Search results for: Access algorithm
2167 Using Data Fusion for Biometric Verification
Authors: Richard A. Wasniowski
Abstract:
A wide spectrum of systems require reliable personal recognition schemes to either confirm or determine the identity of an individual person. This paper considers multimodal biometric system and their applicability to access control, authentication and security applications. Strategies for feature extraction and sensor fusion are considered and contrasted. Issues related to performance assessment, deployment and standardization are discussed. Finally future directions of biometric systems development are discussed.Keywords: Multimodal, biometric, recognition, fusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17692166 A Literature Review on the Effect of Industrial Clusters and the Absorptive Capacity on Innovation
Authors: Enrique Claver Cortés, Bartolomé Marco Lajara, Eduardo Sánchez García, Pedro Seva Larrosa, Encarnación Manresa Marhuenda, Lorena Ruiz Fernández, Esther Poveda Pareja
Abstract:
In recent decades, the analysis of the effects of clustering as an essential factor for the development of innovations and the competitiveness of enterprises has raised great interest in different areas. Nowadays, companies have access to almost all tangible and intangible resources located and/or developed in any country in the world. However, despite the obvious advantages that this situation entails for companies, their geographical location has shown itself, increasingly clearly, to be a fundamental factor that positively influences their innovative performance and competitiveness. Industrial clusters could represent a unique level of analysis, positioned between the individual company and the industry, which makes them an ideal unit of analysis to determine the effects derived from company membership of a cluster. Also, the absorptive capacity (hereinafter 'AC') can mediate the process of innovation development by companies located in a cluster. The transformation and exploitation of knowledge could have a mediating effect between knowledge acquisition and innovative performance. The main objective of this work is to determine the key factors that affect the degree of generation and use of knowledge from the environment by companies and, consequently, their innovative performance and competitiveness. The elements analyzed are the companies' membership of a cluster and the AC. To this end, 30 most relevant papers published on this subject in the "Web of Science" database have been reviewed. Our findings show that, within a cluster, the knowledge coming from the companies' environment can significantly influence their innovative performance and competitiveness, although in this relationship, the degree of access and exploitation of the companies to this knowledge plays a fundamental role, which depends on a series of elements both internal and external to the company.
Keywords: Absorptive capacity, clusters, innovation, knowledge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8962165 sEMG Interface Design for Locomotion Identification
Authors: Rohit Gupta, Ravinder Agarwal
Abstract:
Surface electromyographic (sEMG) signal has the potential to identify the human activities and intention. This potential is further exploited to control the artificial limbs using the sEMG signal from residual limbs of amputees. The paper deals with the development of multichannel cost efficient sEMG signal interface for research application, along with evaluation of proposed class dependent statistical approach of the feature selection method. The sEMG signal acquisition interface was developed using ADS1298 of Texas Instruments, which is a front-end interface integrated circuit for ECG application. Further, the sEMG signal is recorded from two lower limb muscles for three locomotions namely: Plane Walk (PW), Stair Ascending (SA), Stair Descending (SD). A class dependent statistical approach is proposed for feature selection and also its performance is compared with 12 preexisting feature vectors. To make the study more extensive, performance of five different types of classifiers are compared. The outcome of the current piece of work proves the suitability of the proposed feature selection algorithm for locomotion recognition, as compared to other existing feature vectors. The SVM Classifier is found as the outperformed classifier among compared classifiers with an average recognition accuracy of 97.40%. Feature vector selection emerges as the most dominant factor affecting the classification performance as it holds 51.51% of the total variance in classification accuracy. The results demonstrate the potentials of the developed sEMG signal acquisition interface along with the proposed feature selection algorithm.Keywords: Classifiers, feature selection, locomotion, sEMG.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14912164 Numerical Prediction of NOX in the Exhaust of a Compression Ignition Engine
Authors: A. A. Pawar, R. R. Kulkarni
Abstract:
