Search results for: chloride absorption
398 Effects of Crushed Waste Aggregate from the Manufacture of Clay Bricks on Rendering Cement Mortar Performance
Authors: Benmalek M. Larbi, R. Harbi, S. Boukor
Abstract:
This paper reports an experimental work that aimed to investigate the effects of clay brick waste, as part of fine aggregate, on rendering mortar performance. The brick, in crushed form, was from a local brick manufacturer that was rejected due to being of-standard. It was used to replace 33.33 %, 50 %, 66.66 % and 100 % by weight of the quarry sand in mortar. Effects of the brick replacement on the mortar key properties intended for wall plastering were investigated; these are workability, compressive strength, flexural strength, linear shrinkage, water absorption by total immersion and by capillary suction. The results showed that as the brick replacement level increased, the mortar workability reduced. The linear shrinkage increases over time and decreases with the introduction of brick waste. The compressive and flexural strengths decrease with the increase of brick waste because of their great water absorption.
Keywords: Clay brick waste, mortar, properties, quarry sand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1958397 Processing, Morphological, Thermal and Absorption Behavior of PLA/Thermoplastic Starch/Montmorillonite Nanocomposites
Authors: Esmat Jalalvandi, Rohah Abd. Majid, Taravat Ghanbari
Abstract:
Thermoplastic starch, polylactic acid glycerol and maleic anhydride (MA) were compounded with natural montmorillonite (MMT) through a twin screw extruder to investigate the effects of different loading of MMT on structure, thermal and absorption behavior of the nanocomposites. X-ray diffraction analysis (XRD) showed that sample with MMT loading 4phr exhibited exfoliated structure while sample that contained MMT 8 phr exhibited intercalated structure. FESEM images showed big lump when MMT loading was at 8 phr. The thermal properties were characterized by using differential scanning calorimeter (DSC). The results showed that MMT increased melting temperature and crystallization temperature of matrix but reduction in glass transition temperature was observed Meanwhile the addition of MMT has improved the water barrier property. The nanosize MMT particle is also able to block a tortuous pathway for water to enter the starch chain, thus reducing the water uptake and improved the physical barrier of nanocomposite.Keywords: Montmorillonite, Nanocomposite, Polylactic acid, Starch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2518396 Acid Fuchsin Dye Based PMMA Film for Holographic Investigations
Authors: G. Vinitha, A. Ramalingam
Abstract:
In view of a possible application in optical data storage devices, diffraction grating efficiency of an organic dye, Acid Fuchsin doped in PMMA matrix was studied under excitation with CW diode pumped Nd: YAG laser at 532 nm. The open aperture Zscan of dye doped polymer displayed saturable absorption and the closed aperture Z-scan of the samples exhibited negative nonlinearity. The diffraction efficiency of the grating is the ratio of the intensity of the first order diffracted power to the incident read beam power. The dye doped polymer films were found to be good media for recording. It is observed that the formation of gratings strongly depend on the concentration of dye in the polymer film, the intensity ratios of the writing beams and the angle between the writing beams. It has been found that efficient writing can be made at an angle of 20o and when the intensity ratio of the writing beams is unity.
Keywords: Diffraction efficiency, Nonlinear Optical material, saturable absorption, Surface-relief-gratings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2147395 Ultra Wideband Breast Cancer Detection by Using SAR for Indication the Tumor Location
Authors: Wittawat Wasusathien, Samran Santalunai, Thanaset Thosdeekoraphat, Chanchai Thongsopa
Abstract:
This paper presents breast cancer detection by observing the specific absorption rate (SAR) intensity for identification tumor location, the tumor is identified in coordinates (x,y,z) system. We examined the frequency between 4-8 GHz to look for the most appropriate frequency. Results are simulated in frequency 4-8 GHz, the model overview include normal breast with 50 mm radian, 5 mm diameter of tumor, and ultra wideband (UWB) bowtie antenna. The models are created and simulated in CST Microwave Studio. For this simulation, we changed antenna to 5 location around the breast, the tumor can be detected when an antenna is close to the tumor location, which the coordinate of maximum SAR is approximated the tumor location. For reliable, we experiment by random tumor location to 3 position in the same size of tumor and simulation the result again by varying the antenna position in 5 position again, and it also detectable the tumor position from the antenna that nearby tumor position by maximum value of SAR, which it can be detected the tumor with precision in all frequency between 4-8 GHz.
