Search results for: time-varying range-Doppler features.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1559

Search results for: time-varying range-Doppler features.

1379 Application of Fuzzy Neural Network for Image Tumor Description

Authors: Nahla Ibraheem Jabbar, Monica Mehrotra

Abstract:

This paper used a fuzzy kohonen neural network for medical image segmentation. Image segmentation plays a important role in the many of medical imaging applications by automating or facilitating the diagnostic. The paper analyses the tumor by extraction of the features of (area, entropy, means and standard deviation).These measurements gives a description for a tumor.

Keywords: FCM, features extraction, medical image processing, neural network, segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109
1378 Glass Bottle Inspector Based on Machine Vision

Authors: Huanjun Liu, Yaonan Wang, Feng Duan

Abstract:

This text studies glass bottle intelligent inspector based machine vision instead of manual inspection. The system structure is illustrated in detail in this paper. The text presents the method based on watershed transform methods to segment the possible defective regions and extract features of bottle wall by rules. Then wavelet transform are used to exact features of bottle finish from images. After extracting features, the fuzzy support vector machine ensemble is putted forward as classifier. For ensuring that the fuzzy support vector machines have good classification ability, the GA based ensemble method is used to combining the several fuzzy support vector machines. The experiments demonstrate that using this inspector to inspect glass bottles, the accuracy rate may reach above 97.5%.

Keywords: Intelligent Inspection, Support Vector Machines, Ensemble Methods, watershed transform, Wavelet Transform

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3896
1377 Algorithm for Bleeding Determination Based On Object Recognition and Local Color Features in Capsule Endoscopy

Authors: Yong-Gyu Lee, Jin Hee Park, Youngdae Seo, Gilwon Yoon

Abstract:

Automatic determination of blood in less bright or noisy capsule endoscopic images is difficult due to low S/N ratio. Especially it may not be accurate to analyze these images due to the influence of external disturbance. Therefore, we proposed detection methods that are not dependent only on color bands. In locating bleeding regions, the identification of object outlines in the frame and features of their local colors were taken into consideration. The results showed that the capability of detecting bleeding was much improved.

Keywords: Endoscopy, object recognition, bleeding, image processing, RGB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939
1376 Effect of Plasticizer Additives on the Mechanical Properties of Cement Composite – A Molecular Dynamics Analysis

Authors: R. Mohan, V. Jadhav, A. Ahmed, J. Rivas, A. Kelkar

Abstract:

Cementitious materials are an excellent example of a composite material with complex hierarchical features and random features that range from nanometer (nm) to millimeter (mm) scale. Multi-scale modeling of complex material systems requires starting from fundamental building blocks to capture the scale relevant features through associated computational models. In this paper, molecular dynamics (MD) modeling is employed to predict the effect of plasticizer additive on the mechanical properties of key hydrated cement constituent calcium-silicate-hydrate (CSH) at the molecular, nanometer scale level. Due to complexity, still unknown molecular configuration of CSH, a representative configuration widely accepted in the field of mineral Jennite is employed. The effectiveness of the Molecular Dynamics modeling to understand the predictive influence of material chemistry changes based on molecular / nanoscale models is demonstrated.

Keywords: Cement composite, Mechanical Properties, Molecular Dynamics, Plasticizer additives.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2568
1375 Posture Recognition using Combined Statistical and Geometrical Feature Vectors based on SVM

Authors: Omer Rashid, Ayoub Al-Hamadi, Axel Panning, Bernd Michaelis

Abstract:

It is hard to percept the interaction process with machines when visual information is not available. In this paper, we have addressed this issue to provide interaction through visual techniques. Posture recognition is done for American Sign Language to recognize static alphabets and numbers. 3D information is exploited to obtain segmentation of hands and face using normal Gaussian distribution and depth information. Features for posture recognition are computed using statistical and geometrical properties which are translation, rotation and scale invariant. Hu-Moment as statistical features and; circularity and rectangularity as geometrical features are incorporated to build the feature vectors. These feature vectors are used to train SVM for classification that recognizes static alphabets and numbers. For the alphabets, curvature analysis is carried out to reduce the misclassifications. The experimental results show that proposed system recognizes posture symbols by achieving recognition rate of 98.65% and 98.6% for ASL alphabets and numbers respectively.

