Search results for: signal detrending
1022 Distortion Estimation in Digital Image Watermarking using Genetic Programming
Authors: Labiba Gilani, Asifullah Khan, Anwar M. Mirza
Abstract:
This paper introduces a technique of distortion estimation in image watermarking using Genetic Programming (GP). The distortion is estimated by considering the problem of obtaining a distorted watermarked signal from the original watermarked signal as a function regression problem. This function regression problem is solved using GP, where the original watermarked signal is considered as an independent variable. GP-based distortion estimation scheme is checked for Gaussian attack and Jpeg compression attack. We have used Gaussian attacks of different strengths by changing the standard deviation. JPEG compression attack is also varied by adding various distortions. Experimental results demonstrate that the proposed technique is able to detect the watermark even in the case of strong distortions and is more robust against attacks.Keywords: Blind Watermarking, Genetic Programming (GP), Fitness Function, Discrete Cosine Transform (DCT).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17131021 Bidirectional Chaotic Synchronization of Non-Autonomous Circuit and its Application for Secure Communication
Authors: Mada Sanjaya, Halimatussadiyah, Dian Syah Maulana
Abstract:
The nonlinear chaotic non-autonomous fourth order system is algebraically simple but can generate complex chaotic attractors. In this paper, non-autonomous fourth order chaotic oscillator circuits were designed and simulated. Also chaotic nonautonomous Attractor is addressed suitable for chaotic masking communication circuits using Matlab® and MultiSIM® programs. We have demonstrated in simulations that chaos can be synchronized and applied to signal masking communications. We suggest that this phenomenon of chaos synchronism may serve as the basis for little known chaotic non-autonomous Attractor to achieve signal masking communication applications. Simulation results are used to visualize and illustrate the effectiveness of non-autonomous chaotic system in signal masking. All simulations results performed on nonautonomous chaotic system are verify the applicable of secure communication.Keywords: Bidirectional chaotic synchronization, double bellattractor, secure communication
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21871020 Sparse Frequencies Extracting from Partial Phase-Only Measurements
Authors: R. Fan, Q. Wan, H. Chen, Y.L. Liu, Y.P. Liu
Abstract:
This paper considers a robust recovery of sparse frequencies from partial phase-only measurements. With the proposed method, sparse frequencies can be reconstructed, which makes full use of the sparse distribution in the Fourier representation of the complex-valued time signal. Simulation experiments illustrate the proposed method-s advantages over conventional methods in both noiseless and additive white Gaussian noise cases.Keywords: Sparse signal recovery, phase-only measurements, Compressive sensing, convex relaxation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14671019 EEG Waves Classifier using Wavelet Transform and Fourier Transform
Authors: Maan M. Shaker
Abstract:
The electroencephalograph (EEG) signal is one of the most widely signal used in the bioinformatics field due to its rich information about human tasks. In this work EEG waves classification is achieved using the Discrete Wavelet Transform DWT with Fast Fourier Transform (FFT) by adopting the normalized EEG data. The DWT is used as a classifier of the EEG wave's frequencies, while FFT is implemented to visualize the EEG waves in multi-resolution of DWT. Several real EEG data sets (real EEG data for both normal and abnormal persons) have been tested and the results improve the validity of the proposed technique.Keywords: Bioinformatics, DWT, EEG waves, FFT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 55631018 Weight Functions for Signal Reconstruction Based On Level Crossings
Authors: Nagesha, G. Hemantha Kumar
Abstract:
Although the level crossing concept has been the subject of intensive investigation over the last few years, certain problems of great interest remain unsolved. One of these concern is distribution of threshold levels. This paper presents a new threshold level allocation schemes for level crossing based on nonuniform sampling. Intuitively, it is more reasonable if the information rich regions of the signal are sampled finer and those with sparse information are sampled coarser. To achieve this objective, we propose non-linear quantization functions which dynamically assign the number of quantization levels depending on the importance of the given amplitude range. Two new approaches to determine the importance of the given amplitude segment are presented. The proposed methods are based on exponential and logarithmic functions. Various aspects of proposed techniques are discussed and experimentally validated. Its efficacy is investigated by comparison with uniform sampling.