Keywords: Specific absorption rate (SAR), ultra wideband (UWB), coordinates and cancer detection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2747394 A Study on Mode of Collapse of Metallic Shells Having Combined Tube-Frusta Geometry Subjected to Axial Compression
Authors: P. K. Gupta
Abstract:
The present paper deals with the experimental and computational study of axial collapse of the aluminum metallic shells having combined tube-frusta geometry between two parallel plates. Shells were having bottom two third lengths as frusta and remaining top one third lengths as tube. Shells were compressed to recognize their modes of collapse and associated energy absorption capability. An axisymmetric Finite Element computational model of collapse process is presented and analysed, using a non-linear FE code FORGE2. Six noded isoparametric triangular elements were used to discretize the deforming shell. The material of the shells was idealized as rigid visco-plastic. To validate the computational model experimental and computed results of the deformed shapes and their corresponding load-compression and energy-compression curves were compared. With the help of the obtained results progress of the axisymmetric mode of collapse has been presented, analysed and discussed.Keywords: Axial compression, crashworthiness, energy absorption, FORGE2, metallic shells.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1479393 A Study of the Hand-Hold Impact on the EM Interaction of a Cellular Handset and a Human
Authors: Salah I. Al-Mously, Marai M. Abousetta
Abstract:
This paper investigates the impact of the hand-hold positions on both antenna performance and the specific absorption rate (SAR) induced in the user-s head. A cellular handset with external antenna operating at GSM-900 frequency is modeled and simulated using a finite difference time-domain (FDTD)-based platform SEMCAD-X. A specific anthropomorphic mannequin (SAM) is adopted to simulate the user-s head, whereas a semirealistic CAD-model of three-tissues is designed to simulate the user-s hand. The results show that in case of the handset in hand close to head at different positions; the antenna total efficiency gets reduced to (14.5% - 5.9%) at cheek-position and to (27.5% to 11.8%) at tilt-position. The peak averaged SAR1g values in head close to handset without hand, are 4.67 W/Kg and 2.66 W/Kg at cheek and tilt-position, respectively. Due to the presence of hand, the SAR1g in head gets reduced to (3.67-3.31 W/Kg) at cheek-position and to (1.84-1.64 W/Kg) at tilt-position, depending on the hand-hold position.Keywords: FDTD, phantom, specific absorption rate (SAR), cellular handset exposure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1406392 Effect of Coal on Engineering Properties in Building Materials: Opportunity to Manufacturing Insulating Bricks
Authors: Bachir Chemani, Halima Chemani
Abstract:
The objective of this study is to investigate the effect of adding coal to obtain insulating ceramic product. The preparation of mixtures is achieved with 04 types of different masse compositions, consisting of gray and yellow clay, and coal. Analyses are performed on local raw materials by adding coal as additive. The coal content varies from 5 to 20 % in weight by varying the size of coal particles ranging from 0.25mm to 1.60mm.
Initially, each natural moisture content of a raw material has been determined at the temperature of 105°C in a laboratory oven. The Influence of low-coal content on absorption, the apparent density, the contraction and the resistance during compression have been evaluated. The experimental results showed that the optimized composition could be obtained by adding 10% by weight of coal leading thus to insulating ceramic products with water absorption, a density and resistance to compression of 9.40 %, 1.88 g/cm3, 35.46 MPa, respectively. The results show that coal, when mixed with traditional raw materials, offers the conditions to be used as an additive in the production of lightweight ceramic products.
Keywords: Clay, coal, resistance to compression, insulating bricks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2180391 The Buffer Gas Influence Rate on Absolute Cu Atoms Density with regard to Deposition
Authors: S. Sobhanian, H. Naghshara, N. Sadeghi, S. Khorram
Abstract:
The absolute Cu atoms density in Cu(2S1/2ÔåÉ2P1/2) ground state has been measured by Resonance Optical Absorption (ROA) technique in a DC magnetron sputtering deposition with argon. We measured these densities under variety of operation conditions: pressure from 0.6 μbar to 14 μbar, input power from 10W to 200W and N2 mixture from 0% to 100%. For measuring the gas temperature, we used the simulation of N2 rotational spectra with a special computer code. The absolute number density of Cu atoms decreases with increasing the N2 percentage of buffer gas at any conditions of this work. But the deposition rate, is not decreased with the same manner. The deposition rate variation is very small and in the limit of quartz balance measuring equipment accuracy. So we conclude that decrease in the absolute number density of Cu atoms in magnetron plasma has not a big effect on deposition rate, because the diffusion of Cu atoms to the chamber volume and deviation of Cu atoms from direct path (towards the substrate) decreases with increasing of N2 percentage of buffer gas. This is because of the lower mass of N2 atoms compared to the argon ones.Keywords: Deposition rate, Resonance Optical Absorption, Sputtering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1366390 The Effect of Size, Thickness, and Type of the Bonding Interlayer on Bullet Proof Glass as per EN 1063
Authors: Rabinder Singh Bharj, Sandeep Kumar
Abstract:
This investigation presents preparation of sample and analysis of results of ballistic impact test as per EN 1063 on the size, thickness, number, position, and type of the bonding interlayer Polyvinyl Butyral, Poly Carbonate and Poly Urethane on bullet proof glass. It was observed that impact energy absorbed by bullet proof glass increases with the increase of the total thickness from 33mm to 42mm to 51mm for all the three samples respectively. Absorption impact energy is greater for samples with more number of bonding interlayers than with the number of glass layers for uniform increase in total sample thickness. There is no effect on the absorption impact energy with the change in position of the bonding interlayer.