For numerical prediction of the NOX in the exhaust of a compression ignition engine a model was developed by considering the parameter equivalence ratio. This model was validated by comparing the predicted results of NOX with experimental ones. The ultimate aim of the work was to access the applicability, robustness and performance of the improved NOX model against other NOX models.Keywords: Biodiesel fueled engine, equivalence ratio, Compression ignition engine, exhausts gas temperature, NOX formation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20902163 An Adaptive Memetic Algorithm With Dynamic Population Management for Designing HIV Multidrug Therapies
Authors: Hassan Zarei, Ali Vahidian Kamyad, Sohrab Effati
Abstract:
In this paper, a mathematical model of human immunodeficiency virus (HIV) is utilized and an optimization problem is proposed, with the final goal of implementing an optimal 900-day structured treatment interruption (STI) protocol. Two type of commonly used drugs in highly active antiretroviral therapy (HAART), reverse transcriptase inhibitors (RTI) and protease inhibitors (PI), are considered. In order to solving the proposed optimization problem an adaptive memetic algorithm with population management (AMAPM) is proposed. The AMAPM uses a distance measure to control the diversity of population in genotype space and thus preventing the stagnation and premature convergence. Moreover, the AMAPM uses diversity parameter in phenotype space to dynamically set the population size and the number of crossovers during the search process. Three crossover operators diversify the population, simultaneously. The progresses of crossover operators are utilized to set the number of each crossover per generation. In order to escaping the local optima and introducing the new search directions toward the global optima, two local searchers assist the evolutionary process. In contrast to traditional memetic algorithms, the activation of these local searchers is not random and depends on both the diversity parameters in genotype space and phenotype space. The capability of AMAPM in finding optimal solutions compared with three popular metaheurestics is introduced.Keywords: HIV therapy design, memetic algorithms, adaptivealgorithms, nonlinear integer programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16272162 A Perceptually Optimized Wavelet Embedded Zero Tree Image Coder
Authors: A. Bajit, M. Nahid, A. Tamtaoui, E. H. Bouyakhf
Abstract:
In this paper, we propose a Perceptually Optimized Embedded ZeroTree Image Coder (POEZIC) that introduces a perceptual weighting to wavelet transform coefficients prior to control SPIHT encoding algorithm in order to reach a targeted bit rate with a perceptual quality improvement with respect to the coding quality obtained using the SPIHT algorithm only. The paper also, introduces a new objective quality metric based on a Psychovisual model that integrates the properties of the HVS that plays an important role in our POEZIC quality assessment. Our POEZIC coder is based on a vision model that incorporates various masking effects of human visual system HVS perception. Thus, our coder weights the wavelet coefficients based on that model and attempts to increase the perceptual quality for a given bit rate and observation distance. The perceptual weights for all wavelet subbands are computed based on 1) luminance masking and Contrast masking, 2) the contrast sensitivity function CSF to achieve the perceptual decomposition weighting, 3) the Wavelet Error Sensitivity WES used to reduce the perceptual quantization errors. The new perceptually optimized codec has the same complexity as the original SPIHT techniques. However, the experiments results show that our coder demonstrates very good performance in terms of quality measurement.
Keywords: DWT, linear-phase 9/7 filter, 9/7 Wavelets Error Sensitivity WES, CSF implementation approaches, JND Just Noticeable Difference, Luminance masking, Contrast masking, standard SPIHT, Objective Quality Measure, Probability Score PS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20512161 2D Validation of a High-order Adaptive Cartesian-grid finite-volume Characteristic- flux Model with Embedded Boundaries
Authors: C. Leroy, G. Oger, D. Le Touzé, B. Alessandrini
Abstract:
A Finite Volume method based on Characteristic Fluxes for compressible fluids is developed. An explicit cell-centered resolution is adopted, where second and third order accuracy is provided by using two different MUSCL schemes with Minmod, Sweby or Superbee limiters for the hyperbolic part. Few different times integrator is used and be describe in this paper. Resolution is performed on a generic unstructured Cartesian grid, where solid boundaries are handled by a Cut-Cell method. Interfaces are explicitely advected in a non-diffusive way, ensuring local mass conservation. An improved cell cutting has been developed to handle boundaries of arbitrary geometrical complexity. Instead of using a polygon clipping algorithm, we use the Voxel traversal algorithm coupled with a local floodfill scanline to intersect 2D or 3D boundary surface meshes with the fixed Cartesian grid. Small cells stability problem near the boundaries is solved using a fully conservative merging method. Inflow and outflow conditions are also implemented in the model. The solver is validated on 2D academic test cases, such as the flow past a cylinder. The latter test cases are performed both in the frame of the body and in a fixed frame where the body is moving across the mesh. Adaptive Cartesian grid is provided by Paramesh without complex geometries for the moment.