Keywords: speech signals, sampling, signal reconstruction, asynchronousdelta modulation, non-linear quantization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16551017 Complex-Valued Neural Network in Signal Processing: A Study on the Effectiveness of Complex Valued Generalized Mean Neuron Model
Authors: Anupama Pande, Ashok Kumar Thakur, Swapnoneel Roy
Abstract:
A complex valued neural network is a neural network which consists of complex valued input and/or weights and/or thresholds and/or activation functions. Complex-valued neural networks have been widening the scope of applications not only in electronics and informatics, but also in social systems. One of the most important applications of the complex valued neural network is in signal processing. In Neural networks, generalized mean neuron model (GMN) is often discussed and studied. The GMN includes a new aggregation function based on the concept of generalized mean of all the inputs to the neuron. This paper aims to present exhaustive results of using Generalized Mean Neuron model in a complex-valued neural network model that uses the back-propagation algorithm (called -Complex-BP-) for learning. Our experiments results demonstrate the effectiveness of a Generalized Mean Neuron Model in a complex plane for signal processing over a real valued neural network. We have studied and stated various observations like effect of learning rates, ranges of the initial weights randomly selected, error functions used and number of iterations for the convergence of error required on a Generalized Mean neural network model. Some inherent properties of this complex back propagation algorithm are also studied and discussed.Keywords: Complex valued neural network, Generalized Meanneuron model, Signal processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17331016 Data Compression in Ultrasonic Network Communication via Sparse Signal Processing
Authors: Beata Zima, Octavio A. Márquez Reyes, Masoud Mohammadgholiha, Jochen Moll, Luca De Marchi
Abstract:
This document presents the approach of using compressed sensing in signal encoding and information transferring within a guided wave sensor network, comprised of specially designed frequency steerable acoustic transducers (FSATs). Wave propagation in a damaged plate was simulated using commercial FEM-based software COMSOL. Guided waves were excited by means of FSATs, characterized by the special shape of its electrodes, and modeled using PIC255 piezoelectric material. The special shape of the FSAT, allows for focusing wave energy in a certain direction, accordingly to the frequency components of its actuation signal, which makes a larger monitored area available. The process begins when a FSAT detects and records reflection from damage in the structure, this signal is then encoded and prepared for transmission, using a combined approach, based on Compressed Sensing Matching Pursuit and Quadrature Amplitude Modulation (QAM). After codification of the signal is in binary, the information is transmitted between the nodes in the network. The message reaches the last node, where it is finally decoded and processed, to be used for damage detection and localization purposes. The main aim of the investigation is to determine the location of detected damage using reconstructed signals. The study demonstrates that the special steerable capabilities of FSATs, not only facilitate the detection of damage but also permit transmitting the damage information to a chosen area in a specific direction of the investigated structure.
Keywords: Data compression, ultrasonic communication, guided waves, FEM analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3831015 Rolling Element Bearing Diagnosis by Improved Envelope Spectrum: Optimal Frequency Band Selection
Authors: Juan David Arango, Alejandro Restrepo-Martinez
Abstract:
The Rolling Element Bearing (REB) vibration diagnosis is worth of special interest by the variety of REB and the wide necessity of those elements in industrial applications. The presence of a localized fault in a REB gives rise to a vibrational response, characterized by the modulation of a carrier signal. Frequency content of carrier signal (Spectral Frequency –f) is mainly related to resonance frequencies of the REB. This carrier signal is modulated by another signal, governed by the periodicity of the fault impact (Cyclic Frequency –α). In this sense, REB fault vibration response gives rise to a second-order cyclostationary signal. Second order cyclostationary signals could be represented in a bi-spectral map, where Spectral Coherence –SCoh are plotted against f and α. The Improved Envelope Spectrum –IES, is a useful approach to execute REB fault diagnosis. IES could be applied by the integration of SCoh over a predefined bandwidth on the f axis. Approaches to select f-bandwidth have been recently exposed by the definition of a metric which intends to evaluate the magnitude of the IES at the fault characteristics frequencies. This metric is represented in a 1/3-binary tree as a function of the frequency bandwidth and centre. Based on this binary tree the optimal frequency band is selected. However, some advantages have been seen if the metric is changed, which in fact tends to dictate different optimal f-bandwidth and so improve the IES representation. This paper evaluates the behaviour of the IES from a different metric optimization. This metric is based on the sample correlation coefficient, detecting high peaks in the selected frequencies while penalizing high peaks in the neighbours of the selected frequencies. Prior results indicate an improvement on the signal-noise ratio (SNR) on around 86% of samples analysed, which belong to IMS database.