Keywords: Absorbed energy, bullet proof glass, laminated glass, safety glass.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5072389 Amberlite XAD-4 Functionalized with 1-amino-2-naphthole for Determination and Preconcentration of Copper (II) in Aqueous Solution by Flame Atomic Absorption Spectrometry
Authors: Elham Moniri, Homayon Ahmad Panahi, Mahshid Nikpour Nezhati, Faranak Mahmoudi, Meghdad Karimi
Abstract:
A new chelating resin is prepared by coupling Amberlite XAD-4 with 1-amino-2-naphthole through an azo spacer. The resulting sorbent has been characterized by FT-IR, elemental analysis and thermogravimetric analysis (TGA) and studied for preconcentrating of Cu (II) using flame atomic absorption spectrometry (FAAS) for metal monitoring. The optimum pH value for sorption of the copper ions was 6.5. The resin was subjected to evaluation through batch binding of mentioned metal ion. Quantitative desorption occurs instantaneously with 0.5 M HNO3. The sorption capacity was found 4.8 mmol.g-1 of resin for Cu (II) in the aqueous solution. The chelating resin can be reused for 10 cycles of sorption-desorption without any significant change in sorption capacity. A recovery of 99% was obtained the metal ions with 0.5 M HNO3 as eluting agent. The method was applied for metal ions determination from industrial waste water sample.Keywords: Amberlite XAD-4; Copper (II); Flame atomicabsorption; Chelator; 1-amino-2- naphthole
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2406388 Surface Modification of Cotton Using Slaughterhouse Wastes
Authors: Granch Berhe Tseghai, Lodrick Wangatia Makokha
Abstract:
Cotton dyeing using reactive dyes is one of the major water polluter; this is due to large amount of dye and salt remaining in effluent. Recent adverse climate change and its associated effect to human life have lead to search for more sustainable industrial production. Cationization of cotton to improve its affinity for reactive dye has been earmarked as a major solution for dyeing of cotton with no or less salt. Synthetic cationizing agents of ammonium salt have already been commercialized. However, in nature there are proteinous products which are rich in amino and ammonium salts which can be carefully harnessed to be used as cationizing agent for cotton. The hoofs and horns have successfully been used to cationize cotton so as to improve cotton affinity to the dye. The cationization action of the hoof and horn extract on cotton was confirmed by dyeing the pretreated fabric without salt and comparing it with conventionally dyed and untreated salt free dyed fabric. UV-VIS absorption results showed better dye absorption (62.5% and 50% dye bath exhaustion percentage for cationized and untreated respectively) while K/S values of treated samples were similar to conventional sample.
Keywords: Cationization, cotton, proteinous products, reactive dyes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1200387 Existence of Nano-Organic Carbon Particles below the Size Range of 10 nm in the Indoor Air Environment
Authors: Bireswar Paul, Amitava Datta
Abstract:
Indoor air environment is a big concern in the last few decades in the developing countries, with increased focus on monitoring the air quality. In this work, an experimental study has been conducted to establish the existence of carbon nanoparticles below the size range of 10 nm in the non-sooting zone of a LPG/air partially premixed flame. Mainly, four optical techniques, UV absorption spectroscopy, fluorescence spectroscopy, dynamic light scattering and TEM have been used to characterize and measure the size of carbon nanoparticles in the sampled materials collected from the inner surface of the flame front. The existence of the carbon nanoparticles in the sampled material has been confirmed with the typical nature of the absorption and fluorescence spectra already reported in the literature. The band gap energy shows that the particles are made up of three to six aromatic rings. The size measurement by DLS technique also shows that the particles below the size range of 10 nm. The results of DLS are also corroborated by the TEM image of the same material.
Keywords: Indoor air, carbon nanoparticles, LPG, partially premixed flame, optical techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 879386 Comparison of Double Unit Tunnel Form Building before and after Repair and Retrofit under in-Plane Cyclic Loading
Authors: S. A. Anuar, N. H. Hamid, M. H. Hashim, S. M. D. Salleh
Abstract:
This paper present the experimental work of double unit tunnel form building (TFB) subjected to in-plane lateral cyclic loading. A one third scale of 3-storey double unit of TFB is tested until its strength degradation. Then, the TFB is repaired and retrofitted using additional shear wall, steel angle and CFRP sheet. The crack patterns, lateral strength, stiffness, ductility and equivalent viscous damping (EVD) were analyzed and compared before and after repair and retrofit. The result indicates that the lateral strength increases by 22% in pushing and 27% in pulling direction. Moreover, the stiffness and ductility obtained before and after retrofit increase tremendously by 87.87% and 39.66%, respectively. Meanwhile, the energy absorption measured by equivalent viscous damping obtained after retrofit increase by 12.34% in pulling direction. It can be concluded that the proposed retrofit method is capable to increase the lateral strength capacity, stiffness and energy absorption of double unit TFB.
