Search results for: measurement approximation and classification.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2575

Search results for: measurement approximation and classification.

2395 Low Value Capacitance Measurement System with Adjustable Lead Capacitance Compensation

Authors: Gautam Sarkar, Anjan Rakshit, Amitava Chatterjee, Kesab Bhattacharya

Abstract:

The present paper describes the development of a low cost, highly accurate low capacitance measurement system that can be used over a range of 0 – 400 pF with a resolution of 1 pF. The range of capacitance may be easily altered by a simple resistance or capacitance variation of the measurement circuit. This capacitance measurement system uses quad two-input NAND Schmitt trigger circuit CD4093B with hysteresis for the measurement and this system is integrated with PIC 18F2550 microcontroller for data acquisition purpose. The microcontroller interacts with software developed in the PC end through USB architecture and an attractive graphical user interface (GUI) based system is developed in the PC end to provide the user with real time, online display of capacitance under measurement. The system uses a differential mode of capacitance measurement, with reference to a trimmer capacitance, that effectively compensates lead capacitances, a notorious error encountered in usual low capacitance measurements. The hysteresis provided in the Schmitt-trigger circuits enable reliable operation of the system by greatly minimizing the possibility of false triggering because of stray interferences, usually regarded as another source of significant error. The real life testing of the proposed system showed that our measurements could produce highly accurate capacitance measurements, when compared to cutting edge, high end digital capacitance meters.

Keywords: Capacitance measurement, NAND Schmitt trigger, microcontroller, GUI, lead compensation, hysteresis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7370
2394 Gene Expression Signature for Classification of Metastasis Positive and Negative Oral Cancer in Homosapiens

Authors: A. Shukla, A. Tarsauliya, R. Tiwari, S. Sharma

Abstract:

Cancer classification to their corresponding cohorts has been key area of research in bioinformatics aiming better prognosis of the disease. High dimensionality of gene data has been makes it a complex task and requires significance data identification technique in order to reducing the dimensionality and identification of significant information. In this paper, we have proposed a novel approach for classification of oral cancer into metastasis positive and negative patients. We have used significance analysis of microarrays (SAM) for identifying significant genes which constitutes gene signature. 3 different gene signatures were identified using SAM from 3 different combination of training datasets and their classification accuracy was calculated on corresponding testing datasets using k-Nearest Neighbour (kNN), Fuzzy C-Means Clustering (FCM), Support Vector Machine (SVM) and Backpropagation Neural Network (BPNN). A final gene signature of only 9 genes was obtained from above 3 individual gene signatures. 9 gene signature-s classification capability was compared using same classifiers on same testing datasets. Results obtained from experimentation shows that 9 gene signature classified all samples in testing dataset accurately while individual genes could not classify all accurately.

Keywords: Cancer, Gene Signature, SAM, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2076
2393 Flexible Sensor Array with Programmable Measurement System

Authors: Jung-Chuan Chou, Wei-Chuan Chen, Chien-Cheng Chen

Abstract:

This study is concerned with pH solution detection using 2 × 4 flexible sensor array based on a plastic polyethylene terephthalate (PET) substrate that is coated a conductive layer and a ruthenium dioxide (RuO2) sensitive membrane with the technologies of screen-printing and RF sputtering. For data analysis, we also prepared a dynamic measurement system for acquiring the response voltage and analyzing the characteristics of the working electrodes (WEs), such as sensitivity and linearity. In this condition, an array measurement system was designed to acquire the original signal from sensor array, and it is based on the method of digital signal processing (DSP). The DSP modifies the unstable acquisition data to a direct current (DC) output using the technique of digital filter. Hence, this sensor array can obtain a satisfactory yield, 62.5%, through the design measurement and analysis system in our laboratory.