Keywords: Sample Correlation IESFOgram, cyclostationary analysis, improved envelope spectrum, IES, rolling element bearing diagnosis, spectral coherence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7441014 Optimization Modeling of the Hybrid Antenna Array for the DoA Estimation
Authors: Somayeh Komeylian
Abstract:
The direction of arrival (DoA) estimation is the crucial aspect of the radar technologies for detecting and dividing several signal sources. In this scenario, the antenna array output modeling involves numerous parameters including noise samples, signal waveform, signal directions, signal number, and signal to noise ratio (SNR), and thereby the methods of the DoA estimation rely heavily on the generalization characteristic for establishing a large number of the training data sets. Hence, we have analogously represented the two different optimization models of the DoA estimation; (1) the implementation of the decision directed acyclic graph (DDAG) for the multiclass least-squares support vector machine (LS-SVM), and (2) the optimization method of the deep neural network (DNN) radial basis function (RBF). We have rigorously verified that the LS-SVM DDAG algorithm is capable of accurately classifying DoAs for the three classes. However, the accuracy and robustness of the DoA estimation are still highly sensitive to technological imperfections of the antenna arrays such as non-ideal array design and manufacture, array implementation, mutual coupling effect, and background radiation and thereby the method may fail in representing high precision for the DoA estimation. Therefore, this work has a further contribution on developing the DNN-RBF model for the DoA estimation for overcoming the limitations of the non-parametric and data-driven methods in terms of array imperfection and generalization. The numerical results of implementing the DNN-RBF model have confirmed the better performance of the DoA estimation compared with the LS-SVM algorithm. Consequently, we have analogously evaluated the performance of utilizing the two aforementioned optimization methods for the DoA estimation using the concept of the mean squared error (MSE).
Keywords: DoA estimation, adaptive antenna array, Deep Neural Network, LS-SVM optimization model, radial basis function, MSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5461013 Real Time Acquisition and Analysis of Neural Response for Rehabilitative Control
Authors: Dipali Bansal, Rashima Mahajan, Shweta Singh, Dheeraj Rathee, Sujit Roy
Abstract:
Non-invasive Brain Computer Interface like Electroencephalography (EEG) which directly taps neurological signals, is being widely explored these days to connect paralytic patients/elderly with the external environment. However, in India the research is confined to laboratory settings and is not reaching the mass for rehabilitation purposes. An attempt has been made in this paper to analyze real time acquired EEG signal using cost effective and portable headset unit EMOTIV. Signal processing of real time acquired EEG is done using EEGLAB in MATLAB and EDF Browser application software platforms. Independent Component Analysis algorithm of EEGLAB is explored to identify deliberate eye blink in the attained neural signal. Time Frequency transforms and Data statistics obtained using EEGLAB along with component activation results of EDF browser clearly indicate voluntary eye blink in AF3 channel. The spectral analysis indicates dominant frequency component at 1.536000Hz representing the delta wave component of EEG during voluntary eye blink action. An algorithm is further designed to generate an active high signal based on thoughtful eye blink that can be used for plethora of control applications for rehabilitation.
Keywords: Brain Computer Interface, EDF Browser, EEG, EEGLab, EMOTIV, Real time Acquisition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32391012 Mitigating the Clipping Noise by Using the Oversampling Scheme in OFDM Systems
Authors: Linjun Wu, Shihua Zhu, Xingle Feng
Abstract:
In an Orthogonal Frequency Division Multiplexing (OFDM) systems, the Peak to Average power Ratio (PAR) is high. The clipping signal scheme is a useful and simple method to reduce the PAR. However, it introduces additional noise that degrades the systems performance. We propose an oversampling scheme to deal with the received signal in order to reduce the clipping noise by using Finite Impulse Response (FIR) filter. Coefficients of filter are obtained by correlation function of the received signal and the oversampling information at receiver. The performance of the proposed technique is evaluated for frequency selective channel. Results show that the proposed scheme can mitigate the clipping noise significantly for OFDM systems and in order to maintain the system's capacity, the clipping ratio should be larger than 2.5.
