard, the proposed system is suitable for effective use in voice eavesdropping protection over digital networks, without any requirements to change presently existing network systems, mobile phone network and VoIP, for instance.

Keywords: Computer Security, Encryption, Key Exchange, Security Model, Voice Eavesdropping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581
2356 Comparative Studies on the Concentration of Some Heavy Metal in Urban Particulate Matter, Bangkok, Thailand

Authors: Sivapan Choo-In

Abstract:

The main objective of this study was to investigate particulate matter concentration on main and secondary roadsides in urban area and study the concentration of some heavy metals including lead (Pb), zinc (Zn), copper (Cu) and cadmium (Cd) in particulate matter in the Bangkok area.     

  The averaged particle concentration for main roadsides is higher than secondary roadsides. The particulate matter less than 10 micron concentration contribute the majority of the Total Suspended Particulate matter for main roads and zinc concentrations were higher than copper and lead for both sites.

Keywords: Air Pollution, Air Quality, Pollution and monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2033
2355 Simulation of Online Communities Using MAS Social and Spatial Organisations

Authors: Maya Rupert, Salima Hassas, Carlos Li, John Sherwood

Abstract:

Online Communities are an example of sociallyaware, self-organising, complex adaptive computing systems. The multi-agent systems (MAS) paradigm coordinated by self-organisation mechanisms has been used as an effective way for the simulation and modeling of such systems. In this paper, we propose a model for simulating an online health community using a situated multi-agent system approach, governed by the co-evolution of the social and spatial organisations of the agents.

Keywords: multi-agent systems, organizations, online communities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1365
2354 ECG Based Reliable User Identification Using Deep Learning

Authors: R. N. Begum, Ambalika Sharma, G. K. Singh

Abstract:

Identity theft has serious ramifications beyond data and personal information loss. This necessitates the implementation of robust and efficient user identification systems. Therefore, automatic biometric recognition systems are the need of the hour, and electrocardiogram (ECG)-based systems are unquestionably the best choice due to their appealing inherent characteristics. The Convolutional Neural Networks (CNNs) are the recent state-of-the-art techniques for ECG-based user identification systems. However, the results obtained are significantly below standards, and the situation worsens as the number of users and types of heartbeats in the dataset grows. As a result, this study proposes a highly accurate and resilient ECG-based person identification system using CNN's dense learning framework. The proposed research explores explicitly the caliber of dense CNNs in the field of ECG-based human recognition. The study tests four different configurations of dense CNN which are trained on a dataset of recordings collected from eight popular ECG databases. With the highest False Acceptance Rate (FAR)  of 0.04% and the highest False Rejection Rate (FRR)  of 5%, the best performing network achieved an identification accuracy of 99.94%. The best network is also tested with various train/test split ratios. The findings show that DenseNets are not only extremely reliable, but also highly efficient. Thus, they might also be implemented in real-time ECG-based human recognition systems.

Keywords: Biometrics, dense networks, identification rate, train/test split ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 541
2353 A New Variant of RC4 Stream Cipher

Authors: Lae Lae Khine

Abstract:

RC4 was used as an encryption algorithm in WEP(Wired Equivalent Privacy) protocol that is a standardized for 802.11 wireless network. A few attacks followed, indicating certain weakness in the design. In this paper, we proposed a new variant of RC4 stream cipher. The new version of the cipher does not only appear to be more secure, but its keystream also has large period, large complexity and good statistical properties.