Keywords: Flexible sensor array, PET, RuO2, dynamic measurement, data analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493
2392 The Labeled Classification and its Application

Authors: M. Nemissi, H. Seridi, H. Akdag

Abstract:

This paper presents and evaluates a new classification method that aims to improve classifiers performances and speed up their training process. The proposed approach, called labeled classification, seeks to improve convergence of the BP (Back propagation) algorithm through the addition of an extra feature (labels) to all training examples. To classify every new example, tests will be carried out each label. The simplicity of implementation is the main advantage of this approach because no modifications are required in the training algorithms. Therefore, it can be used with others techniques of acceleration and stabilization. In this work, two models of the labeled classification are proposed: the LMLP (Labeled Multi Layered Perceptron) and the LNFC (Labeled Neuro Fuzzy Classifier). These models are tested using Iris, wine, texture and human thigh databases to evaluate their performances.

Keywords: Artificial neural networks, Fusion of neural networkfuzzysystems, Learning theory, Pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411
2391 Application of Functional Network to Solving Classification Problems

Authors: Yong-Quan Zhou, Deng-Xu He, Zheng Nong

Abstract:

In this paper two models using a functional network were employed to solving classification problem. Functional networks are generalized neural networks, which permit the specification of their initial topology using knowledge about the problem at hand. In this case, and after analyzing the available data and their relations, we systematically discuss a numerical analysis method used for functional network, and apply two functional network models to solving XOR problem. The XOR problem that cannot be solved with two-layered neural network can be solved by two-layered functional network, which reveals a potent computational power of functional networks, and the performance of the proposed model was validated using classification problems.

Keywords: Functional network, neural network, XOR problem, classification, numerical analysis method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1310
2390 A Kernel Based Rejection Method for Supervised Classification

Authors: Abdenour Bounsiar, Edith Grall, Pierre Beauseroy

Abstract:

In this paper we are interested in classification problems with a performance constraint on error probability. In such problems if the constraint cannot be satisfied, then a rejection option is introduced. For binary labelled classification, a number of SVM based methods with rejection option have been proposed over the past few years. All of these methods use two thresholds on the SVM output. However, in previous works, we have shown on synthetic data that using thresholds on the output of the optimal SVM may lead to poor results for classification tasks with performance constraint. In this paper a new method for supervised classification with rejection option is proposed. It consists in two different classifiers jointly optimized to minimize the rejection probability subject to a given constraint on error rate. This method uses a new kernel based linear learning machine that we have recently presented. This learning machine is characterized by its simplicity and high training speed which makes the simultaneous optimization of the two classifiers computationally reasonable. The proposed classification method with rejection option is compared to a SVM based rejection method proposed in recent literature. Experiments show the superiority of the proposed method.

Keywords: rejection, Chow's rule, error-reject tradeoff, SupportVector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1445
2389 Synthetic Aperture Radar Remote Sensing Classification Using the Bag of Visual Words Model to Land Cover Studies

Authors: Reza Mohammadi, Mahmod R. Sahebi, Mehrnoosh Omati, Milad Vahidi

Abstract:

Classification of high resolution polarimetric Synthetic Aperture Radar (PolSAR) images plays an important role in land cover and land use management. Recently, classification algorithms based on Bag of Visual Words (BOVW) model have attracted significant interest among scholars and researchers in and out of the field of remote sensing. In this paper, BOVW model with pixel based low-level features has been implemented to classify a subset of San Francisco bay PolSAR image, acquired by RADARSAR 2 in C-band. We have used segment-based decision-making strategy and compared the result with the result of traditional Support Vector Machine (SVM) classifier. 90.95% overall accuracy of the classification with the proposed algorithm has shown that the proposed algorithm is comparable with the state-of-the-art methods. In addition to increase in the classification accuracy, the proposed method has decreased undesirable speckle effect of SAR images.