Keywords: Orthogonal frequency division multiplexing, peak-to-average power ratio, oversampling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16551011 Development of a Fiber based Interferometric Sensor for Non-contact Displacement Measurement
Authors: S. Pullteap
Abstract:
In this paper, a fiber based Fabry-Perot interferometer is proposed and demonstrated for a non-contact displacement measurement. A piece of micro-prism which attached to the mechanical vibrator is served as the target reflector. Interference signal is generated from the superposition between the sensing beam and the reference beam within the sensing arm of the fiber sensor. This signal is then converted to the displacement value by using a developed program written in visual Cµ programming with a resolution of λ/8. A classical function generator is operated for controlling the vibrator. By fixing an excitation frequency of 100 Hz and varying the excitation amplitude range of 0.1 – 3 Volts, the output displacements measured by the fiber sensor are obtained from 1.55 μm to 30.225 μm. A reference displacement sensor with a sensitivity of ~0.4 μm is also employed for comparing the displacement errors between both sensors. We found that over the entire displacement range, a maximum and average measurement error are obtained of 0.977% and 0.44% respectively.Keywords: Non-contact displacement measurement, extrinsicfiber based Fabry-Perot interferometer, interference signal, zerocrossingfringe counting technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20301010 The Utility of Wavelet Transform in Surface Electromyography Feature Extraction -A Comparative Study of Different Mother Wavelets
Authors: Farzaneh Akhavan Mahdavi, Siti Anom Ahmad, Mohd Hamiruce Marhaban, Mohammad-R. Akbarzadeh-T
Abstract:
Electromyography (EMG) signal processing has been investigated remarkably regarding various applications such as in rehabilitation systems. Specifically, wavelet transform has served as a powerful technique to scrutinize EMG signals since wavelet transform is consistent with the nature of EMG as a non-stationary signal. In this paper, the efficiency of wavelet transform in surface EMG feature extraction is investigated from four levels of wavelet decomposition and a comparative study between different mother wavelets had been done. To recognize the best function and level of wavelet analysis, two evaluation criteria, scatter plot and RES index are recruited. Hereupon, four wavelet families, namely, Daubechies, Coiflets, Symlets and Biorthogonal are studied in wavelet decomposition stage. Consequently, the results show that only features from first and second level of wavelet decomposition yields good performance and some functions of various wavelet families can lead to an improvement in separability class of different hand movements.
Keywords: Electromyography signal, feature extraction, wavelettransform, means absolute value.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28451009 BER Analysis of Energy Detection Spectrum Sensing in Cognitive Radio Using GNU Radio
Authors: B. Siva Kumar Reddy, B. Lakshmi
Abstract:
Cognitive Radio is a turning out technology that empowers viable usage of the spectrum. Energy Detector-based Sensing is the most broadly utilized spectrum sensing strategy. Besides, it's a lot of generic as receivers doesn't would like any information on the primary user's signals, channel data, of even the sort of modulation. This paper puts forth the execution of energy detection sensing for AM (Amplitude Modulated) signal at 710 KHz, FM (Frequency Modulated) signal at 103.45 MHz (local station frequency), Wi-Fi signal at 2.4 GHz and WiMAX signals at 6 GHz. The OFDM/OFDMA based WiMAX physical layer with convolutional channel coding is actualized utilizing USRP N210 (Universal Software Radio Peripheral) and GNU Radio based Software Defined Radio (SDR). Test outcomes demonstrated the BER (Bit Error Rate) augmentation with channel noise and BER execution is dissected for different Eb/N0 (the energy per bit to noise power spectral density ratio) values.
Keywords: BER, Cognitive Radio, GNU Radio, OFDM, SDR, WiMAX.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45451008 Indoor Localization Algorithm and Appropriate Implementation Using Wireless Sensor Networks
Authors: Adeniran Ademuwagun, Alastair Allen
Abstract:
The relationship dependence between RSS and distance in an enclosed environment is an important consideration because it is a factor that can influence the reliability of any localization algorithm founded on RSS. Several algorithms effectively reduce the variance of RSS to improve localization or accuracy performance. Our proposed algorithm essentially avoids this pitfall and consequently, its high adaptability in the face of erratic radio signal. Using 3 anchors in close proximity of each other, we are able to establish that RSS can be used as reliable indicator for localization with an acceptable degree of accuracy. Inherent in this concept, is the ability for each prospective anchor to validate (guarantee) the position or the proximity of the other 2 anchors involved in the localization and vice versa. This procedure ensures that the uncertainties of radio signals due to multipath effects in enclosed environments are minimized. A major driver of this idea is the implicit topological relationship among sensors due to raw radio signal strength. The algorithm is an area based algorithm; however, it does not trade accuracy for precision (i.e the size of the returned area).Keywords: Anchor nodes, centroid algorithm, communication graph, received signal strength (RSS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18881007 Continuous Wave Interference Effects on Global Position System Signal Quality