Keywords: Feature Extraction, Posture Recognition, Pattern Recognition, Application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520
1374 A Design for Customer Preferences Model by Cluster Analysis of Geometric Features and Customer Preferences

Authors: Yuan-Jye Tseng, Ching-Yen Chen

Abstract:

In the design cycle, a main design task is to determine the external shape of the product. The external shape of a product is one of the key factors that can affect the customers’ preferences linking to the motivation to buy the product, especially in the case of a consumer electronic product such as a mobile phone. The relationship between the external shape and the customer preferences needs to be studied to enhance the customer’s purchase desire and action. In this research, a design for customer preferences model is developed for investigating the relationships between the external shape and the customer preferences of a product. In the first stage, the names of the geometric features are collected and evaluated from the data of the specified internet web pages using the developed text miner. The key geometric features can be determined if the number of occurrence on the web pages is relatively high. For each key geometric feature, the numerical values are explored using the text miner to collect the internet data from the web pages. In the second stage, a cluster analysis model is developed to evaluate the numerical values of the key geometric features to divide the external shapes into several groups. Several design suggestion cases can be proposed, for example, large model, mid-size model, and mini model, for designing a mobile phone. A customer preference index is developed by evaluating the numerical data of each of the key geometric features of the design suggestion cases. The design suggestion case with the top ranking of the customer preference index can be selected as the final design of the product. In this paper, an example product of a notebook computer is illustrated. It shows that the external shape of a product can be used to drive customer preferences. The presented design for customer preferences model is useful for determining a suitable external shape of the product to increase customer preferences.

Keywords: Cluster analysis, customer preferences, design evaluation, design for customer preferences, product design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 777
1373 Face Image Coding Using Face Prototyping

Authors: Jaroslav Polec, Lenka Krulikovská, Natália Helešová, Tomáš Hirner

Abstract:

In this paper we present a novel approach for face image coding. The proposed method makes a use of the features of video encoders like motion prediction. At first encoder selects appropriate prototype from the database and warps it according to features of encoding face. Warped prototype is placed as first I frame. Encoding face is placed as second frame as P frame type. Information about features positions, color change, selected prototype and data flow of P frame will be sent to decoder. The condition is both encoder and decoder own the same database of prototypes. We have run experiment with H.264 video encoder and obtained results were compared to results achieved by JPEG and JPEG2000. Obtained results show that our approach is able to achieve 3 times lower bitrate and two times higher PSNR in comparison with JPEG. According to comparison with JPEG2000 the bitrate was very similar, but subjective quality achieved by proposed method is better.

Keywords: Triangulation, H.264, Model-based coding, Average face

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725
1372 Economics of Oil and Its Stability in the Gulf Region

Authors: Al Mutawa A. Amir, Liaqat Ali, Faisal Ali

Abstract:

After the World War II, the world economy was disrupted and changed due to oil and its prices. The research in this paper presents the basic statistical features and economic characteristics of the Gulf economy. The main features of the Gulf economies and its heavy dependence on oil exports, its dualism between modern and traditional sectors and its rapidly increasing affluences are particularly emphasized.  In this context, the research in this paper discussed the problems of growth versus development and has attempted to draw the implications for the future economic development of this area.