Keywords: Cryptography, New variant, RC4, Stream Cipher.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911
2352 Social Media Idea Ontology: A Concept for Semantic Search of Product Ideas in Customer Knowledge through User-Centered Metrics and Natural Language Processing

Authors: Martin H¨ausl, Maximilian Auch, Johannes Forster, Peter Mandl, Alexander Schill

Abstract:

In order to survive on the market, companies must constantly develop improved and new products. These products are designed to serve the needs of their customers in the best possible way. The creation of new products is also called innovation and is primarily driven by a company’s internal research and development department. However, a new approach has been taking place for some years now, involving external knowledge in the innovation process. This approach is called open innovation and identifies customer knowledge as the most important source in the innovation process. This paper presents a concept of using social media posts as an external source to support the open innovation approach in its initial phase, the Ideation phase. For this purpose, the social media posts are semantically structured with the help of an ontology and the authors are evaluated using graph-theoretical metrics such as density. For the structuring and evaluation of relevant social media posts, we also use the findings of Natural Language Processing, e. g. Named Entity Recognition, specific dictionaries, Triple Tagger and Part-of-Speech-Tagger. The selection and evaluation of the tools used are discussed in this paper. Using our ontology and metrics to structure social media posts enables users to semantically search these posts for new product ideas and thus gain an improved insight into the external sources such as customer needs.

Keywords: Idea ontology, innovation management, open innovation, semantic search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 785
2351 Road Traffic Accidents Analysis in Mexico City through Crowdsourcing Data and Data Mining Techniques

Authors: Gabriela V. Angeles Perez, Jose Castillejos Lopez, Araceli L. Reyes Cabello, Emilio Bravo Grajales, Adriana Perez Espinosa, Jose L. Quiroz Fabian

Abstract:

Road traffic accidents are among the principal causes of traffic congestion, causing human losses, damages to health and the environment, economic losses and material damages. Studies about traditional road traffic accidents in urban zones represents very high inversion of time and money, additionally, the result are not current. However, nowadays in many countries, the crowdsourced GPS based traffic and navigation apps have emerged as an important source of information to low cost to studies of road traffic accidents and urban congestion caused by them. In this article we identified the zones, roads and specific time in the CDMX in which the largest number of road traffic accidents are concentrated during 2016. We built a database compiling information obtained from the social network known as Waze. The methodology employed was Discovery of knowledge in the database (KDD) for the discovery of patterns in the accidents reports. Furthermore, using data mining techniques with the help of Weka. The selected algorithms was the Maximization of Expectations (EM) to obtain the number ideal of clusters for the data and k-means as a grouping method. Finally, the results were visualized with the Geographic Information System QGIS.

Keywords: Data mining, K-means, road traffic accidents, Waze, Weka.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1215
2350 Prediction of Road Accidents in Qatar by 2022

Authors: M. Abou-Amouna, A. Radwan, L. Al-kuwari, A. Hammuda, K. Al-Khalifa

Abstract:

There is growing concern over increasing incidences of road accidents and consequent loss of human life in Qatar. In light to the future planned event in Qatar, World Cup 2022; Qatar should put into consideration the future deaths caused by road accidents, and past trends should be considered to give a reasonable picture of what may happen in the future. Qatar roads should be arranged and paved in a way that accommodate high capacity of the population in that time, since then there will be a huge number of visitors from the world. Qatar should also consider the risk issues of road accidents raised in that period, and plan to maintain high level to safety strategies. According to the increase in the number of road accidents in Qatar from 1995 until 2012, an analysis of elements affecting and causing road accidents will be effectively studied. This paper aims to identify and criticize the factors that have high effect on causing road accidents in the state of Qatar, and predict the total number of road accidents in Qatar 2022. Alternative methods are discussed and the most applicable ones according to the previous researches are selected for further studies. The methods that satisfy the existing case in Qatar were the multiple linear regression model (MLR) and artificial neutral network (ANN). Those methods are analyzed and their findings are compared. We conclude that by using MLR the number of accidents in 2022 will become 355,226 accidents, and by using ANN 216,264 accidents. We conclude that MLR gave better results than ANN because the artificial neutral network doesn’t fit data with large range varieties.