Authors: Fang Ye, Han Yu, Yibing Li
Abstract:
Radio interference is one of the major concerns in using the global positioning system (GPS) for civilian and military applications. Interference signals are produced not only through all electronic systems but also illegal jammers. Among different types of interferences, continuous wave (CW) interference has strong adverse impacts on the quality of the received signal. In this paper, we make more detailed analysis for CW interference effects on GPS signal quality. Based on the C/A code spectrum lines, the influence of CW interference on the acquisition performance of GPS receivers is further analysed. This influence is supported by simulation results using GPS software receiver. As the most important user parameter of GPS receivers, the mathematical expression of bit error probability is also derived in the presence of CW interference, and the expression is consistent with the Monte Carlo simulation results. The research on CW interference provides some theoretical gist and new thoughts on monitoring the radio noise environment and improving the anti-jamming ability of GPS receivers.Keywords: GPS, CW interference, acquisition performance, bit error probability, Monte Carlo.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18871006 Speech Intelligibility Improvement Using Variable Level Decomposition DWT
Authors: Samba Raju, Chiluveru, Manoj Tripathy
Abstract:
Intelligibility is an essential characteristic of a speech signal, which is used to help in the understanding of information in speech signal. Background noise in the environment can deteriorate the intelligibility of a recorded speech. In this paper, we presented a simple variance subtracted - variable level discrete wavelet transform, which improve the intelligibility of speech. The proposed algorithm does not require an explicit estimation of noise, i.e., prior knowledge of the noise; hence, it is easy to implement, and it reduces the computational burden. The proposed algorithm decides a separate decomposition level for each frame based on signal dominant and dominant noise criteria. The performance of the proposed algorithm is evaluated with speech intelligibility measure (STOI), and results obtained are compared with Universal Discrete Wavelet Transform (DWT) thresholding and Minimum Mean Square Error (MMSE) methods. The experimental results revealed that the proposed scheme outperformed competing methodsKeywords: Discrete Wavelet Transform, speech intelligibility, STOI, standard deviation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6961005 Comparison between Haar and Daubechies Wavelet Transformions on FPGA Technology
Authors: Mohamed I. Mahmoud, Moawad I. M. Dessouky, Salah Deyab, Fatma H. Elfouly
Abstract:
Recently, the Field Programmable Gate Array (FPGA) technology offers the potential of designing high performance systems at low cost. The discrete wavelet transform has gained the reputation of being a very effective signal analysis tool for many practical applications. However, due to its computation-intensive nature, current implementation of the transform falls short of meeting real-time processing requirements of most application. The objectives of this paper are implement the Haar and Daubechies wavelets using FPGA technology. In addition, the comparison between the Haar and Daubechies wavelets is investigated. The Bit Error Rat (BER) between the input audio signal and the reconstructed output signal for each wavelet is calculated. It is seen that the BER using Daubechies wavelet techniques is less than Haar wavelet. The design procedure has been explained and designed using the stat-of-art Electronic Design Automation (EDA) tools for system design on FPGA. Simulation, synthesis and implementation on the FPGA target technology has been carried out.
Keywords: Daubechies wavelet, discrete wavelet transform, Haar wavelet, Xilinx FPGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 48521004 Space Vector Pulse Width Modulation Technique Based Design and Simulation of a Three-Phase Voltage Source Converter Systems
Authors: Farhan Beg
Abstract:
A Space Vector based Pulse Width Modulation control technique for the three-phase PWM converter is proposed in this paper. The proposed control scheme is based on a synchronous reference frame model. High performance and efficiency is obtained with regards to the DC bus voltage and the power factor considerations of the PWM rectifier thus leading to low losses. MATLAB/SIMULINK are used as a platform for the simulations and a SIMULINK model is presented in the paper. The results show that the proposed model demonstrates better performance and properties compared to the traditional SPWM method and the method improves the dynamic performance of the closed loop drastically. For the Space Vector based Pulse Width Modulation, Sine signal is the reference waveform and triangle waveform is the carrier waveform. When the value sine signal is large than triangle signal, the pulse will start produce to high. And then when the triangular signals higher than sine signal, the pulse will come to low. SPWM output will changed by changing the value of the modulation index and frequency used in this system to produce more pulse width. The more pulse width produced, the output voltage will have lower harmonics contents and the resolution increase.