Keywords: Finite volume method, cartesian grid, compressible solver, complex geometries, Paramesh.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16102160 Optimization by Means of Genetic Algorithm of the Equivalent Electrical Circuit Model of Different Order for Li-ion Battery Pack
Authors: V. Pizarro-Carmona, S. Castano-Solis, M. Cortés-Carmona, J. Fraile-Ardanuy, D. Jimenez-Bermejo
Abstract:
The purpose of this article is to optimize the Equivalent Electric Circuit Model (EECM) of different orders to obtain greater precision in the modeling of Li-ion battery packs. Optimization includes considering circuits based on 1RC, 2RC and 3RC networks, with a dependent voltage source and a series resistor. The parameters are obtained experimentally using tests in the time domain and in the frequency domain. Due to the high non-linearity of the behavior of the battery pack, Genetic Algorithm (GA) was used to solve and optimize the parameters of each EECM considered (1RC, 2RC and 3RC). The objective of the estimation is to minimize the mean square error between the measured impedance in the real battery pack and those generated by the simulation of different proposed circuit models. The results have been verified by comparing the Nyquist graphs of the estimation of the complex impedance of the pack. As a result of the optimization, the 2RC and 3RC circuit alternatives are considered as viable to represent the battery behavior. These battery pack models are experimentally validated using a hardware-in-the-loop (HIL) simulation platform that reproduces the well-known New York City cycle (NYCC) and Federal Test Procedure (FTP) driving cycles for electric vehicles. The results show that using GA optimization allows obtaining EECs with 2RC or 3RC networks, with high precision to represent the dynamic behavior of a battery pack in vehicular applications.
Keywords: Li-ion battery packs modeling optimized, EECM, GA, electric vehicle applications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5442159 A Growing Natural Gas Approach for Evaluating Quality of Software Modules
Authors: Parvinder S. Sandhu, Sandeep Khimta, Kiranpreet Kaur
Abstract:
The prediction of Software quality during development life cycle of software project helps the development organization to make efficient use of available resource to produce the product of highest quality. “Whether a module is faulty or not" approach can be used to predict quality of a software module. There are numbers of software quality prediction models described in the literature based upon genetic algorithms, artificial neural network and other data mining algorithms. One of the promising aspects for quality prediction is based on clustering techniques. Most quality prediction models that are based on clustering techniques make use of K-means, Mixture-of-Guassians, Self-Organizing Map, Neural Gas and fuzzy K-means algorithm for prediction. In all these techniques a predefined structure is required that is number of neurons or clusters should be known before we start clustering process. But in case of Growing Neural Gas there is no need of predetermining the quantity of neurons and the topology of the structure to be used and it starts with a minimal neurons structure that is incremented during training until it reaches a maximum number user defined limits for clusters. Hence, in this work we have used Growing Neural Gas as underlying cluster algorithm that produces the initial set of labeled cluster from training data set and thereafter this set of clusters is used to predict the quality of test data set of software modules. The best testing results shows 80% accuracy in evaluating the quality of software modules. Hence, the proposed technique can be used by programmers in evaluating the quality of modules during software development.
Keywords: Growing Neural Gas, data clustering, fault prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18652158 Unsteady Transonic Aerodynamic Analysis for Oscillatory Airfoils using Time Spectral Method
Authors: Mohamad Reza. Mohaghegh, Majid. Malek Jafarian
Abstract:
This research proposes an algorithm for the simulation of time-periodic unsteady problems via the solution unsteady Euler and Navier-Stokes equations. This algorithm which is called Time Spectral method uses a Fourier representation in time and hence solve for the periodic state directly without resolving transients (which consume most of the resources in a time-accurate scheme). Mathematical tools used here are discrete Fourier transformations. It has shown tremendous potential for reducing the computational cost compared to conventional time-accurate methods, by enforcing periodicity and using Fourier representation in time, leading to spectral accuracy. The accuracy and efficiency of this technique is verified by Euler and Navier-Stokes calculations for pitching airfoils. Because of flow turbulence nature, Baldwin-Lomax turbulence model has been used at viscous flow analysis. The results presented by the Time Spectral method are compared with experimental data. It has shown tremendous potential for reducing the computational cost compared to the conventional time-accurate methods, by enforcing periodicity and using Fourier representation in time, leading to spectral accuracy, because results verify the small number of time intervals per pitching cycle required to capture the flow physics.Keywords: Time Spectral Method, Time-periodic unsteadyflow, Discrete Fourier transform, Pitching airfoil, Turbulence flow
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17702157 Group of Square Roots of Unity Modulo n
Authors: Rochdi Omami, Mohamed Omami, Raouf Ouni
Abstract:
Let n ≥ 3 be an integer and G2(n) be the subgroup of square roots of 1 in (Z/nZ)*. In this paper, we give an algorithm that computes a generating set of this subgroup.Keywords: Group, modulo, square roots, unity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19332156 An Advanced Stereo Vision Based Obstacle Detection with a Robust Shadow Removal Technique
Authors: Saeid Fazli, Hajar Mohammadi D., Payman Moallem
Abstract:
This paper presents a robust method to detect obstacles in stereo images using shadow removal technique and color information. Stereo vision based obstacle detection is an algorithm that aims to detect and compute obstacle depth using stereo matching and disparity map. The proposed advanced method is divided into three phases, the first phase is detecting obstacles and removing shadows, the second one is matching and the last phase is depth computing. We propose a robust method for detecting obstacles in stereo images using a shadow removal technique based on color information in HIS space, at the first phase. In this paper we use Normalized Cross Correlation (NCC) function matching with a 5 × 5 window and prepare an empty matching table τ and start growing disparity components by drawing a seed s from S which is computed using canny edge detector, and adding it to τ. In this way we achieve higher performance than the previous works [2,17]. A fast stereo matching algorithm is proposed that visits only a small fraction of disparity space in order to find a semi-dense disparity map. It works by growing from a small set of correspondence seeds. The obstacle identified in phase one which appears in the disparity map of phase two enters to the third phase of depth computing. Finally, experimental results are presented to show the effectiveness of the proposed method.