Keywords: Road Safety, Prediction, Accident, Model, Qatar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2632
2349 A Pattern Recognition Neural Network Model for Detection and Classification of SQL Injection Attacks

Authors: Naghmeh Moradpoor Sheykhkanloo

Abstract:

Thousands of organisations store important and confidential information related to them, their customers, and their business partners in databases all across the world. The stored data ranges from less sensitive (e.g. first name, last name, date of birth) to more sensitive data (e.g. password, pin code, and credit card information). Losing data, disclosing confidential information or even changing the value of data are the severe damages that Structured Query Language injection (SQLi) attack can cause on a given database. It is a code injection technique where malicious SQL statements are inserted into a given SQL database by simply using a web browser. In this paper, we propose an effective pattern recognition neural network model for detection and classification of SQLi attacks. The proposed model is built from three main elements of: a Uniform Resource Locator (URL) generator in order to generate thousands of malicious and benign URLs, a URL classifier in order to: 1) classify each generated URL to either a benign URL or a malicious URL and 2) classify the malicious URLs into different SQLi attack categories, and a NN model in order to: 1) detect either a given URL is a malicious URL or a benign URL and 2) identify the type of SQLi attack for each malicious URL. The model is first trained and then evaluated by employing thousands of benign and malicious URLs. The results of the experiments are presented in order to demonstrate the effectiveness of the proposed approach.

Keywords: Neural Networks, pattern recognition, SQL injection attacks, SQL injection attack classification, SQL injection attack detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2844
2348 Employees- Perceptions and Expectations toward Corporate Social Responsibility: A Case Study of Private Company Employees in Bangkok Metropolitan Area

Authors: Natta Changchutoe

Abstract:

This research aimed to study employees- perceptions and expectations toward their organization-s corporate social responsibility (CSR), to study the differences between employees- personal factors and level of perceptions and expectations toward CSR, and to study the relationship between employees- perceptions and expectations toward CSR. Purposive sampling and questionnaire were applied to collect information from 400 private company employees in Bangkok metropolitan area. The results revealed that employees had “high" level of perceptions and expectations toward CSR, of which the highest level were given on the area of “corporate governance and transparency". It was found that there was different level of expectations of employees with different period of employment, position and employment (by listed and non-listed companies). Employees of different age and period of employment also had different level of expectations. Employees- perceptions were correlated with their expectations toward CSR.

Keywords: Employees, Perceptions, Expectations, Corporate Social Responsibility (CSR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4123
2347 Artificial Neural Network Modeling and Genetic Algorithm Based Optimization of Hydraulic Design Related to Seepage under Concrete Gravity Dams on Permeable Soils

Authors: Muqdad Al-Juboori, Bithin Datta

Abstract:

Hydraulic structures such as gravity dams are classified as essential structures, and have the vital role in providing strong and safe water resource management. Three major aspects must be considered to achieve an effective design of such a structure: 1) The building cost, 2) safety, and 3) accurate analysis of seepage characteristics. Due to the complexity and non-linearity relationships of the seepage process, many approximation theories have been developed; however, the application of these theories results in noticeable errors. The analytical solution, which includes the difficult conformal mapping procedure, could be applied for a simple and symmetrical problem only. Therefore, the objectives of this paper are to: 1) develop a surrogate model based on numerical simulated data using SEEPW software to approximately simulate seepage process related to a hydraulic structure, 2) develop and solve a linked simulation-optimization model based on the developed surrogate model to describe the seepage occurring under a concrete gravity dam, in order to obtain optimum and safe design at minimum cost. The result shows that the linked simulation-optimization model provides an efficient and optimum design of concrete gravity dams.

Keywords: Artificial neural network, concrete gravity dam, genetic algorithm, seepage analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1377
2346 Collaborative and Content-based Recommender System for Social Bookmarking Website

Authors: Cheng-Lung Huang, Cheng-Wei Lin

Abstract:

This study proposes a new recommender system based on the collaborative folksonomy. The purpose of the proposed system is to recommend Internet resources (such as books, articles, documents, pictures, audio and video) to users. The proposed method includes four steps: creating the user profile based on the tags, grouping the similar users into clusters using an agglomerative hierarchical clustering, finding similar resources based on the user-s past collections by using content-based filtering, and recommending similar items to the target user. This study examines the system-s performance for the dataset collected from “del.icio.us," which is a famous social bookmarking website. Experimental results show that the proposed tag-based collaborative and content-based filtering hybridized recommender system is promising and effectiveness in the folksonomy-based bookmarking website.