Keywords: Oil prices, Gulf Cooperation Council, economic growth, Gulf oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1156
1371 Optimized Facial Features-based Age Classification

Authors: Md. Zahangir Alom, Mei-Lan Piao, Md. Shariful Islam, Nam Kim, Jae-Hyeung Park

Abstract:

The evaluation and measurement of human body dimensions are achieved by physical anthropometry. This research was conducted in view of the importance of anthropometric indices of the face in forensic medicine, surgery, and medical imaging. The main goal of this research is to optimization of facial feature point by establishing a mathematical relationship among facial features and used optimize feature points for age classification. Since selected facial feature points are located to the area of mouth, nose, eyes and eyebrow on facial images, all desire facial feature points are extracted accurately. According this proposes method; sixteen Euclidean distances are calculated from the eighteen selected facial feature points vertically as well as horizontally. The mathematical relationships among horizontal and vertical distances are established. Moreover, it is also discovered that distances of the facial feature follows a constant ratio due to age progression. The distances between the specified features points increase with respect the age progression of a human from his or her childhood but the ratio of the distances does not change (d = 1 .618 ) . Finally, according to the proposed mathematical relationship four independent feature distances related to eight feature points are selected from sixteen distances and eighteen feature point-s respectively. These four feature distances are used for classification of age using Support Vector Machine (SVM)-Sequential Minimal Optimization (SMO) algorithm and shown around 96 % accuracy. Experiment result shows the proposed system is effective and accurate for age classification.

Keywords: 3D Face Model, Face Anthropometrics, Facial Features Extraction, Feature distances, SVM-SMO

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2047
1370 Valuation of Green Commercial Office Building: A Preliminary Study of Malaysian Valuers’ Insight

Authors: Tuti Haryati Jasimin, Hishamuddin Mohd Ali

Abstract:

Malaysia’s green building development is gaining momentum and green buildings have become a key focus area, especially within the commercial sector with the encouragement of government legislation and policy. Due to the emerging awareness among the market players’ views of the benefits associated with the ownership of green buildings in Malaysia, there is a need for valuers to incorporate consideration of sustainability into their assessments of property market value to ensure the green buildings continue to increase in the market. This paper analyses the valuers’ current perception on the valuation practices with regard to the green issues in Malaysia. The study was based on a survey of registered real estate valuers and the experts whose work related to valuation in the Klang Valley area to rate their view regarding the perception on valuation of green building. The findings present evidence that even though Malaysian valuers have limited knowledge of green buildings, they recognise the importance of incorporating the green features in the valuation process. The inclusion of incorporating the green features in valuations in practice was hindered by the inadequacy of sufficient transaction data in the market. Furthermore, valuers experienced difficulty in identifying what are the various input parameters of green building and how to adjust it in order to reflect the benefit of sustainability features correctly in the valuation process. This paper focuses on the present challenges confronted by Malaysian valuers with regards to incorporating the green features in their valuation.

Keywords: Green commercial office building, Malaysia, valuers’ perception, valuation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2976
1369 Investigation of Combined use of MFCC and LPC Features in Speech Recognition Systems

Authors: К. R. Aida–Zade, C. Ardil, S. S. Rustamov

Abstract:

Statement of the automatic speech recognition problem, the assignment of speech recognition and the application fields are shown in the paper. At the same time as Azerbaijan speech, the establishment principles of speech recognition system and the problems arising in the system are investigated. The computing algorithms of speech features, being the main part of speech recognition system, are analyzed. From this point of view, the determination algorithms of Mel Frequency Cepstral Coefficients (MFCC) and Linear Predictive Coding (LPC) coefficients expressing the basic speech features are developed. Combined use of cepstrals of MFCC and LPC in speech recognition system is suggested to improve the reliability of speech recognition system. To this end, the recognition system is divided into MFCC and LPC-based recognition subsystems. The training and recognition processes are realized in both subsystems separately, and recognition system gets the decision being the same results of each subsystems. This results in decrease of error rate during recognition. The training and recognition processes are realized by artificial neural networks in the automatic speech recognition system. The neural networks are trained by the conjugate gradient method. In the paper the problems observed by the number of speech features at training the neural networks of MFCC and LPC-based speech recognition subsystems are investigated. The variety of results of neural networks trained from different initial points in training process is analyzed. Methodology of combined use of neural networks trained from different initial points in speech recognition system is suggested to improve the reliability of recognition system and increase the recognition quality, and obtained practical results are shown.