Keywords: obstacle detection, stereo vision, shadowremoval, color, stereo matching
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20732155 Proposal for a Generic Context Metamodel
Authors: Jaouadi Imen, Ben Djemaa Raoudha, Ben Abdallah Hanene
Abstract:
The access to relevant information that is adapted to user’s needs, preferences and environment is a challenge in many applications running. That causes an appearance of context-aware systems. To facilitate the development of this class of applications, it is necessary that these applications share a common context metamodel. In this article, we will present our context metamodel that is defined using the OMG Meta Object facility (MOF).This metamodel is based on the analysis and synthesis of context concepts proposed in literature.
Keywords: Context, metamodel, Meta Object Facility (MOF), awareness system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15822154 A Prediction Model for Dynamic Responses of Building from Earthquake Based on Evolutionary Learning
Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park
Abstract:
The seismic responses-based structural health monitoring system has been performed to prevent seismic damage. Structural seismic damage of building is caused by the instantaneous stress concentration which is related with dynamic characteristic of earthquake. Meanwhile, seismic response analysis to estimate the dynamic responses of building demands significantly high computational cost. To prevent the failure of structural members from the characteristic of the earthquake and the significantly high computational cost for seismic response analysis, this paper presents an artificial neural network (ANN) based prediction model for dynamic responses of building considering specific time length. Through the measured dynamic responses, input and output node of the ANN are formed by the length of specific time, and adopted for the training. In the model, evolutionary radial basis function neural network (ERBFNN), that radial basis function network (RBFN) is integrated with evolutionary optimization algorithm to find variables in RBF, is implemented. The effectiveness of the proposed model is verified through an analytical study applying responses from dynamic analysis for multi-degree of freedom system to training data in ERBFNN.
Keywords: Structural health monitoring, dynamic response, artificial neural network, radial basis function network, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4172153 Architecture Integrating Wireless Body Area Networks with Web Services for Ubiquitous Healthcare Service Provisioning
Authors: Ogunduyile O. Oluwgbenga
Abstract:
Recent advancements in sensor technologies and Wireless Body Area Networks (WBANs) have led to the development of cost-effective healthcare devices which can be used to monitor and analyse a person-s physiological parameters from remote locations. These advancements provides a unique opportunity to overcome current healthcare challenges of low quality service provisioning, lack of easy accessibility to service varieties, high costs of services and increasing population of the elderly experienced globally. This paper reports on a prototype implementation of an architecture that seamlessly integrates Wireless Body Area Network (WBAN) with Web services (WS) to proactively collect physiological data of remote patients to recommend diagnostic services. Technologies based upon WBAN and WS can provide ubiquitous accessibility to a variety of services by allowing distributed healthcare resources to be massively reused to provide cost-effective services without individuals physically moving to the locations of those resources. In addition, these technologies can reduce costs of healthcare services by allowing individuals to access services to support their healthcare. The prototype uses WBAN body sensors implemented on arduino fio platforms to be worn by the patient and an android smart phone as a personal server. The physiological data are collected and uploaded through GPRS/internet to the Medical Health Server (MHS) to be analysed. The prototype monitors the activities, location and physiological parameters such as SpO2 and Heart Rate of the elderly and patients in rehabilitation. Medical practitioners would have real time access to the uploaded information through a web application.Keywords: Android Smart phone, Arduino Fio, Web application server, Wireless Body Area Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25442152 The Implications of Technological Advancements on the Constitutional Principles of Contract Law
Authors: Laura Çami (Vorpsi), Xhon Skënderi
Abstract:
In today's rapidly evolving technological landscape, the traditional principles of contract law are facing significant challenges. The emergence of new technologies, such as electronic signatures, smart contracts, and online dispute resolution mechanisms, is transforming the way contracts are formed, interpreted, and enforced. This paper examines the implications of these technological advancements on the constitutional principles of contract law. One of the fundamental principles of contract law is freedom of contract, which ensures that parties have the autonomy to negotiate and enter into contracts as they see fit. However, the use of technology in the contracting process has the potential to disrupt this principle. For example, online platforms and marketplaces often offer standard-form contracts, which may not reflect the specific needs or interests of individual parties. This raises questions about the equality of bargaining power between parties and the extent to which parties are truly free to negotiate the terms of their contracts. Another important principle of contract law is the requirement of consideration, which requires that each party receives something of value in exchange for their promise. The use of digital assets, such as cryptocurrencies, has created new challenges in determining what constitutes valuable consideration in a contract. Due to the ambiguity in this area, disagreements about the legality and enforceability of such contracts may arise. Furthermore, the use of technology in dispute resolution mechanisms, such as online arbitration and mediation, may raise concerns about due process and access to justice. The use of algorithms and artificial intelligence to determine the outcome of disputes may also raise questions about the impartiality and fairness of the process. Finally, it should be noted that there are many different and complex effects of technical improvements on the fundamental constitutional foundations of contract law. As technology continues to evolve, it will be important for policymakers and legal practitioners to consider the potential impacts on contract law and to ensure that the principles of fairness, equality, and access to justice are preserved in the contracting process.
Keywords: Technological advancements, constitutional principles, contract law, smart contracts, online dispute resolution, freedom of contract.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2502151 The Impact of Rapid Urbanisation on Public Transport Systems in the Gauteng Region of South Africa
Authors: J. Chakwizira, P. Bikam, T. A. Adeboyejo
Abstract:
This paper seeks to illustrate the impact of rapid urbanization (in terms of both increase in people and vehicles) in the Gauteng region (which includes Johannesburg, Pretoria and Ekurhuleni). The impact that existing transport systems and options place on the capacity of residents from low income areas to travel and conduct various socio-economic activities is discussed. The findings are drawn from a 2013 analysis of a random transport household survey of 1550 households carried out in Gauteng province. 91.4% of the study respondents had access to public transport, while 8.6% had no access to public transport. Of the 91.4% who used public transport, the main reason used to explain this state of affairs was that it was affordable (54.3%), convenient (15.9%), Accessible (11.9%), lack of alternatives (6.4%) and reliable at 4.1%. Recommendations advanced revolve around the need to reverse land use and transportation effects of apartheid planning, growing and developing a sustainable critical mass of public transport interventions supported by appropriate transport systems that are environmentally sustainable through proper governance. 38.5% of the respondents indicated that developing compact, smart and integrated urban land spaces was key to reducing travel challenges in the study area. 23.4% indicated that the introduction and upgrading of BRT buses to cover all areas in the study area was a step in the right direction because it has great potential in shifting travel patterns to favor public modes of transport. 15.1% indicated that all open spaces should be developed so that fragmentation of land uses can be addressed. This would help to fight disconnected and fragmented space and trip making challenges in Gauteng. 13.4% indicated that improving the metro rail services was critical since this is a mass mover of commuters. 9.6% of the respondents highlighted that the bus subsidy policy has to be retained in the short to medium term since the spatial mismatches and challenges created by apartheid are yet to be fully reversed.
Keywords: Urbanisation, population, public, transport systems, Gauteng.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 59612150 An Approach to the Solving Non-Steiner Minimum Link Path Problem
Authors: V. Tereshchenko, A. Tregubenko
Abstract:
In this study we survey the method for fast finding a minimum link path between two arbitrary points within a simple polygon, which can pass only through the vertices, with preprocessing.