Keywords: Power Factor, SVPWM, PWM rectifier, SPWM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40251003 Enhancement of Raman Scattering using Photonic Nanojet and Whispering Gallery Mode of a Dielectric Microstructure
Authors: A. Arya, R. Laha, V. R. Dantham
Abstract:
We report the enhancement of Raman scattering signal by one order of magnitude using photonic nanojet (PNJ) of a lollipop shaped dielectric microstructure (LSDM) fabricated by a pulsed CO₂ laser. Here, the PNJ is generated by illuminating sphere portion of the LSDM with non-resonant laser. Unlike the surface enhanced Raman scattering (SERS) technique, this technique is simple, and the obtained results are highly reproducible. In addition, an efficient technique is proposed to enhance the SERS signal with the help of high quality factor optical resonance (whispering gallery mode) of a LSDM. From the theoretical simulations, it has been found that at least an order of magnitude enhancement in the SERS signal could be achieved easily using the proposed technique. We strongly believe that this report will enable the research community for improving the Raman scattering signals.Keywords: Localized surface plasmons, photonic nanojet, SERS, whispering gallery mode.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11221002 Chaotic Properties of Hemodynamic Responsein Functional Near Infrared Spectroscopic Measurement of Brain Activity
Authors: Ni Ni Soe , Masahiro Nakagawa
Abstract:
Functional near infrared spectroscopy (fNIRS) is a practical non-invasive optical technique to detect characteristic of hemoglobin density dynamics response during functional activation of the cerebral cortex. In this paper, fNIRS measurements were made in the area of motor cortex from C4 position according to international 10-20 system. Three subjects, aged 23 - 30 years, were participated in the experiment. The aim of this paper was to evaluate the effects of different motor activation tasks of the hemoglobin density dynamics of fNIRS signal. The chaotic concept based on deterministic dynamics is an important feature in biological signal analysis. This paper employs the chaotic properties which is a novel method of nonlinear analysis, to analyze and to quantify the chaotic property in the time series of the hemoglobin dynamics of the various motor imagery tasks of fNIRS signal. Usually, hemoglobin density in the human brain cortex is found to change slowly in time. An inevitable noise caused by various factors is to be included in a signal. So, principle component analysis method (PCA) is utilized to remove high frequency component. The phase pace is reconstructed and evaluated the Lyapunov spectrum, and Lyapunov dimensions. From the experimental results, it can be conclude that the signals measured by fNIRS are chaotic.Keywords: Chaos, hemoglobin, Lyapunov spectrum, motorimagery, near infrared spectroscopy (NIRS), principal componentanalysis (PCA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17301001 Enhancement Effect of Superparamagnetic Iron Oxide Nanoparticle-Based MRI Contrast Agent at Different Concentrations and Magnetic Field Strengths
Authors: Bimali Sanjeevani Weerakoon, Toshiaki Osuga, Takehisa Konishi
Abstract:
Magnetic Resonance Imaging Contrast Agents (MRI-CM) are significant in the clinical and biological imaging as they have the ability to alter the normal tissue contrast, thereby affecting the signal intensity to enhance the visibility and detectability of images. Superparamagnetic Iron Oxide (SPIO) nanoparticles, coated with dextran or carboxydextran are currently available for clinical MR imaging of the liver. Most SPIO contrast agents are T2 shortening agents and Resovist (Ferucarbotran) is one of a clinically tested, organ-specific, SPIO agent which has a low molecular carboxydextran coating. The enhancement effect of Resovist depends on its relaxivity which in turn depends on factors like magnetic field strength, concentrations, nanoparticle properties, pH and temperature. Therefore, this study was conducted to investigate the impact of field strength and different contrast concentrations on enhancement effects of Resovist. The study explored the MRI signal intensity of Resovist in the physiological range of plasma from T2-weighted spin echo sequence at three magnetic field strengths: 0.47 T (r1=15, r2=101), 1.5 T (r1=7.4, r2=95), and 3 T (r1=3.3, r2=160) and the range of contrast concentrations by a mathematical simulation. Relaxivities of r1 and r2 (L mmol-1 Sec-1) were obtained from a previous study and the selected concentrations were 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, and 3.0 mmol/L. T2-weighted images were simulated using TR/TE ratio as 2000 ms /100 ms. According to the reference literature, with increasing magnetic field strengths, the r1 relaxivity tends to decrease while the r2 did not show any systematic relationship with the selected field strengths. In parallel, this study results revealed that the signal intensity of Resovist at lower concentrations tends to increase than the higher concentrations. The highest reported signal intensity was observed in the low field strength of 0.47 T. The maximum signal intensities for 0.47 T, 1.5 T and 3 T were found at the concentration levels of 0.05, 0.06 and 0.05 mmol/L, respectively. Furthermore, it was revealed that, the concentrations higher than the above, the signal intensity was decreased exponentially. An inverse relationship can be found between the field strength and T2 relaxation time, whereas, the field strength was increased, T2 relaxation time was decreased accordingly. However, resulted T2 relaxation time was not significantly different between 0.47 T and 1.5 T in this study. Moreover, a linear correlation of transverse relaxation rates (1/T2, s–1) with the concentrations of Resovist can be observed. According to these results, it can conclude that the concentration of SPIO nanoparticle contrast agents and the field strengths of MRI are two important parameters which can affect the signal intensity of T2-weighted SE sequence. Therefore, when MR imaging those two parameters should be considered prudently.Keywords: Concentration, Resovist, Field strength, Relaxivity, Signal intensity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19981000 Perturbation in the Fractional Fourier Span due to Erroneous Transform Order and Window Function