Keywords: Speech recognition, cepstral analysis, Voice activation detection algorithm, Mel Frequency Cepstral Coefficients, features of speech, Cepstral Mean Subtraction, neural networks, Linear Predictive Coding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 913
1368 Feature Weighting and Selection - A Novel Genetic Evolutionary Approach

Authors: Serkawt Khola

Abstract:

A feature weighting and selection method is proposed which uses the structure of a weightless neuron and exploits the principles that govern the operation of Genetic Algorithms and Evolution. Features are coded onto chromosomes in a novel way which allows weighting information regarding the features to be directly inferred from the gene values. The proposed method is significant in that it addresses several problems concerned with algorithms for feature selection and weighting as well as providing significant advantages such as speed, simplicity and suitability for real-time systems.

Keywords: Feature weighting, genetic algorithm, pattern recognition, weightless neuron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856
1367 A Comparative Study of SVM Classifiers and Artificial Neural Networks Application for Rolling Element Bearing Fault Diagnosis using Wavelet Transform Preprocessing

Authors: Commander Sunil Tyagi

Abstract:

Effectiveness of Artificial Neural Networks (ANN) and Support Vector Machines (SVM) classifiers for fault diagnosis of rolling element bearings are presented in this paper. The characteristic features of vibration signals of rotating driveline that was run in its normal condition and with faults introduced were used as input to ANN and SVM classifiers. Simple statistical features such as standard deviation, skewness, kurtosis etc. of the time-domain vibration signal segments along with peaks of the signal and peak of power spectral density (PSD) are used as features to input the ANN and SVM classifier. The effect of preprocessing of the vibration signal by Discreet Wavelet Transform (DWT) prior to feature extraction is also studied. It is shown from the experimental results that the performance of SVM classifier in identification of bearing condition is better then ANN and pre-processing of vibration signal by DWT enhances the effectiveness of both ANN and SVM classifier

Keywords: ANN, Artificial Intelligence, Fault Diagnosis, Pattern Recognition, Rolling Element Bearing, SVM. Wavelet Transform

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2119
1366 Color Image Segmentation Using SVM Pixel Classification Image

Authors: K. Sakthivel, R. Nallusamy, C. Kavitha

Abstract:

The goal of image segmentation is to cluster pixels into salient image regions. Segmentation could be used for object recognition, occlusion boundary estimation within motion or stereo systems, image compression, image editing, or image database lookup. In this paper, we present a color image segmentation using support vector machine (SVM) pixel classification. Firstly, the pixel level color and texture features of the image are extracted and they are used as input to the SVM classifier. These features are extracted using the homogeneity model and Gabor Filter. With the extracted pixel level features, the SVM Classifier is trained by using FCM (Fuzzy C-Means).The image segmentation takes the advantage of both the pixel level information of the image and also the ability of the SVM Classifier. The Experiments show that the proposed method has a very good segmentation result and a better efficiency, increases the quality of the image segmentation compared with the other segmentation methods proposed in the literature.

Keywords: Image Segmentation, Support Vector Machine, Fuzzy C–Means, Pixel Feature, Texture Feature, Homogeneity model, Gabor Filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6747
1365 0.13-µm Complementary Metal-Oxide Semiconductor Vector Modulator for Beamforming System

Authors: J. S. Kim

Abstract:

This paper presents a 0.13-µm Complementary Metal-Oxide Semiconductor (CMOS) vector modulator for beamforming system. The vector modulator features a 360° phase and gain range of -10 dB to 10 dB with a root mean square phase and amplitude error of only 2.2° and 0.45 dB, respectively. These features make it a suitable for wireless backhaul system in the 5 GHz industrial, scientific, and medical (ISM) bands. It draws a current of 20.4 mA from a 1.2 V supply. The total chip size is 1.87x1.34 mm².