Keywords: Bag of Visual Words, classification, feature extraction, land cover management, Polarimetric Synthetic Aperture Radar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 774
2388 Approximation Incremental Training Algorithm Based on a Changeable Training Set

Authors: Yi-Fan Zhu, Wei Zhang, Xuan Zhou, Qun Li, Yong-Lin Lei

Abstract:

The quick training algorithms and accurate solution procedure for incremental learning aim at improving the efficiency of training of SVR, whereas there are some disadvantages for them, i.e. the nonconvergence of the formers for changeable training set and the inefficiency of the latter for a massive dataset. In order to handle the problems, a new training algorithm for a changeable training set, named Approximation Incremental Training Algorithm (AITA), was proposed. This paper explored the reason of nonconvergence theoretically and discussed the realization of AITA, and finally demonstrated the benefits of AITA both on precision and efficiency.

Keywords: support vector regression, incremental learning, changeable training set, quick training algorithm, accurate solutionprocedure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1484
2387 Cardiac Disorder Classification Based On Extreme Learning Machine

Authors: Chul Kwak, Oh-Wook Kwon

Abstract:

In this paper, an extreme learning machine with an automatic segmentation algorithm is applied to heart disorder classification by heart sound signals. From continuous heart sound signals, the starting points of the first (S1) and the second heart pulses (S2) are extracted and corrected by utilizing an inter-pulse histogram. From the corrected pulse positions, a single period of heart sound signals is extracted and converted to a feature vector including the mel-scaled filter bank energy coefficients and the envelope coefficients of uniform-sized sub-segments. An extreme learning machine is used to classify the feature vector. In our cardiac disorder classification and detection experiments with 9 cardiac disorder categories, the proposed method shows significantly better performance than multi-layer perceptron, support vector machine, and hidden Markov model; it achieves the classification accuracy of 81.6% and the detection accuracy of 96.9%.

Keywords: Heart sound classification, extreme learning machine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1934
2386 Investigation of Wave Atom Sub-Bands via Breast Cancer Classification

Authors: Nebi Gedik, Ayten Atasoy

Abstract:

This paper investigates successful sub-bands of wave atom transform via classification of mammograms, when the coefficients of sub-bands are used as features. A computer-aided diagnosis system is constructed by using wave atom transform, support vector machine and k-nearest neighbor classifiers. Two-class classification is studied in detail using two data sets, separately. The successful sub-bands are determined according to the accuracy rates, coefficient numbers, and sensitivity rates.

Keywords: Breast cancer, wave atom transform, SVM, k-NN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1072
2385 Adaptive Impedance Control for Unknown Time-Varying Environment Position and Stiffness

Authors: Norsinnira Zainul Azlan, Hiroshi Yamaura

Abstract:

This study is concerned with a new adaptive impedance control strategy to compensate for unknown time-varying environment stiffness and position. The uncertainties are expressed by Function Approximation Technique (FAT), which allows the update laws to be derived easily using Lyapunov stability theory. Computer simulation results are presented to validate the effectiveness of the proposed strategy.

Keywords: Adaptive Impedance Control, Function Approximation Technique (FAT), unknown time-varying environment position and stiffness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2154
2384 Computational Simulation of Imploding Current Sheath Trajectory at the Radial Phase of Plasma Focus Performance

Authors: R. Amrollahi, M. Habibi

Abstract:

When the shock front (SF) hits the central electrode axis of plasma focus device, a reflected shock wave moves radially outwards. The current sheath (CS) results from ionization of filled gas between two electrodes continues to compress inwards until it hits the out-going reflected shock front. In this paper the Lagrangian equations are solved for a parabolic shock trajectory yielding a first and second approximation for the CS path. To determine the accuracy of the approximation, the same problem is solved for a straight shock.

Keywords: Radial compression, Shock wave trajectory, Current sheath, Slog model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1246
2383 Mathematical Modeling of the Working Principle of Gravity Gradient Instrument

Authors: Danni Cong, Meiping Wu, Hua Mu, Xiaofeng He, Junxiang Lian, Juliang Cao, Shaokun Cai, Hao Qin

Abstract:

Gravity field is of great significance in geoscience, national economy and national security, and gravitational gradient measurement has been extensively studied due to its higher accuracy than gravity measurement. Gravity gradient sensor, being one of core devices of the gravity gradient instrument, plays a key role in measuring accuracy. Therefore, this paper starts from analyzing the working principle of the gravity gradient sensor by Newton’s law, and then considers the relative motion between inertial and non-inertial systems to build a relatively adequate mathematical model, laying a foundation for the measurement error calibration, measurement accuracy improvement.