Authors: Sukrit Shankar, Chetana Shanta Patsa, Jaydev Sharma
Abstract:
Fractional Fourier Transform is a generalization of the classical Fourier Transform. The Fractional Fourier span in general depends on the amplitude and phase functions of the signal and varies with the transform order. However, with the development of the Fractional Fourier filter banks, it is advantageous in some cases to have different transform orders for different filter banks to achieve better decorrelation of the windowed and overlapped time signal. We present an expression that is useful for finding the perturbation in the Fractional Fourier span due to the erroneous transform order and the possible variation in the window shape and length. The expression is based on the dependency of the time-Fractional Fourier span Uncertainty on the amplitude and phase function of the signal. We also show with the help of the developed expression that the perturbation of span has a varying degree of sensitivity for varying degree of transform order and the window coefficients.Keywords: Fractional Fourier Transform, Perturbation, Fractional Fourier span, amplitude, phase, transform order, filterbanks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1478999 An Effective Noise Resistant FM Continuous-Wave Radar Vital Sign Signal Detection Method
Authors: Lu Yang, Meiyang Song, Xiang Yu, Wenhao Zhou, Chuntao Feng
Abstract:
To address the problem that the FM continuous-wave (FMCW) radar extracts human vital sign signals which are susceptible to noise interference and low reconstruction accuracy, a detection scheme for the sign signals is proposed. Firstly, an improved complete ensemble empirical modal decomposition with adaptive noise (ICEEMDAN) algorithm is applied to decompose the radar-extracted thoracic signals to obtain several intrinsic modal functions (IMF) with different spatial scales, and then the IMF components are optimized by a backpropagation (BP) neural network improved by immune genetic algorithm (IGA). The simulation results show that this scheme can effectively separate the noise, accurately extract the respiratory and heartbeat signals and improve the reconstruction accuracy and signal to-noise ratio of the sign signals.
Keywords: Frequency modulated continuous wave radar, ICEEMDAN, BP Neural Network, vital signs signal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 485998 Development of a Serial Signal Monitoring Program for Educational Purposes
Authors: Jungho Moon, Lae-Jeong Park
Abstract:
This paper introduces a signal monitoring program developed with a view to helping electrical engineering students get familiar with sensors with digital output. Because the output of digital sensors cannot be simply monitored by a measuring instrument such as an oscilloscope, students tend to have a hard time dealing with digital sensors. The monitoring program runs on a PC and communicates with an MCU that reads the output of digital sensors via an asynchronous communication interface. Receiving the sensor data from the MCU, the monitoring program shows time and/or frequency domain plots of the data in real time. In addition, the monitoring program provides a serial terminal that enables the user to exchange text information with the MCU while the received data is plotted. The user can easily observe the output of digital sensors and configure the digital sensors in real time, which helps students who do not have enough experiences with digital sensors. Though the monitoring program was programmed in the Matlab programming language, it runs without the Matlab since it was compiled as a standalone executable.Keywords: Digital sensor, MATLAB, MCU, signal monitoring program.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2116997 Small Signal Stability Enhancement for Hybrid Power Systems by SVC
Authors: Ali Dehghani, Mojtaba Hakimzadeh, Amir Habibi, Navid Mehdizadeh Afroozi
Abstract:
In this paper an isolated wind-diesel hybrid power system has been considered for reactive power control study having an induction generator for wind power conversion and synchronous alternator with automatic voltage regulator (AVR) for diesel unit is presented. The dynamic voltage stability evaluation is dependent on small signal analysis considering a Static VAR Compensator (SVC) and IEEE type -I excitation system. It's shown that the variable reactive power source like SVC is crucial to meet the varying demand of reactive power by induction generator and load and to acquire an excellent voltage regulation of the system with minimum fluctuations. Integral square error (ISE) criterion can be used to evaluate the optimum setting of gain parameters. Finally the dynamic responses of the power systems considered with optimum gain setting will also be presented.