Keywords: Crack pattern, stiffness, ductility, equivalent viscous damping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2378385 Influence of Mass Flow Rate on Forced Convective Heat Transfer through a Nanofluid Filled Direct Absorption Solar Collector
Authors: Salma Parvin, M. A. Alim
Abstract:
The convective and radiative heat transfer performance and entropy generation on forced convection through a direct absorption solar collector (DASC) is investigated numerically. Four different fluids, including Cu-water nanofluid, Al2O3-waternanofluid, TiO2-waternanofluid, and pure water are used as the working fluid. Entropy production has been taken into account in addition to the collector efficiency and heat transfer enhancement. Penalty finite element method with Galerkin’s weighted residual technique is used to solve the governing non-linear partial differential equations. Numerical simulations are performed for the variation of mass flow rate. The outcomes are presented in the form of isotherms, average output temperature, the average Nusselt number, collector efficiency, average entropy generation, and Bejan number. The results present that the rate of heat transfer and collector efficiency enhance significantly for raising the values of m up to a certain range.Keywords: DASC, forced convection, mass flow rate, nanofluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 856384 Simulation of Reflection Loss for Carbon and Nickel-Carbon Thin Films
Authors: M. Emami, R. Tarighi, R. Goodarzi
Abstract:
Maximal radar wave absorbing cannot be achieved by shaping alone. We have to focus on the parameters of absorbing materials such as permittivity, permeability, and thickness so that best absorbing according to our necessity can happen. The real and imaginary parts of the relative complex permittivity (εr' and εr") and permeability (µr' and µr") were obtained by simulation. The microwave absorbing property of carbon and Ni(C) is simulated in this study by MATLAB software; the simulation was in the frequency range between 2 to 12 GHz for carbon black (C), and carbon coated nickel (Ni(C)) with different thicknesses. In fact, we draw reflection loss (RL) for C and Ni-C via frequency. We have compared their absorption for 3-mm thickness and predicted for other thicknesses by using of electromagnetic wave transmission theory. The results showed that reflection loss position changes in low frequency with increasing of thickness. We found out that, in all cases, using nanocomposites as absorbance cannot get better results relative to pure nanoparticles. The frequency where absorption is maximum can determine the best choice between nanocomposites and pure nanoparticles. Also, we could find an optimal thickness for long wavelength absorbing in order to utilize them in protecting shields and covering.
Keywords: Absorbing, carbon, carbon nickel, frequency, thicknesses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 893383 Optical Properties of Some A2BCl4 Type Chlorides
Authors: D. H. Gahane, B. M. Bahirwar, S. V. Moharil
Abstract:
Efficient luminescence is reported for the first time in Eu2+ activated double Chlorides A2BCl4 (A=Alkali metal, B=Alkaline earth element). A simple wet-chemical preparation is described. Emission intensities are comparable to that of the commercial phosphor. Excitation covers near UV region. These phosphors may be useful for applications like solid state lighting, scintillation detectors and X-ray storage using photo-stimulable phosphors.
Keywords: Alkaline Earth, Chloride, Luminescence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798382 Synthesis of Silver Nanoparticles by Chemical Reduction Method and Their Antibacterial Activity
Authors: Maribel G. Guzmán, Jean Dille, Stephan Godet
Abstract:
Silver nanoparticles were prepared by chemical reduction method. Silver nitrate was taken as the metal precursor and hydrazine hydrate as a reducing agent. The formation of the silver nanoparticles was monitored using UV-Vis absorption spectroscopy. The UV-Vis spectroscopy revealed the formation of silver nanopart├¡cles by exhibing the typical surface plasmon absorption maxima at 418-420 nm from the UV–Vis spectrum. Comparison of theoretical (Mie light scattering theory) and experimental results showed that diameter of silver nanoparticles in colloidal solution is about 60 nm. We have used energy-dispersive spectroscopy (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM) and, UV–Vis spectroscopy to characterize the nanoparticles obtained. The energy-dispersive spectroscopy (EDX) of the nanoparticles dispersion confirmed the presence of elemental silver signal no peaks of other impurity were detected. The average size and morphology of silver nanoparticles were determined by transmission electron microscopy (TEM). TEM photographs indicate that the nanopowders consist of well dispersed agglomerates of grains with a narrow size distribution (40 and 60 nm), whereas the radius of the individual particles are between 10 and 20 nm. The synthesized nanoparticles have been structurally characterized by X-ray diffraction and transmission high-energy electron diffraction (HEED). The peaks in the XRD pattern are in good agreement with the standard values of the face-centered-cubic form of metallic silver (ICCD-JCPDS card no. 4-0787) and no peaks of other impurity crystalline phases were detected. Additionally, the antibacterial activity of the nanopart├¡culas dispersion was measured by Kirby-Bauer method. The nanoparticles of silver showed high antimicrobial and bactericidal activity against gram positive bacteria such as Escherichia Coli, Pseudimonas aureginosa and staphylococcus aureus which is a highly methicillin resistant strain.
Keywords: Silver nanoparticles, surface plasmon, UV-Vis absorption spectrum, chemicals reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13099381 Experimental Determination of Shear Strength Properties of Lightweight Expanded Clay Aggregates Using Direct Shear and Triaxial Tests
Authors: Mahsa Shafaei Bajestani, Mahmoud Yazdani, Aliakbar Golshani
Abstract:
Artificial lightweight aggregates have a wide range of applications in industry and engineering. Nowadays, the usage of this material in geotechnical activities, especially as backfill in retaining walls has been growing due to the specific characteristics which make it a competent alternative to the conventional geotechnical materials. In practice, a material with lower weight but higher shear strength parameters would be ideal as backfill behind retaining walls because of the important roles that these parameters play in decreasing the overall active lateral earth pressure. In this study, two types of Light Expanded Clay Aggregates (LECA) produced in the Leca factory are investigated. LECA is made in a rotary kiln by heating natural clay at different temperatures up to 1200 °C making quasi-spherical aggregates with different sizes ranged from 0 to 25 mm. The loose bulk density of these aggregates is between 300 and 700 kN/m3. The purpose of this research is to determine the stress-strain behavior, shear strength parameters, and the energy absorption of LECA materials. Direct shear tests were conducted at five normal stresses of 25, 50, 75, 100, and 200 kPa. In addition, conventional triaxial compression tests were operated at confining pressures of 50, 100, and 200 kPa to examine stress-strain behavior. The experimental results show a high internal angle of friction and even a considerable amount of nominal cohesion despite the granular structure of LECA. These desirable properties along with the intrinsic low density of these aggregates make LECA as a very proper material in geotechnical applications. Furthermore, the results demonstrate that lightweight aggregates may have high energy absorption that is excellent alternative material in seismic isolations.