Keywords: CMOS, vector modulator, beamforming, wireless backhaul, ISM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1058
1364 The Features of Organizing a Master Preparation in Kazakhstan

Authors: A. Bulatbayeva, A. Kusainov

Abstract:

In this article has been analyzed Kazakhstani experience in organizing the system after the institute of higher education, legislative-regulative assurance of master preparation, and statistic data in the republic. Have been the features of projecting the master programs, a condition of realization of studying credit system, have been analyzed the technologies of research teaching masters. In conclusion have been given some recommendation on creating personal-oriented environment of research teaching masters.

Keywords: Personal-oriented Environment, Research Teaching, Research Activity, the Technologies of Research Teaching

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1166
1363 Enhancement of Shape Description and Representation by Slope

Authors: Ali Salem Bin Samma, Rosalina Abdul Salam

Abstract:

Representation and description of object shapes by the slopes of their contours or borders are proposed. The idea is to capture the essence of the features that make it easier for a shape to be stored, transmitted, compared and recognized. These features must be independent of translation, rotation and scaling of the shape. A approach is proposed to obtain high performance, efficiency and to merge the boundaries into sequence of straight line segments with the fewest possible segments. Evaluation on the performance of the proposed method is based on its comparison with established method of object shape description.

Keywords: Shape description, Shape representation and Slope.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1456
1362 Video Summarization: Techniques and Applications

Authors: Zaynab Elkhattabi, Youness Tabii, Abdelhamid Benkaddour

Abstract:

Nowadays, huge amount of multimedia repositories make the browsing, retrieval and delivery of video contents very slow and even difficult tasks. Video summarization has been proposed to improve faster browsing of large video collections and more efficient content indexing and access. In this paper, we focus on approaches to video summarization. The video summaries can be generated in many different forms. However, two fundamentals ways to generate summaries are static and dynamic. We present different techniques for each mode in the literature and describe some features used for generating video summaries. We conclude with perspective for further research.

Keywords: Semantic features, static summarization, video skimming, Video summarization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7070
1361 Effect of Personality Traits on Classification of Political Orientation

Authors: Vesile Evrim, Aliyu Awwal

Abstract:

Today, there is a large number of political transcripts available on the Web to be mined and used for statistical analysis, and product recommendations. As the online political resources are used for various purposes, automatically determining the political orientation on these transcripts becomes crucial. The methodologies used by machine learning algorithms to do an automatic classification are based on different features that are classified under categories such as Linguistic, Personality etc. Considering the ideological differences between Liberals and Conservatives, in this paper, the effect of Personality traits on political orientation classification is studied. The experiments in this study were based on the correlation between LIWC features and the BIG Five Personality traits. Several experiments were conducted using Convote U.S. Congressional- Speech dataset with seven benchmark classification algorithms. The different methodologies were applied on several LIWC feature sets that constituted by 8 to 64 varying number of features that are correlated to five personality traits. As results of experiments, Neuroticism trait was obtained to be the most differentiating personality trait for classification of political orientation. At the same time, it was observed that the personality trait based classification methodology gives better and comparable results with the related work.

Keywords: Politics, personality traits, LIWC, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2162
1360 Off-Line Signature Recognition Based On Angle Features and GRNN Neural Networks

Authors: Laila Y. Fannas, Ahmed Y. Ben Sasi

Abstract:

This research presents a handwritten signature recognition based on angle feature vector using Artificial Neural Network (ANN). Each signature image will be represented by an Angle vector. The feature vector will constitute the input to the ANN. The collection of signature images will be divided into two sets. One set will be used for training the ANN in a supervised fashion. The other set which is never seen by the ANN will be used for testing. After training, the ANN will be tested for recognition of the signature. When the signature is classified correctly, it is considered correct recognition otherwise it is a failure.