Keywords: SVC, Small Signal Stability, Reactive Power, Control, Hybrid System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2460996 Comparison between Haar and Daubechies Wavelet Transformations on FPGA Technology
Authors: Fatma H. Elfouly, Mohamed I. Mahmoud, Moawad I. M. Dessouky, Salah Deyab
Abstract:
Recently, the Field Programmable Gate Array (FPGA) technology offers the potential of designing high performance systems at low cost. The discrete wavelet transform has gained the reputation of being a very effective signal analysis tool for many practical applications. However, due to its computation-intensive nature, current implementation of the transform falls short of meeting real-time processing requirements of most application. The objectives of this paper are implement the Haar and Daubechies wavelets using FPGA technology. In addition, the Bit Error Rate (BER) between the input audio signal and the reconstructed output signal for each wavelet is calculated. From the BER, it is seen that the implementations execute the operation of the wavelet transform correctly and satisfying the perfect reconstruction conditions. The design procedure has been explained and designed using the stat-ofart Electronic Design Automation (EDA) tools for system design on FPGA. Simulation, synthesis and implementation on the FPGA target technology has been carried out.
Keywords: Daubechies wavelet, discrete wavelet transform, Haar wavelet, Xilinx FPGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7233995 Stability Improvement of AC System by Controllability of the HVDC
Authors: Omid Borazjani, Alireza Rajabi, Mojtaba Saeedimoghadam, Khodakhast Isapour
Abstract:
High Voltage Direct Current (HVDC) power transmission is employed to move large amounts of electric power. There are several possibilities to enhance the transient stability in a power system. One adequate option is by using the high controllability of the HVDC if HVDC is available in the system. This paper presents a control technique for HVDC to enhance the transient stability. The strategy controls the power through the HVDC to help make the system more transient stable during disturbances. Loss of synchronism is prevented by quickly producing sufficient decelerating energy to counteract accelerating energy gained during. In this study, the power flow in the HVDC link is modulated with the addition of an auxiliary signal to the current reference of the rectifier firing angle controller. This modulation control signal is derived from speed deviation signal of the generator utilizing a PD controller; the utilization of a PD controller is suitable because it has the property of fast response. The effectiveness of the proposed controller is demonstrated with a SMIB test system.Keywords: HVDC, SMIB, Stability, Power System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2340994 Practical Guidelines and Examples for the Users of the TMS320C6713 DSK
Authors: Abdullah A Wardak
Abstract:
This paper describes how the correct endian mode of the TMS320C6713 DSK board can be identified. It also explains how the TMS320C6713 DSK board can be used in the little endian and in the big endian modes for assembly language programming in particular and for signal processing in general. Similarly, it discusses how crucially important it is for a user of the TMS320C6713 DSK board to identify the mode of operation and then use it correctly during the development stages of the assembly language programming; otherwise, it will cause unnecessary confusion and erroneous results as far as storing data into the memory and loading data from the memory is concerned. Furthermore, it highlights and strongly recommends to the users of the TMS320C6713 DSK board to be aware of the availability and importance of various display options in the Code Composer Studio (CCS) for correctly interpreting and displaying the desired data in the memory. The information presented in this paper will be of great importance and interest to those practitioners and developers who wants to use the TMS320C6713 DSK board for assembly language programming as well as input-output signal processing manipulations. Finally, examples that clearly illustrate the concept are presented.Keywords: Assembly language programming, big endian mode, little endian mode, signal processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2791993 End Point Detection for Wavelet Based Speech Compression
Authors: Jalal Karam
Abstract:
In real-field applications, the correct determination of voice segments highly improves the overall system accuracy and minimises the total computation time. This paper presents reliable measures of speech compression by detcting the end points of the speech signals prior to compressing them. The two different compession schemes used are the Global threshold and the Level- Dependent threshold techniques. The performance of the proposed method is tested wirh the Signal to Noise Ratios, Peak Signal to Noise Ratios and Normalized Root Mean Square Error parameter measures.
Keywords: Wavelets, End-points Detection, Compression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381