Keywords: Gravity gradient, accelerometer, gravity gradient sensor, single-axis rotation modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1063
2382 Using Data Mining Technique for Scholarship Disbursement

Authors: J. K. Alhassan, S. A. Lawal

Abstract:

This work is on decision tree-based classification for the disbursement of scholarship. Tree-based data mining classification technique is used in other to determine the generic rule to be used to disburse the scholarship. The system based on the defined rules from the tree is able to determine the class (status) to which an applicant shall belong whether Granted or Not Granted. The applicants that fall to the class of granted denote a successful acquirement of scholarship while those in not granted class are unsuccessful in the scheme. An algorithm that can be used to classify the applicants based on the rules from tree-based classification was also developed. The tree-based classification is adopted because of its efficiency, effectiveness, and easy to comprehend features. The system was tested with the data of National Information Technology Development Agency (NITDA) Abuja, a Parastatal of Federal Ministry of Communication Technology that is mandated to develop and regulate information technology in Nigeria. The system was found working according to the specification. It is therefore recommended for all scholarship disbursement organizations.

Keywords: Decision tree, classification, data mining, scholarship.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2160
2381 A Constrained Clustering Algorithm for the Classification of Industrial Ores

Authors: Luciano Nieddu, Giuseppe Manfredi

Abstract:

In this paper a Pattern Recognition algorithm based on a constrained version of the k-means clustering algorithm will be presented. The proposed algorithm is a non parametric supervised statistical pattern recognition algorithm, i.e. it works under very mild assumptions on the dataset. The performance of the algorithm will be tested, togheter with a feature extraction technique that captures the information on the closed two-dimensional contour of an image, on images of industrial mineral ores.

Keywords: K-means, Industrial ores classification, Invariant Features, Supervised Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381
2380 Shoreline Change Estimation from Survey Image Coordinates and Neural Network Approximation

Authors: Tienfuan Kerh, Hsienchang Lu, Rob Saunders

Abstract:

Shoreline erosion problems caused by global warming and sea level rising may result in losing of land areas, so it should be examined regularly to reduce possible negative impacts. Initially in this study, three sets of survey images obtained from the years of 1990, 2001, and 2010, respectively, are digitalized by using graphical software to establish the spatial coordinates of six major beaches around the island of Taiwan. Then, by overlaying the known multi-period images, the change of shoreline can be observed from their distribution of coordinates. In addition, the neural network approximation is used to develop a model for predicting shoreline variation in the years of 2015 and 2020. The comparison results show that there is no significant change of total sandy area for all beaches in the three different periods. However, the prediction results show that two beaches may exhibit an increasing of total sandy areas under a statistical 95% confidence interval. The proposed method adopted in this study may be applicable to other shorelines of interest around the world.

Keywords: Digitalized shoreline coordinates, survey image overlaying, neural network approximation, total beach sandy areas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2016
2379 Bounds on Reliability of Parallel Computer Interconnection Systems

Authors: Ranjan Kumar Dash, Chita Ranjan Tripathy

Abstract:

The evaluation of residual reliability of large sized parallel computer interconnection systems is not practicable with the existing methods. Under such conditions, one must go for approximation techniques which provide the upper bound and lower bound on this reliability. In this context, a new approximation method for providing bounds on residual reliability is proposed here. The proposed method is well supported by two algorithms for simulation purpose. The bounds on residual reliability of three different categories of interconnection topologies are efficiently found by using the proposed method

Keywords: Parallel computer network, reliability, probabilisticgraph, interconnection networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1344
2378 Towards an Integrated Proposal for Performance Measurement Indicators (Financial and Operational) in Advanced Production Practices