Keywords: Signature Recognition, Artificial Neural Network, Angle Features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2496
1359 Reducing SAGE Data Using Genetic Algorithms

Authors: Cheng-Hong Yang, Tsung-Mu Shih, Li-Yeh Chuang

Abstract:

Serial Analysis of Gene Expression is a powerful quantification technique for generating cell or tissue gene expression data. The profile of the gene expression of cell or tissue in several different states is difficult for biologists to analyze because of the large number of genes typically involved. However, feature selection in machine learning can successfully reduce this problem. The method allows reducing the features (genes) in specific SAGE data, and determines only relevant genes. In this study, we used a genetic algorithm to implement feature selection, and evaluate the classification accuracy of the selected features with the K-nearest neighbor method. In order to validate the proposed method, we used two SAGE data sets for testing. The results of this study conclusively prove that the number of features of the original SAGE data set can be significantly reduced and higher classification accuracy can be achieved.

Keywords: Serial Analysis of Gene Expression, Feature selection, Genetic Algorithm, K-nearest neighbor method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610
1358 Masonry CSEB Building Models under Shaketable Testing-An Experimental Study

Authors: Lakshmi Keshav, V. G. Srisanthi

Abstract:

In this experimental investigation shake table tests were conducted on two reduced models that represent normal single room building constructed by Compressed Stabilized Earth Block (CSEB) from locally available soil. One model was constructed with earthquake resisting features (EQRF) having sill band, lintel band and vertical bands to control the building vibration and another one was without Earthquake Resisting Features. To examine the seismic capacity of the models particularly when it is subjected to long-period ground motion by large amplitude by many cycles of repeated loading, the test specimen was shaken repeatedly until the failure. The test results from Hi-end Data Acquisition system show that model with EQRF behave better than without EQRF. This modified masonry model with new material combined with new bands is used to improve the behavior of masonry building.

Keywords: Earth Quake Resisting Features, Compressed Stabilized Earth Blocks, Masonry structures, Shake table testing, Horizontal and vertical bands.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2736
1357 Infrared Face Recognition Using Distance Transforms

Authors: Moulay A. Akhloufi, Abdelhakim Bendada

Abstract:

In this work we present an efficient approach for face recognition in the infrared spectrum. In the proposed approach physiological features are extracted from thermal images in order to build a unique thermal faceprint. Then, a distance transform is used to get an invariant representation for face recognition. The obtained physiological features are related to the distribution of blood vessels under the face skin. This blood network is unique to each individual and can be used in infrared face recognition. The obtained results are promising and show the effectiveness of the proposed scheme.

Keywords: Face recognition, biometrics, infrared imaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423
1356 Gated Communities and Sense of Community: A Review on the Social Features of Gated Communities

Authors: R. Rafiemanzelat

Abstract:

Since the mid-1970s, gated communities distributed in Latin America. They are a kind of residential development where there are privatized public spaces, and access to the area is restricted. They have specific impacts on the neighborhoods that located outside their walls such as threatening security, limiting access, and spreading social inequality. This research mainly focused on social features of gated community as; segregation, fragmentation, exclusion, specifically on sense of community and typology of gated communities. The conclusion will clarify the pros and cons of gated communities and how it could be successful or not.

Keywords: Walled community, gated community, urban development, urban sociology, sense of community.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1928
1355 Kuehne + Nagel's PharmaChain: IoT-Enabled Product Monitoring Using Radio Frequency Identification

Authors: Rebecca Angeles

Abstract:

This case study features the Kuehne + Nagel PharmaChain solution for ‘cold chain’ pharmaceutical and biologic product shipments with IOT-enabled features for shipment temperature and location tracking. Using the case study method and content analysis, this research project investigates the application of the structurational model of technology theory introduced by Orlikowski in order to interpret the firm’s entry and participation in the IOT-impelled marketplace.