Keywords: Minimum link path, simple polygon, Steiner points, optimal algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15112149 Dual-Actuated Vibration Isolation Technology for a Rotary System’s Position Control on a Vibrating Frame: Disturbance Rejection and Active Damping
Authors: Kamand Bagherian, Nariman Niknejad
Abstract:
A vibration isolation technology for precise position control of a rotary system powered by two permanent magnet DC (PMDC) motors is proposed, where this system is mounted on an oscillatory frame. To achieve vibration isolation for this system, active damping and disturbance rejection (ADDR) technology is presented which introduces a cooperation of a main and an auxiliary PMDC, controlled by discrete-time sliding mode control (DTSMC) based schemes. The controller of the main actuator tracks a desired position and the auxiliary actuator simultaneously isolates the induced vibration, as its controller follows a torque trend. To determine this torque trend, a combination of two algorithms is introduced by the ADDR technology. The first torque-trend producing algorithm rejects the disturbance by counteracting the perturbation, estimated using a model-based observer. The second torque trend applies active variable damping to minimize the oscillation of the output shaft. In this practice, the presented technology is implemented on a rotary system with a pendulum attached, mounted on a linear actuator simulating an oscillation-transmitting structure. In addition, the obtained results illustrate the functionality of the proposed technology.Keywords: Vibration isolation, position control, discrete-time nonlinear controller, active damping, disturbance tracking algorithm, oscillation transmitting support, stability robustness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6102148 Combined Sewer Overflow forecasting with Feed-forward Back-propagation Artificial Neural Network
Authors: Achela K. Fernando, Xiujuan Zhang, Peter F. Kinley
Abstract:
A feed-forward, back-propagation Artificial Neural Network (ANN) model has been used to forecast the occurrences of wastewater overflows in a combined sewerage reticulation system. This approach was tested to evaluate its applicability as a method alternative to the common practice of developing a complete conceptual, mathematical hydrological-hydraulic model for the sewerage system to enable such forecasts. The ANN approach obviates the need for a-priori understanding and representation of the underlying hydrological hydraulic phenomena in mathematical terms but enables learning the characteristics of a sewer overflow from the historical data. The performance of the standard feed-forward, back-propagation of error algorithm was enhanced by a modified data normalizing technique that enabled the ANN model to extrapolate into the territory that was unseen by the training data. The algorithm and the data normalizing method are presented along with the ANN model output results that indicate a good accuracy in the forecasted sewer overflow rates. However, it was revealed that the accurate forecasting of the overflow rates are heavily dependent on the availability of a real-time flow monitoring at the overflow structure to provide antecedent flow rate data. The ability of the ANN to forecast the overflow rates without the antecedent flow rates (as is the case with traditional conceptual reticulation models) was found to be quite poor.Keywords: Artificial Neural Networks, Back-propagationlearning, Combined sewer overflows, Forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15322147 Extracting Terrain Points from Airborne Laser Scanning Data in Densely Forested Areas
Authors: Ziad Abdeldayem, Jakub Markiewicz, Kunal Kansara, Laura Edwards
Abstract:
Airborne Laser Scanning (ALS) is one of the main technologies for generating high-resolution digital terrain models (DTMs). DTMs are crucial to several applications, such as topographic mapping, flood zone delineation, geographic information systems (GIS), hydrological modelling, spatial analysis, etc. Laser scanning system generates irregularly spaced three-dimensional cloud of points. Raw ALS data are mainly ground points (that represent the bare earth) and non-ground points (that represent buildings, trees, cars, etc.). Removing all the non-ground points from the raw data is referred to as filtering. Filtering heavily forested areas is considered a difficult and challenging task as the canopy stops laser pulses from reaching the terrain surface. This research presents an approach for removing non-ground points from raw ALS data in densely forested areas. Smoothing splines are exploited to interpolate and fit the noisy ALS data. The presented filter utilizes a weight function to allocate weights for each point of the data. Furthermore, unlike most of the methods, the presented filtering algorithm is designed to be automatic. Three different forested areas in the United Kingdom are used to assess the performance of the algorithm. The results show that the generated DTMs from the filtered data are accurate (when compared against reference terrain data) and the performance of the method is stable for all the heavily forested data samples. The average root mean square error (RMSE) value is 0.35 m.
Keywords: Airborne laser scanning, digital terrain models, filtering, forested areas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7182146 Artifacts in Spiral X-ray CT Scanners: Problems and Solutions
Authors: Mehran Yazdi, Luc Beaulieu
Abstract:
Artifact is one of the most important factors in degrading the CT image quality and plays an important role in diagnostic accuracy. In this paper, some artifacts typically appear in Spiral CT are introduced. The different factors such as patient, equipment and interpolation algorithm which cause the artifacts are discussed and new developments and image processing algorithms to prevent or reduce them are presented.Keywords: CT artifacts, Spiral CT, Artifact removal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45052145 Comparative Study Using Weka for Red Blood Cells Classification
Authors: Jameela Ali Alkrimi, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy
Abstract:
Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifying the RBCs as normal or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithms tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital - Malaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively.