Keywords: Collaborative recommendation, Folksonomy, Social tagging

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2248
2345 Strategic Corporate Social Responsibility: Literature Review and Value Chain Activities Filter

Authors: Zeeshan Hamid, Sarwar Mehmood Azhar, Hammad Basir

Abstract:

In today’s era, it is no news that organizations should demonstrate honest conduct as well as ethical administration. Therefore, the concept of corporate social responsibility (subsequently CSR) has created its tag upon the company’s focal point as well as marketing communications, and will continue in the future. The importance of CSR has increased in the last decade, and this concept has attracted global attention. The notion of CSR has strategic significance for many organizations. However, businesses are not adapting the activities of CSR that benefit to all of its stakeholders (including society). The main reason is the practitioners are unfortunately unable to comprehend its importance; and therefore, the activities of the CSR are so detached from the business activities. Hence, it is required to develop an understanding that the activities of CSR are not only beneficial for the society but it also benefit to business. This paper focuses on the concept of strategic CSR, and develops a theoretical framework that will help practitioners to filter and chose the activities of CSR that are strategic in nature.

Keywords: Economic responsibility, ethical responsibility, legal responsibility, philanthropic responsibility, strategic corporate social responsibility, value chain activities filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3836
2344 An Extended Domain-Specific Modeling Language for Marine Observatory Relying on Enterprise Architecture

Authors: Charbel Geryes Aoun, Loic Lagadec

Abstract:

A Sensor Network (SN) is considered as an operation of two phases: (1) the observation/measuring, which means the accumulation of the gathered data at each sensor node; (2) transferring the collected data to some processing center (e.g. Fusion Servers) within the SN. Therefore, an underwater sensor network can be defined as a sensor network deployed underwater that monitors underwater activity. The deployed sensors, such as hydrophones, are responsible for registering underwater activity and transferring it to more advanced components. The process of data exchange between the aforementioned components perfectly defines the Marine Observatory (MO) concept which provides information on ocean state, phenomena and processes. The first step towards the implementation of this concept is defining the environmental constraints and the required tools and components (Marine Cables, Smart Sensors, Data Fusion Server, etc). The logical and physical components that are used in these observatories perform some critical functions such as the localization of underwater moving objects. These functions can be orchestrated with other services (e.g. military or civilian reaction). In this paper, we present an extension to our MO meta-model that is used to generate a design tool (ArchiMO). We propose constraints to be taken into consideration at design time. We illustrate our proposal with an example from the MO domain. Additionally, we generate the corresponding simulation code using our self-developed domain-specific model compiler. On the one hand, this illustrates our approach in relying on Enterprise Architecture (EA) framework that respects: multiple-views, perspectives of stakeholders, and domain specificity. On the other hand, it helps reducing both complexity and time spent in design activity, while preventing from design modeling errors during porting this activity in the MO domain. As conclusion, this work aims to demonstrate that we can improve the design activity of complex system based on the use of MDE technologies and a domain-specific modeling language with the associated tooling. The major improvement is to provide an early validation step via models and simulation approach to consolidate the system design.

Keywords: Smart sensors, data fusion, distributed fusion architecture, sensor networks, domain specific modeling language, enterprise architecture, underwater moving object, localization, marine observatory, NS-3, IMS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 257
2343 An Automated Test Setup for the Characterization of Antenna in CATR

Authors: Faisal Amin, Abdul Mueed, Xu Jiadong

Abstract:

This paper describes the development of a fully automated measurement software for antenna radiation pattern measurements in a Compact Antenna Test Range (CATR). The CATR has a frequency range from 2-40 GHz and the measurement hardware includes a Network Analyzer for transmitting and Receiving the microwave signal and a Positioner controller to control the motion of the Styrofoam column. The measurement process includes Calibration of CATR with a Standard Gain Horn (SGH) antenna followed by Gain versus angle measurement of the Antenna under test (AUT). The software is designed to control a variety of microwave transmitter / receiver and two axis Positioner controllers through the standard General Purpose interface bus (GPIB) interface. Addition of new Network Analyzers is supported through a slight modification of hardware control module. Time-domain gating is implemented to remove the unwanted signals and get the isolated response of AUT. The gated response of the AUT is compared with the calibration data in the frequency domain to obtain the desired results. The data acquisition and processing is implemented in Agilent VEE and Matlab. A variety of experimental measurements with SGH antennas were performed to validate the accuracy of software. A comparison of results with existing commercial softwares is presented and the measured results are found to be within .2 dBm.

Keywords: Antenna measurement, calibration, time-domain gating, VNA, Positioner controller

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970
2342 Application of EEG Wavelet Power to Prediction of Antidepressant Treatment Response

Authors: Dorota Witkowska, Paweł Gosek, Lukasz Swiecicki, Wojciech Jernajczyk, Bruce J. West, Miroslaw Latka

Abstract:

In clinical practice, the selection of an antidepressant often degrades to lengthy trial-and-error. In this work we employ a normalized wavelet power of alpha waves as a biomarker of antidepressant treatment response. This novel EEG metric takes into account both non-stationarity and intersubject variability of alpha waves. We recorded resting, 19-channel EEG (closed eyes) in 22 inpatients suffering from unipolar (UD, n=10) or bipolar (BD, n=12) depression. The EEG measurement was done at the end of the short washout period which followed previously unsuccessful pharmacotherapy. The normalized alpha wavelet power of 11 responders was markedly different than that of 11 nonresponders at several, mostly temporoparietal sites. Using the prediction of treatment response based on the normalized alpha wavelet power, we achieved 81.8% sensitivity and 81.8% specificity for channel T4.

Keywords: Alpha waves, antidepressant, treatment outcome, wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1974
2341 Tariff as a Determining Factor in Choosing Mobile Operators: A Case Study from Higher Learning Institution in Dodoma Municipality in Tanzania

Authors: Justinian Anatory, Ekael Stephen Manase

Abstract:

In recent years, the adoption of mobile phones has been exceptionally rapid in many parts of the world, and Tanzania is not exceptional. We are witnessing a number of new mobile network operators being licensed from time to time by Tanzania Communications Regulatory Authority (TCRA). This makes competition in the telecommunications market very stiff. All mobile phone companies are struggling to earn more new customers into their networks. This trend courses a stiff competition. The various measures are being taken by different companies including, lowering tariff, and introducing free short messages within and out of their networks, and free calls during off-peak periods. This paper is aimed at investigating the influence of tariffs on students’ mobile customers in selecting their mobile network operators. About seventy seven students from high learning institutions in Dodoma Municipality, Tanzania, participated in responding to the prepared questionnaires. The sought information was aimed at determining if tariffs influenced students into selection of their current mobile operators. The results indicate that tariffs were the major driving factor in selection of mobile operators. However, female mobile customers were found to be more easily attracted into subscribing to a mobile operator due to low tariffs, a bigger number of free short messages or discounted call charges than their fellow male customers.

Keywords: Consumer Buying, mobile operators, tariff.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2240
2340 Aplication`s Aspects Of Public Relations By Nonprofit Organizations. Case Study Albania

Authors: Xhiliola Agaraj(Shehu), Merita Murati, Valbona Gjini

Abstract:

The traditional public relations manager is usually responsible for maintaining and enhancing the reputation of the organization among key publics. While the principal focus of this effort is on support publics, it is quite clearly recognized that an organization's image has important effects on its own employees, its donors and volunteers, and its clients. The aim of paper is to define application`s aspects of public relations media and tools by nonprofit organizations in Albanian reality. Actually does used public relations media and tools, like written material, audiovisual material, organizational identity media, news, interviews and speeches, events, web sites by nonprofit organizations to attract donors? If, public relations media and tools are used, does exists a relation between public relation media and fundraising?

Keywords: Donors, Fundraising, Nonprofit Organizations, Public Relations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408