Keywords: Internet of things, IoT, radio frequency identification, supply chain management, business intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1980
1354 Content Based Image Retrieval of Brain MR Images across Different Classes

Authors: Abraham Varghese, Kannan Balakrishnan, Reji R. Varghese, Joseph S. Paul

Abstract:

Magnetic Resonance Imaging play a vital role in the decision-diagnosis process of brain MR images. For an accurate diagnosis of brain related problems, the experts mostly compares both T1 and T2 weighted images as the information presented in these two images are complementary. In this paper, rotational and translational invariant form of Local binary Pattern (LBP) with additional gray scale information is used to retrieve similar slices of T1 weighted images from T2 weighted images or vice versa. The incorporation of additional gray scale information on LBP can extract more local texture information. The accuracy of retrieval can be improved by extracting moment features of LBP and reweighting the features based on users feedback. Here retrieval is done in a single subject scenario where similar images of a particular subject at a particular level are retrieved, and multiple subjects scenario where relevant images at a particular level across the subjects are retrieved.

Keywords: Local Binary pattern (LBP), Modified Local Binary pattern (MOD-LBP), T1 and T2 weighted images, Moment features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2381
1353 Epileptic Seizure Prediction by Exploiting Signal Transitions Phenomena

Authors: Mohammad Zavid Parvez, Manoranjan Paul

Abstract:

A seizure prediction method is proposed by extracting global features using phase correlation between adjacent epochs for detecting relative changes and local features using fluctuation/ deviation within an epoch for determining fine changes of different EEG signals. A classifier and a regularization technique are applied for the reduction of false alarms and improvement of the overall prediction accuracy. The experiments show that the proposed method outperforms the state-of-the-art methods and provides high prediction accuracy (i.e., 97.70%) with low false alarm using EEG signals in different brain locations from a benchmark data set.

Keywords: Epilepsy, Seizure, Phase Correlation, Fluctuation, Deviation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2468
1352 A New Approach for the Fingerprint Classification Based On Gray-Level Co- Occurrence Matrix

Authors: Mehran Yazdi, Kazem Gheysari

Abstract:

In this paper, we propose an approach for the classification of fingerprint databases. It is based on the fact that a fingerprint image is composed of regular texture regions that can be successfully represented by co-occurrence matrices. So, we first extract the features based on certain characteristics of the cooccurrence matrix and then we use these features to train a neural network for classifying fingerprints into four common classes. The obtained results compared with the existing approaches demonstrate the superior performance of our proposed approach.

Keywords: Biometrics, fingerprint classification, gray level cooccurrence matrix, regular texture representation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1967
1351 Machine Learning Approach for Identifying Dementia from MRI Images

Authors: S. K. Aruna, S. Chitra

Abstract:

This research paper presents a framework for classifying Magnetic Resonance Imaging (MRI) images for Dementia. Dementia, an age-related cognitive decline is indicated by degeneration of cortical and sub-cortical structures. Characterizing morphological changes helps understand disease development and contributes to early prediction and prevention of the disease. Modelling, that captures the brain’s structural variability and which is valid in disease classification and interpretation is very challenging. Features are extracted using Gabor filter with 0, 30, 60, 90 orientations and Gray Level Co-occurrence Matrix (GLCM). It is proposed to normalize and fuse the features. Independent Component Analysis (ICA) selects features. Support Vector Machine (SVM) classifier with different kernels is evaluated, for efficiency to classify dementia. This study evaluates the presented framework using MRI images from OASIS dataset for identifying dementia. Results showed that the proposed feature fusion classifier achieves higher classification accuracy.

Keywords: Magnetic resonance imaging, dementia, Gabor filter, gray level co-occurrence matrix, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2117
1350 The Experience with SiC MOSFET and Buck Converter Snubber Design

Authors: P. Vaculik

Abstract:

The newest semiconductor devices on the market are MOSFET transistors based on the silicon carbide – SiC. This material has exclusive features thanks to which it becomes a better switch than Si – silicon semiconductor switch. There are some special features that need to be understood to enable the device’s use to its full potential. The advantages and differences of SiC MOSFETs in comparison with Si IGBT transistors have been described in first part of this article. Second part describes driver for SiC MOSFET transistor and last part of article represents SiC MOSFET in the application of buck converter (step-down) and design of simple RC snubber. 

Keywords: SiC, Si, MOSFET, IGBT, SBD, RC snubber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5590