Keywords: Expanded clay, direct shear test, triaxial test, shear properties, energy absorption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1279380 Effect of Rice Husk Ash on Strength and Durability of High Strength High Performance Concrete
Authors: H. B. Mahmud, Syamsul Bahri, Y. W. Yee, Y. T. Yeap
Abstract:
This paper reports the strength and durability properties of high strength high performance concrete incorporating rice husk ash (RHA) having high silica, low carbon content and appropriate fineness. In this study concrete containing 10%, 15% and 20% RHA as cement replacement and water to binder ratio of 0.25 were investigated. The results show that increasing amount of RHA increases the dosage of superplasticizer to maintain similar workability. Partial replacement of cement with RHA did not increase the early age compressive strength of concrete. However, concrete containing RHA showed higher compressive strength at later ages. The results showed that compressive strength of concrete in the 90-115 MPa range can be obtained at 28 curing days and the durability properties of RHA concrete performed better than that of control concrete. The water absorption of concrete incorporating 15% RHA exhibited the lowest value. The porosity of concrete is consistent with water absorption whereby higher replacement of RHA decreased the porosity of concrete. There is a positive correlation between reducing porosity and increasing compressive strength of high strength high performance concrete. The results also indicate that up to 20% of RHA incorporation could be advantageously blended with cement without adversely affecting the strength and durability properties of concrete.
Keywords: Compressive strength, durability, high performance concrete, rice husk ash.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2731379 ATR-IR Study of the Mechanism of Aluminum Chloride Induced Alzheimer’s Disease; Curative and Protective Effect of Lipidium sativum Water Extract on Hippocampus Rats Brain Tissue
Authors: Maha Jameal Balgoon, Gehan A. Raouf, Safaa Y. Qusti, Soad Shaker Ali
Abstract:
The main cause of Alzheimer disease (AD) was believed to be mainly due to the accumulation of free radicals owing to oxidative stress (OS) in brain tissue. The mechanism of the neurotoxicity of Aluminum chloride (AlCl3) induced AD in hippocampus Albino wister rat brain tissue, the curative & the protective effects of Lipidium sativum group (LS) water extract were assessed after 8 weeks by attenuated total reflection spectroscopy ATR-IR and histologically by light microscope. ATR-IR results revealed that the membrane phospholipid undergo free radical attacks, mediated by AlCl3, primary affects the polyunsaturated fatty acids indicated by the increased of the olefinic -C=CH sub-band area around 3012 cm-1 from the curve fitting analysis. The narrowing in the half band width (HBW) of the sνCH2 sub-band around 2852 cm-1 due to Al intoxication indicates the presence of trans form fatty acids rather than gauch rotomer. The degradation of hydrocarbon chain to shorter chain length, increasing in membrane fluidity, disorder, and decreasing in lipid polarity in AlCl3 group indicated by the detected changes in certain calculated area ratios compared to the control. Administration of LS was greatly improved these parameters compared to the AlCl3 group. Al influences the Aβ aggregation and plaque formation, which in turn interferes to and disrupts the membrane structure. The results also showed a marked increase in the β-parallel and antiparallel structure, that characterize the Aβ formation in Al-induced AD hippocampal brain tissue, indicated by the detected increase in both amide I sub-bands around 1674, 1692 cm-1. This drastic increase in Aβ formation was greatly reduced in the curative and protective groups compared to the AlCl3 group and approached nearly the control values. These results supported too by the light microscope. AlCl3 group showed significant marked degenerative changes in hippocampal neurons. Most cells appeared small, shrieked and deformed. Interestingly, the administration of LS in curative and protective groups markedly decreases the amount of degenerated cells compared to the non-treated group. In addition, the intensity of congo red stained cells was decreased. Hippocampal neurons looked more/or less similar to those of control. This study showed a promising therapeutic effect of Lipidium sativum group (LS) on AD rat model that seriously overcome the signs of oxidative stress on membrane lipid and restore the protein misfolding.Keywords: Aluminum chloride, Alzheimer’s disease, ATR-IR, Lipidium sativum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2806378 Effect of Different Oils on Quality of Deep-fried Dough Stick
Authors: Nuntaporn Aukkanit
Abstract:
The aim of this study was to determine the effect of oils on chemical, physical, and sensory properties of deep-fried dough stick. Five kinds of vegetable oil which were used for addition and frying consist of: palm oil, soybean oil, sunflower oil, rice bran oil, and canola oil. The results of this study showed that using different kinds of oil made significant difference in the quality of deep-fried dough stick. Deep-fried dough stick fried with the rice bran oil had the lowest moisture loss and oil absorption (p≤0.05), but it had some unsatisfactory physical properties (color, specific volume, density, and texture) and sensory characteristics. Nonetheless, deep-fried dough stick fried with the sunflower oil had moisture loss and oil absorption slightly more than the rice bran oil, but it had almost higher physical and sensory properties. Deep-fried dough sticks together with the sunflower oil did not have different sensory score from the palm oil, commonly used for production of deep-fried dough stick. These results indicated that addition and frying with the sunflower oil are appropriate for the production of deep-fried dough stick.