Authors: José A. D. Machuca, Bernabé Escobar-Pérez, Pedro Garrido Vega, Darkys E. Lujan García

Abstract:

Starting with an analysis of the financial and operational indicators that can be found in the specialised literature, this study aims to contribute to improvements in the performance measurement systems used when the unit of analysis is the manufacturing plant. For this a search was done in the highest impact Journals of Production and Operations Management and Management Accounting , with the aim of determining the financial and operational indicators used to evaluate performance when Advanced Production Practices have been implemented, more specifically when the practices implemented are Total Quality Management, JIT/Lean Manufacturing and Total Productive Maintenance. This has enabled us to obtain a classification of the two types of indicators based on how much each is used. For the financial indicators we have also prepared a proposal that can be adapted to manufacturing plants- accounting features. In the near future we will propose a model that links practices implementation with financial and operational indicators and these two last with each other. We aim to will test this model empirically with the data obtained in the High Performance Manufacturing Project.

Keywords: Advanced Production Practices, Financial Indicators, Non-Financial Indicators

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507
2377 Quick Similarity Measurement of Binary Images via Probabilistic Pixel Mapping

Authors: Adnan A. Y. Mustafa

Abstract:

In this paper we present a quick technique to measure the similarity between binary images. The technique is based on a probabilistic mapping approach and is fast because only a minute percentage of the image pixels need to be compared to measure the similarity, and not the whole image. We exploit the power of the Probabilistic Matching Model for Binary Images (PMMBI) to arrive at an estimate of the similarity. We show that the estimate is a good approximation of the actual value, and the quality of the estimate can be improved further with increased image mappings. Furthermore, the technique is image size invariant; the similarity between big images can be measured as fast as that for small images. Examples of trials conducted on real images are presented.

Keywords: Big images, binary images, similarity, matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 920
2376 Undecimated Wavelet Transform Based Contrast Enhancement

Authors: Numan Unaldi, Samil Temel, Süleyman Demirci

Abstract:

A novel undecimated wavelet transform based contrast enhancement algorithmis proposed to for both gray scale andcolor images. Contrast enhancement is realized by tuning the magnitude of approximation coefficients at each level with respect to the approximation coefficients of one higher level during the inverse transform phase in a center/surround  enhancement sense.The performance of the proposed algorithm is evaluated using a statistical visual contrast measure (VCM). Experimental results on the proposed algorithm show improvement in terms of the VCM.

Keywords: Image enhancement, local contrast enhancement, visual contrast measure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2746
2375 Quantum-Like Approach for Deriving a Theory Describing the Concept of Interpretation

Authors: Yehuda Roth

Abstract:

In quantum theory, a system’s time evolution is predictable unless an observer performs measurement, as the measurement process can randomize the system. This randomness appears when the measuring device does not accurately describe the measured item, i.e., when the states characterizing the measuring device appear as a superposition of those being measured. When such a mismatch occurs, the measured data randomly collapse into a single eigenstate of the measuring device. This  scenario resembles the interpretation process in which the observer does not experience an objective reality but interprets it based on preliminary descriptions initially ingrained into his/her mind. This distinction is the motivation for the present study in which the collapse scenario is regarded as part of the interpretation process of the observer. By adopting the formalism of the quantum theory, we present a complete mathematical approach that describes the interpretation process. We demonstrate this process by applying the proposed interpretation formalism to the ambiguous image "My wife and mother-in-law" to identify whether a woman in the picture is young or old.

Keywords: Interpretation, ambiguous images, data reception, state matching, classification, determination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 190
2374 Auto Classification for Search Intelligence

Authors: Lilac A. E. Al-Safadi

Abstract:

This paper proposes an auto-classification algorithm of Web pages using Data mining techniques. We consider the problem of discovering association rules between terms in a set of Web pages belonging to a category in a search engine database, and present an auto-classification algorithm for solving this problem that are fundamentally based on Apriori algorithm. The proposed technique has two phases. The first phase is a training phase where human experts determines the categories of different Web pages, and the supervised Data mining algorithm will combine these categories with appropriate weighted index terms according to the highest supported rules among the most frequent words. The second phase is the categorization phase where a web crawler will crawl through the World Wide Web to build a database categorized according to the result of the data mining approach. This database contains URLs and their categories.