Keywords: K-Nearest Neighbors, Neural Network, Radial Basis Function, Red blood cells, Support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29952144 Prediction of Optimum Cutting Parameters to obtain Desired Surface in Finish Pass end Milling of Aluminium Alloy with Carbide Tool using Artificial Neural Network
Authors: Anjan Kumar Kakati, M. Chandrasekaran, Amitava Mandal, Amit Kumar Singh
Abstract:
End milling process is one of the common metal cutting operations used for machining parts in manufacturing industry. It is usually performed at the final stage in manufacturing a product and surface roughness of the produced job plays an important role. In general, the surface roughness affects wear resistance, ductility, tensile, fatigue strength, etc., for machined parts and cannot be neglected in design. In the present work an experimental investigation of end milling of aluminium alloy with carbide tool is carried out and the effect of different cutting parameters on the response are studied with three-dimensional surface plots. An artificial neural network (ANN) is used to establish the relationship between the surface roughness and the input cutting parameters (i.e., spindle speed, feed, and depth of cut). The Matlab ANN toolbox works on feed forward back propagation algorithm is used for modeling purpose. 3-12-1 network structure having minimum average prediction error found as best network architecture for predicting surface roughness value. The network predicts surface roughness for unseen data and found that the result/prediction is better. For desired surface finish of the component to be produced there are many different combination of cutting parameters are available. The optimum cutting parameter for obtaining desired surface finish, to maximize tool life is predicted. The methodology is demonstrated, number of problems are solved and algorithm is coded in Matlab®.Keywords: End milling, Surface roughness, Neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21642143 An Improved Total Variation Regularization Method for Denoising Magnetocardiography
Authors: Yanping Liao, Congcong He, Ruigang Zhao
Abstract:
The application of magnetocardiography signals to detect cardiac electrical function is a new technology developed in recent years. The magnetocardiography signal is detected with Superconducting Quantum Interference Devices (SQUID) and has considerable advantages over electrocardiography (ECG). It is difficult to extract Magnetocardiography (MCG) signal which is buried in the noise, which is a critical issue to be resolved in cardiac monitoring system and MCG applications. In order to remove the severe background noise, the Total Variation (TV) regularization method is proposed to denoise MCG signal. The approach transforms the denoising problem into a minimization optimization problem and the Majorization-minimization algorithm is applied to iteratively solve the minimization problem. However, traditional TV regularization method tends to cause step effect and lacks constraint adaptability. In this paper, an improved TV regularization method for denoising MCG signal is proposed to improve the denoising precision. The improvement of this method is mainly divided into three parts. First, high-order TV is applied to reduce the step effect, and the corresponding second derivative matrix is used to substitute the first order. Then, the positions of the non-zero elements in the second order derivative matrix are determined based on the peak positions that are detected by the detection window. Finally, adaptive constraint parameters are defined to eliminate noises and preserve signal peak characteristics. Theoretical analysis and experimental results show that this algorithm can effectively improve the output signal-to-noise ratio and has superior performance.Keywords: Constraint parameters, derivative matrix, magnetocardiography, regular term, total variation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6982142 A Novel Optimized JTAG Interface Circuit Design
Authors: Chenguang Guo, Lei Chen, Yanlong Zhang
Abstract:
This paper describes a novel optimized JTAG interface circuit between a JTAG controller and target IC. Being able to access JTAG using only one or two pins, this circuit does not change the original boundary scanning test frequency of target IC. Compared with the traditional JTAG interface which based on IEEE std. 1149.1, this reduced pin technology is more applicability in pin limited devices, and it is easier to control the scale of target IC for the designer.
Keywords: Boundary scan, JTAG interface, Test frequency, Reduced pin
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13742141 Optimization Modeling of the Hybrid Antenna Array for the DoA Estimation
Authors: Somayeh Komeylian
Abstract:
The direction of arrival (DoA) estimation is the crucial aspect of the radar technologies for detecting and dividing several signal sources. In this scenario, the antenna array output modeling involves numerous parameters including noise samples, signal waveform, signal directions, signal number, and signal to noise ratio (SNR), and thereby the methods of the DoA estimation rely heavily on the generalization characteristic for establishing a large number of the training data sets. Hence, we have analogously represented the two different optimization models of the DoA estimation; (1) the implementation of the decision directed acyclic graph (DDAG) for the multiclass least-squares support vector machine (LS-SVM), and (2) the optimization method of the deep neural network (DNN) radial basis function (RBF). We have rigorously verified that the LS-SVM DDAG algorithm is capable of accurately classifying DoAs for the three classes. However, the accuracy and robustness of the DoA estimation are still highly sensitive to technological imperfections of the antenna arrays such as non-ideal array design and manufacture, array implementation, mutual coupling effect, and background radiation and thereby the method may fail in representing high precision for the DoA estimation. Therefore, this work has a further contribution on developing the DNN-RBF model for the DoA estimation for overcoming the limitations of the non-parametric and data-driven methods in terms of array imperfection and generalization. The numerical results of implementing the DNN-RBF model have confirmed the better performance of the DoA estimation compared with the LS-SVM algorithm. Consequently, we have analogously evaluated the performance of utilizing the two aforementioned optimization methods for the DoA estimation using the concept of the mean squared error (MSE).