Keywords: Deep-fried dough stick, palm oil, sunflower oil, rice bran oil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850377 A Simple Chemical Precipitation Method of Titanium Dioxide Nanoparticles Using Polyvinyl Pyrrolidone as a Capping Agent and Their Characterization
Authors: V. P. Muhamed Shajudheen, K. Viswanathan, K. Anitha Rani, A. Uma Maheswari, S. Saravana Kumar
Abstract:
In this paper, a simple chemical precipitation route for the preparation of titanium dioxide nanoparticles, synthesized by using titanium tetra isopropoxide as a precursor and polyvinyl pyrrolidone (PVP) as a capping agent, is reported. The Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA) of the samples were recorded and the phase transformation temperature of titanium hydroxide, Ti(OH)4 to titanium oxide, TiO2 was investigated. The as-prepared Ti(OH)4 precipitate was annealed at 800°C to obtain TiO2 nanoparticles. The thermal, structural, morphological and textural characterizations of the TiO2 nanoparticle samples were carried out by different techniques such as DSC-TGA, X-Ray Diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Micro Raman spectroscopy, UV-Visible absorption spectroscopy (UV-Vis), Photoluminescence spectroscopy (PL) and Field Effect Scanning Electron Microscopy (FESEM) techniques. The as-prepared precipitate was characterized using DSC-TGA and confirmed the mass loss of around 30%. XRD results exhibited no diffraction peaks attributable to anatase phase, for the reaction products, after the solvent removal. The results indicate that the product is purely rutile. The vibrational frequencies of two main absorption bands of prepared samples are discussed from the results of the FTIR analysis. The formation of nanosphere of diameter of the order of 10 nm, has been confirmed by FESEM. The optical band gap was found by using UV-Visible spectrum. From photoluminescence spectra, a strong emission was observed. The obtained results suggest that this method provides a simple, efficient and versatile technique for preparing TiO2 nanoparticles and it has the potential to be applied to other systems for photocatalytic activity.
Keywords: TiO2 nanoparticles, chemical precipitation route, phase transition, Fourier Transform Infra-Red spectroscopy, micro Raman spectroscopy, UV-Visible absorption spectroscopy, Photoluminescence spectroscopy, Field Effect Scanning Electron Microscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4274376 First-Principles Investigation of the Structural and Electronic Properties of Mg1-xBixO
Authors: G. P. Abdel Rahim, M. María Guadalupe Moreno Armenta, Jairo Arbey Rodriguez
Abstract:
We investigated the structure and electronic properties of the compound Mg1-xBixO with varying concentrations of 0, ¼, ½, and ¾ x bismuth in the the cesium chloride (CsCl), zinc-blende (ZnS), nickel arsenide (NiAs) NaCl (rock-salt) and WZ (wurtzite) phases. We calculated. The calculations were performed using the first-principles pseudo-potential method within the framework of spin density functional theory (DFT).Keywords: DFT, Mg1-xBixO, pseudo-potential, rock-salt and wurtzite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2096375 Design and Development of Graphene Oxide Modified by Chitosan Nanosheets Showing pH-Sensitive Surface as a Smart Drug Delivery System for Controlled Release of Doxorubicin
Authors: Parisa Shirzadeh
Abstract:
Drug delivery systems in which drugs are traditionally used, multi-stage and at specified intervals by patients, do not meet the needs of the world's up-to-date drug delivery. In today's world, we are dealing with a huge number of recombinant peptide and protean drugs and analogues of hormones in the body, most of which are made with genetic engineering techniques. Most of these drugs are used to treat critical diseases such as cancer. Due to the limitations of the traditional method, researchers sought to find ways to solve the problems of the traditional method to a large extent. Following these efforts, controlled drug release systems were introduced, which have many advantages. Using controlled release of the drug in the body, the concentration of the drug is kept at a certain level, and in a short time, it is done at a higher rate. Graphene is a natural material that is biodegradable, non-toxic, natural and wide surfaces of graphene plates makes it more effective to modify graphene than carbon nanotubes. Graphene oxide is often synthesized using concentrated oxidizers such as sulfuric acid, nitric acid, and potassium permanganate based on Hummer method. graphene oxide is very hydrophilic and easily dissolves in water and creates a stable solution. Graphene oxide (GO) has been modified by chitosan (CS) covalently, developed for control release of doxorubicin (DOX). In this study, GO is produced by the hummer method under acidic conditions. Then, it is chlorinated by oxalyl chloride to increase its reactivity against amine. After that, in the presence of CS, the amino reaction was performed to form amide transplantation, and the DOX was connected to the carrier surface by π-π interaction in buffer phosphate. GO, GO-CS, and GO-CS-DOX were characterized by FT-IR and TGA to recognize new functional groups which show the new bonding of CS to GO, RAMA and SEM to recognize size of layers that show changing in size and number of layers. The ability to load and release is determined by UV-Visible spectroscopy. The loading result showed a high capacity of DOX absorption (99%) and pH dependence identified as a result of DOX release from GO-CS nanosheet at pH 5.3 and 7.4, which show a fast release rate in acidic conditions.