Keywords: Information Processing on the Web, Data Mining, Document Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619
2373 Analysis of Relation between Unlabeled and Labeled Data to Self-Taught Learning Performance

Authors: Ekachai Phaisangittisagul, Rapeepol Chongprachawat

Abstract:

Obtaining labeled data in supervised learning is often difficult and expensive, and thus the trained learning algorithm tends to be overfitting due to small number of training data. As a result, some researchers have focused on using unlabeled data which may not necessary to follow the same generative distribution as the labeled data to construct a high-level feature for improving performance on supervised learning tasks. In this paper, we investigate the impact of the relationship between unlabeled and labeled data for classification performance. Specifically, we will apply difference unlabeled data which have different degrees of relation to the labeled data for handwritten digit classification task based on MNIST dataset. Our experimental results show that the higher the degree of relation between unlabeled and labeled data, the better the classification performance. Although the unlabeled data that is completely from different generative distribution to the labeled data provides the lowest classification performance, we still achieve high classification performance. This leads to expanding the applicability of the supervised learning algorithms using unsupervised learning.

Keywords: Autoencoder, high-level feature, MNIST dataset, selftaught learning, supervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832
2372 Approximations to the Distribution of the Sample Correlation Coefficient

Authors: John N. Haddad, Serge B. Provost

Abstract:

Given a bivariate normal sample of correlated variables, (Xi, Yi), i = 1, . . . , n, an alternative estimator of Pearson’s correlation coefficient is obtained in terms of the ranges, |Xi − Yi|. An approximate confidence interval for ρX,Y is then derived, and a simulation study reveals that the resulting coverage probabilities are in close agreement with the set confidence levels. As well, a new approximant is provided for the density function of R, the sample correlation coefficient. A mixture involving the proposed approximate density of R, denoted by hR(r), and a density function determined from a known approximation due to R. A. Fisher is shown to accurately approximate the distribution of R. Finally, nearly exact density approximants are obtained on adjusting hR(r) by a 7th degree polynomial.

Keywords: Sample correlation coefficient, density approximation, confidence intervals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2270
2371 A Nonlinear Parabolic Partial Differential Equation Model for Image Enhancement

Authors: Tudor Barbu

Abstract:

We present a robust nonlinear parabolic partial differential equation (PDE)-based denoising scheme in this article. Our approach is based on a second-order anisotropic diffusion model that is described first. Then, a consistent and explicit numerical approximation algorithm is constructed for this continuous model by using the finite-difference method. Finally, our restoration experiments and method comparison, which prove the effectiveness of this proposed technique, are discussed in this paper.

Keywords: Image denoising and restoration, nonlinear PDE model, anisotropic diffusion, numerical approximation scheme, finite differences.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1304
2370 Towards an Intelligent Ontology Construction Cost Estimation System: Using BIM and New Rules of Measurement Techniques

Authors: F. H. Abanda, B. Kamsu-Foguem, J. H. M. Tah

Abstract:

Construction cost estimation is one of the most important aspects of construction project design. For generations, the process of cost estimating has been manual, time-consuming and error-prone. This has partly led to most cost estimates to be unclear and riddled with inaccuracies that at times lead to over- or underestimation of construction cost. The development of standard set of measurement rules that are understandable by all those involved in a construction project, have not totally solved the challenges. Emerging Building Information Modelling (BIM) technologies can exploit standard measurement methods to automate cost estimation process and improve accuracies. This requires standard measurement methods to be structured in ontological and machine readable format; so that BIM software packages can easily read them. Most standard measurement methods are still text-based in textbooks and require manual editing into tables or Spreadsheet during cost estimation. The aim of this study is to explore the development of an ontology based on New Rules of Measurement (NRM) commonly used in the UK for cost estimation. The methodology adopted is Methontology, one of the most widely used ontology engineering methodologies. The challenges in this exploratory study are also reported and recommendations for future studies proposed.