Keywords: DoA estimation, adaptive antenna array, Deep Neural Network, LS-SVM optimization model, radial basis function, MSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5392140 Resource Allocation and Task Scheduling with Skill Level and Time Bound Constraints
Authors: Salam Saudagar, Ankit Kamboj, Niraj Mohan, Satgounda Patil, Nilesh Powar
Abstract:
Task Assignment and Scheduling is a challenging Operations Research problem when there is a limited number of resources and comparatively higher number of tasks. The Cost Management team at Cummins needs to assign tasks based on a deadline and must prioritize some of the tasks as per business requirements. Moreover, there is a constraint on the resources that assignment of tasks should be done based on an individual skill level, that may vary for different tasks. Another constraint is for scheduling the tasks that should be evenly distributed in terms of number of working hours, which adds further complexity to this problem. The proposed greedy approach to solve assignment and scheduling problem first assigns the task based on management priority and then by the closest deadline. This is followed by an iterative selection of an available resource with the least allocated total working hours for a task, i.e. finding the local optimal choice for each task with the goal of determining the global optimum. The greedy approach task allocation is compared with a variant of Hungarian Algorithm, and it is observed that the proposed approach gives an equal allocation of working hours among the resources. The comparative study of the proposed approach is also done with manual task allocation and it is noted that the visibility of the task timeline has increased from 2 months to 6 months. An interactive dashboard app is created for the greedy assignment and scheduling approach and the tasks with more than 2 months horizon that were waiting in a queue without a delivery date initially are now analyzed effectively by the business with expected timelines for completion.
Keywords: Assignment, deadline, greedy approach, hungarian algorithm, operations research, scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12012139 Extending E-learning systems based on Clause-Rule model
Authors: Keisuke Nakamura, Kiyoshi Akama, Hiroshi Mabuchi
Abstract:
E-Learning systems are used by many learners and teachers. The developer is developing the e-Learning system. However, the developer cannot do system construction to satisfy all of users- demands. We discuss a method of constructing e-Learning systems where learners and teachers can design, try to use, and share extending system functions that they want to use; which may be nally added to the system by system managers.Keywords: Clause-Rule-Model, database-access, e-Learning, Web-Application.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16792138 Very Large Scale Integration Architecture of Finite Impulse Response Filter Implementation Using Retiming Technique
Authors: S. Jalaja, A. M. Vijaya Prakash
Abstract:
Recursive combination of an algorithm based on Karatsuba multiplication is exploited to design a generalized transpose and parallel Finite Impulse Response (FIR) Filter. Mid-range Karatsuba multiplication and Carry Save adder based on Karatsuba multiplication reduce time complexity for higher order multiplication implemented up to n-bit. As a result, we design modified N-tap Transpose and Parallel Symmetric FIR Filter Structure using Karatsuba algorithm. The mathematical formulation of the FFA Filter is derived. The proposed architecture involves significantly less area delay product (APD) then the existing block implementation. By adopting retiming technique, hardware cost is reduced further. The filter architecture is designed by using 90 nm technology library and is implemented by using cadence EDA Tool. The synthesized result shows better performance for different word length and block size. The design achieves switching activity reduction and low power consumption by applying with and without retiming for different combination of the circuit. The proposed structure achieves more than a half of the power reduction by adopting with and without retiming techniques compared to the earlier design structure. As a proof of the concept for block size 16 and filter length 64 for CKA method, it achieves a 51% as well as 70% less power by applying retiming technique, and for CSA method it achieves a 57% as well as 77% less power by applying retiming technique compared to the previously proposed design.Keywords: Carry save adder Karatsuba multiplication, mid-range Karatsuba multiplication, modified FFA, transposed filter, retiming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 910