Keywords: Graphene oxide, chitosan, nanosheet, controlled drug release, doxorubicin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 232374 New Method for Determining the Distribution of Birefringence and Linear Dichroism in Polymer Materials Based On Polarization-Holographic Grating
Authors: Barbara Kilosanidze, George Kakauridze, Levan Nadareishvili, Yuri Mshvenieradze
Abstract:
A new method for determining the distribution of birefringence and linear dichroism in optical polymer materials is presented. The method is based on the use of polarizationholographic diffraction grating that forms an orthogonal circular basis in the process of diffraction of probing laser beam on the grating. The intensities ratio of the orders of diffraction on this grating enables the value of birefringence and linear dichroism in the sample to be determined. The distribution of birefringence in the sample is determined by scanning with a circularly polarized beam with a wavelength far from the absorption band of the material. If the scanning is carried out by probing beam with the wavelength near to a maximum of the absorption band of the chromophore then the distribution of linear dichroism can be determined. An appropriate theoretical model of this method is presented. A laboratory setup was created for the proposed method. An optical scheme of the laboratory setup is presented. The results of measurement in polymer films with two-dimensional gradient distribution of birefringence and linear dichroism are discussed.
Keywords: Birefringence, graded oriented polymers, linear dichroism, optical polymers, optical anisotropy, polarization-holographic grating,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510373 Physical, Chemical and Mineralogical Characterization of Construction and Demolition Waste Produced in Greece
Authors: C. Alexandridou, G. N. Angelopoulos, F. A. Coutelieris
Abstract:
Construction industry in Greece consumes annually more than 25 million tons of natural aggregates originating mainly from quarries. At the same time, more than 2 million tons of construction and demolition waste are deposited every year, usually without control, therefore increasing the environmental impact of this sector. A potential alternative for saving natural resources and minimize landfilling, could be the recycling and re-use of Concrete and Demolition Waste (CDW) in concrete production. Moreover, in order to conform to the European legislation, Greece is obliged to recycle non-hazardous construction and demolition waste to a minimum of 70% by 2020. In this paper characterization of recycled materials - commercially and laboratory produced, coarse and fine, Recycled Concrete Aggregates (RCA) - has been performed. Namely, X-Ray Fluorescence and X-ray diffraction (XRD) analysis were used for chemical and mineralogical analysis respectively. Physical properties such as particle density, water absorption, sand equivalent and resistance to fragmentation were also determined. This study, first time made in Greece, aims at outlining the differences between RCA and natural aggregates and evaluating their possible influence in concrete performance. Results indicate that RCA’s chemical composition is enriched in Si, Al, and alkali oxides compared to natural aggregates. X-ray diffraction (XRD) analyses results indicated the presence of calcite, quartz and minor peaks of mica and feldspars. From all the evaluated physical properties of coarse RCA, only water absorption and resistance to fragmentation seem to have a direct influence on the properties of concrete. Low Sand Equivalent and significantly high water absorption values indicate that fine fractions of RCA cannot be used for concrete production unless further processed. Chemical properties of RCA in terms of water soluble ions are similar to those of natural aggregates. Four different concrete mixtures were produced and examined, replacing natural coarse aggregates with RCA by a ratio of 0%, 25%, 50% and 75% respectively. Results indicate that concrete mixtures containing recycled concrete aggregates have a minor deterioration of their properties (3-9% lower compression strength at 28 days) compared to conventional concrete containing the same cement quantity.
Keywords: Chemical and physical characterization, compressive strength, mineralogical analysis, recycled concrete aggregates, waste management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3474372 Investigation of the Acoustic Properties of Recycled Felt Panels and Their Application in Classrooms and Multi-Purpose Halls
Authors: Ivanova B. Natalia, Djambova Т. Svetlana, Hristev S. Ivailo
Abstract:
The acoustic properties of recycled felt panels have been investigated using various methods. Experimentally, the sound insulation of the panels has been evaluated for frequencies in the range of 600 Hz to 4000 Hz, utilizing a small-sized acoustic chamber. Additionally, the sound absorption coefficient for the frequency range of 63 Hz to 4000 Hz was measured according to the EN ISO 354 standard in a laboratory reverberation room. This research was deemed necessary after conducting reverberation time measurements of a university classroom following the EN ISO 3382-2 standard. The measurements indicated values of 2.86 s at 500 Hz, 3.23 s at 1000 Hz, and 2.53 s at 2000 Hz, which significantly exceeded the requirements set by the national regulatory framework (0.6 s) for such premises. For this reason, recycled felt panels have been investigated in the laboratory, showing very good acoustic properties at high frequencies. To enhance performance in the low frequencies, the influence of the distance of the panel spacing was examined. Furthermore, the sound insulation of the panels was studied to expand the possibilities of their application, both for the acoustic treatment of educational and multifunctional halls and for sound insulation purposes (e.g., a suspended ceiling with an air gap passing from room to room). As a conclusion, a theoretical acoustic design of the classroom has been carried out with suggestions for improvements to achieve the necessary acoustic and aesthetic parameters for such rooms.