Keywords: BIM, Construction projects, Cost estimation, NRM, Ontology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4444
2369 Curvelet Transform Based Two Class Motor Imagery Classification

Authors: Nebi Gedik

Abstract:

One of the important parts of the brain-computer interface (BCI) studies is the classification of motor imagery (MI) obtained by electroencephalography (EEG). The major goal is to provide non-muscular communication and control via assistive technologies to people with severe motor disorders so that they can communicate with the outside world. In this study, an EEG signal classification approach based on multiscale and multi-resolution transform method is presented. The proposed approach is used to decompose the EEG signal containing motor image information (right- and left-hand movement imagery). The decomposition process is performed using curvelet transform which is a multiscale and multiresolution analysis method, and the transform output was evaluated as feature data. The obtained feature set is subjected to feature selection process to obtain the most effective ones using t-test methods. SVM and k-NN algorithms are assigned for classification.

Keywords: motor imagery, EEG, curvelet transform, SVM, k-NN

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 623
2368 Evolution of Performance Measurement Methods in Conditions of Uncertainty: The Implementation of Fuzzy Sets in Performance Measurement

Authors: E. A. Tkachenko, E. M. Rogova, V. V. Klimov

Abstract:

One of the basic issues of development management is connected with performance measurement as a prerequisite for identifying the achievement of development objectives. The aim of our research is to develop an improved model of assessing a company’s development results. The model should take into account the cyclical nature of development and the high degree of uncertainty in dealing with numerous management tasks. Our hypotheses may be formulated as follows: Hypothesis 1. The cycle of a company’s development may be studied from the standpoint of a project cycle. To do that, methods and tools of project analysis are to be used. Hypothesis 2. The problem of the uncertainty when justifying managerial decisions within the framework of a company’s development cycle can be solved through the use of the mathematical apparatus of fuzzy logic. The reasoned justification of the validity of the hypotheses made is given in the suggested article. The fuzzy logic toolkit applies to the case of technology shift within an enterprise. It is proven that some restrictions in performance measurement that are incurred to conventional methods could be eliminated by implementation of the fuzzy logic apparatus in performance measurement models.

Keywords: Fuzzy logic, fuzzy sets, performance measurement, project analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1078
2367 An Attribute-Centre Based Decision Tree Classification Algorithm

Authors: Gökhan Silahtaroğlu

Abstract:

Decision tree algorithms have very important place at classification model of data mining. In literature, algorithms use entropy concept or gini index to form the tree. The shape of the classes and their closeness to each other some of the factors that affect the performance of the algorithm. In this paper we introduce a new decision tree algorithm which employs data (attribute) folding method and variation of the class variables over the branches to be created. A comparative performance analysis has been held between the proposed algorithm and C4.5.

Keywords: Classification, decision tree, split, pruning, entropy, gini.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1370
2366 Detection of Bias in GPS satellites- Measurements for Enhanced Measurement Integrity

Authors: Mamoun F. Abdel-Hafez

Abstract:

In this paper, the detection of a fault in the Global Positioning System (GPS) measurement is addressed. The class of faults considered is a bias in the GPS pseudorange measurements. This bias is modeled as an unknown constant. The fault could be the result of a receiver fault or signal fault such as multipath error. A bias bank is constructed based on set of possible fault hypotheses. Initially, there is equal probability of occurrence for any of the biases in the bank. Subsequently, as the measurements are processed, the probability of occurrence for each of the biases is sequentially updated. The fault with a probability approaching unity will be declared as the current fault in the GPS measurement. The residual formed from the GPS and Inertial Measurement Unit (IMU) measurements is used to update the probability of each fault. Results will be presented to show the performance of the presented algorithm.

Keywords: Estimation and filtering, Statistical data analysis, Faultdetection and identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1966