Keywords: Acoustic panels, recycled felt, sound absorption, sound insulation, classroom acoustics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 109371 Quantitative and Fourier Transform Infrared Analysis of Saponins from Three Kenyan Ruellia Species: Ruellia prostrata, Ruellia lineari-bracteolata and Ruellia bignoniiflora
Authors: Christine O. Wangia, Jennifer A. Orwa, Francis W. Muregi, Patrick G. Kareru, Kipyegon Cheruiyot, Eric Guantai
Abstract:
Ruellia (syn. Dipteracanthus) species are wild perennial creepers belonging to the Acanthaceae family. These species are reported to possess anti-inflammatory, analgesic, antioxidant, gastroprotective, anticancer, and immuno-stimulant properties. Phytochemical screening of both aqueous and methanolic extracts of Ruellia species revealed the presence of saponins. Saponins have been reported to possess anti-inflammatory, antioxidant, immuno-stimulant, antihepatotoxic, antibacterial, anticarcinogenic, and antiulcerogenic activities. The objective of this study was to quantify and analyze the Fourier transform infrared (FTIR) spectra of saponins in crude extracts of three Kenyan Ruellia species namely Ruellia prostrata (RPM), Ruellia lineari-bracteolata (RLB) and Ruellia bignoniiflora (RBK). Sequential organic extraction of the ground whole plant material was done using petroleum ether (PE), chloroform, ethyl acetate (EtOAc), and absolute methanol by cold maceration, while aqueous extraction was by hot maceration. The plant powders and extracts were mixed with spectroscopic grade KBr and compressed into a pellet. The infrared spectra were recorded using a Shimadzu FTIR spectrophotometer of 8000 series in the range of 3500 cm-1 - 500 cm-1. Quantitative determination of the saponins was done using standard procedures. Quantitative analysis of saponins showed that RPM had the highest quantity of crude saponins (2.05% ± 0.03), followed by RLB (1.4% ± 0.15) and RBK (1.25% ± 0.11), respectively. FTIR spectra revealed the spectral peaks characteristic for saponins in RPM, RLB, and RBK plant powders, aqueous and methanol extracts; O-H absorption (3265 - 3393 cm-1), C-H absorption ranging from 2851 to 2924 cm-1, C=C absorbance (1628 - 1655 cm-1), oligosaccharide linkage (C-O-C) absorption due to sapogenins (1036 - 1042 cm-1). The crude saponins from RPM, RLB and RBK showed similar peaks to their respective extracts. The presence of the saponins in extracts of RPM, RLB and RBK may be responsible for some of the biological activities reported in the Ruellia species.1Keywords: Ruellia bignoniiflora, Ruellia lineari-bracteolata, Ruellia prostrata, Saponins.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1190370 Wet Flue Gas Desulfurization Using a New O-Element Design Which Replaces the Venturi Scrubber
Authors: P. Lestinsky, D. Jecha, V. Brummer, P. Stehlik
Abstract:
Scrubbing by a liquid spraying is one of the most effective processes used for removal of fine particles and soluble gas pollutants (such as SO2, HCl, HF) from the flue gas. There are many configurations of scrubbers designed to provide contact between the liquid and gas stream for effectively capturing particles or soluble gas pollutants, such as spray plates, packed bed towers, jet scrubbers, cyclones, vortex and venturi scrubbers. The primary function of venturi scrubber is the capture of fine particles as well as HCl, HF or SO2 removal with effect of the flue gas temperature decrease before input to the absorption column. In this paper, sulfur dioxide (SO2) from flue gas was captured using new design replacing venturi scrubber (1st degree of wet scrubbing). The flue gas was prepared by the combustion of the carbon disulfide solution in toluene (1:1 vol.) in the flame in the reactor. Such prepared flue gas with temperature around 150°C was processed in designed laboratory O-element scrubber. Water was used as absorbent liquid. The efficiency of SO2 removal, pressure drop and temperature drop were measured on our experimental device. The dependence of these variables on liquid-gas ratio was observed. The average temperature drop was in the range from 150°C to 40°C. The pressure drop was increased with increasing of a liquid-gas ratio, but no too much as for the common venturi scrubber designs. The efficiency of SO2 removal was up to 70 %. The pressure drop of our new designed wet scrubber is similar to commonly used venturi scrubbers; nevertheless the influence of amount of the liquid on pressure drop is not so significant.
Keywords: Desulphurization, absorption, flue gas, modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2888369 Desalination of Salt Water by Collision with Surface Coated with Nano Particles
Authors: Hesham Muhammad Ibrahim
Abstract:
This paper introduces and proves new concept of salt dissolving in water as very tiny solid sodium chloride particles of nanovolumes, from this point of view salt water can be desalinated by collision with special surface characterized by smoothness upon nano level, high rigidity, high hardness under appropriate conditions of water launching in the form of thin laminar flow under suitable speed and angle of incidence to get desalinated water.Keywords: Desalination by collision, nano coating, water desalination, water repellent surface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906