Search results for: Plastic equation of state
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3392

Search results for: Plastic equation of state

3212 Effect of the Rise/Span Ratio of a Spherical Cap Shell on the Buckling Load

Authors: Peter N. Khakina, Mohammed I. Ali, Enchun Zhu, Huazhang Zhou, Baydaa H. Moula

Abstract:

Rise/span ratio has been mentioned as one of the reasons which contribute to the lower buckling load as compared to the Classical theory buckling load but this ratio has not been quantified in the equation. The purpose of this study was to determine a more realistic buckling load by quantifying the effect of the rise/span ratio because experiments have shown that the Classical theory overestimates the load. The buckling load equation was derived based on the theorem of work done and strain energy. Thereafter, finite element modeling and simulation using ABAQUS was done to determine the variables that determine the constant in the derived equation. The rise/span was found to be the determining factor of the constant in the buckling load equation. The derived buckling load correlates closely to the load obtained from experiments.

Keywords: Buckling, Finite element, Rise/span ratio, Sphericalcap

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2140
3211 Application of Legendre Transformation to Portfolio Optimization

Authors: Peter Benneth, Tsaroh N. Theophilus, Prince Benjamin

Abstract:

This research work aims at studying the application of Legendre Transformation Method (LTM) to Hamilton Jacobi Bellman (HJB) equation which is an example of optimal control problem. We discuss the steps involved in modelling the HJB equation as it relates to mathematical finance by applying the Ito’s lemma and maximum principle theorem. By applying the LTM and dual theory, the resultant HJB equation is transformed to a linear Partial Differential Equation (PDE). Also, the Optimal Investment Strategy (OIS) and the optimal value function were obtained under the exponential utility function. Furthermore, some numerical results were also presented with observations that the OIS under exponential utility is directly proportional to the appreciation rate of the risky asset and inversely proportional to the instantaneous volatility, predetermined interest rate, risk averse coefficient. Finally, it was observed that the optimal fund size is an increasing function of the risk free interest rate. This result is consistent with some existing results.

Keywords: Legendre transformation method, Optimal investment strategy, Ito’s lemma, Hamilton Jacobi Bellman equation, Geometric Brownian motion, financial market.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 69
3210 Critical Points of Prefabricated Reinforced Concrete Wall Systems of Multi-storey Buildings

Authors: J. Witzany, T. Čejka, R. Zigler

Abstract:

With respect to the dissipation of energy through plastic deformation of joints of prefabricated wall units, the paper points out the principal importance of efficient reinforcement of the prefabricated system at its joints. The method, quality and amount of reinforcement are essential for reaching the necessary degree of joint ductility. The paper presents partial results of experimental research of vertical joints of prefabricated units exposed to monotonously rising loading and repetitive shear force and formulates a conclusion that the limit state of the structure as a whole is preceded by the disintegration of joints, or that the structure tends to pass from linearly elastic behaviour to non-linearly elastic to plastic behaviour by exceeding the proportional elastic limit in joints.Experimental verification on a model of a 7-storey prefabricated structure revealed weak points in its load-bearing systems, mainly at places of critical points around openings situated in close proximity to vertical joints of mutually perpendicularly oriented walls.

Keywords: dissipative energy, dynamic and cycling load repetitive load, working diagrams of joints

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
3209 Existence of Solution for Singular Two-point Boundary Value Problem of Second-order Differential Equation

Authors: Xiguang Li

Abstract:

In this paper, by constructing a special set and utilizing fixed point theory in coin, we study the existence of solution of singular two point’s boundary value problem for second-order differential equation, which improved and generalize the result of related paper.

Keywords: Singular differential equation, boundary value problem, coin, fixed point theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1132
3208 Some Rotational Flows of an Incompressible Fluid of Variable Viscosity

Authors: Rana Khalid Naeem, Waseem Ahmed Khan, Muhammad Akhtar, Asif Mansoor

Abstract:

The Navier Stokes Equations (NSE) for an incompressible fluid of variable viscosity in the presence of an unknown external force in Von-Mises system x,\ are transformed, and some new exact solutions for a class of flows characterized by equation y f x a\b for an arbitrary state equation are determined, where f x is a function, \ the stream function, a z 0 and b are the arbitrary constants. In three, out of four cases, the function f x is arbitrary, and the solutions are the solutions of the flow equations for all the flows characterized by the equationy f x a\b. Streamline patterns for some forms of f x in unbounded and bounded regions are given.

Keywords: Bounded and unbounded region, Exact solution, Navier Stokes equations, Streamline pattern, Variable viscosity, Von- Mises system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421
3207 A Fast Cyclic Reduction Algorithm for A Quadratic Matrix Equation Arising from Overdamped Systems

Authors: Ning Dong, Bo Yu

Abstract:

We are concerned with a class of quadratic matrix equations arising from the overdamped mass-spring system. By exploring the structure of coefficient matrices, we propose a fast cyclic reduction algorithm to calculate the extreme solutions of the equation. Numerical experiments show that the proposed algorithm outperforms the original cyclic reduction and the structure-preserving doubling algorithm.

Keywords: Fast algorithm, Cyclic reduction, Overdampedquadratic matrix equation, Structure-preserving doubling algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1333
3206 Analyses of Natural Convection Heat Transfer from a Heated Cylinder Mounted in Vertical Duct

Authors: H. Bhowmik, A. Faisal, Ahmed Al Yaarubi, Nabil Al Alawi

Abstract:

Experiments are conducted to analyze the steady-state and the power-on transient natural convection heat transfer from a horizontal cylinder mounted in a vertical up flow circular duct. The heat flux ranges from 177 W/m2 to 2426 W/m2 and the Rayleigh number ranges from 1×104 to 4.35×104. For natural air flow and constant heat flux condition, the effects of heat transfer around the cylinder under steady-state condition are investigated. The steady-state results compare favorably with that of the available data. The effects of transient heat transfer data on different angular position of the thermocouple (0o, 90o, 180o) are also reported. It is observed that the transient heat transfer around the cylinder is strongly affected by the position of thermocouples. In the transient region, the rate of heat transfer obtained at 90o and 180o are higher than that of stagnation point (0o). Finally, the dependence of the average Nusselt number on Rayleigh number for steady and transient natural convection heat transfer are analyzed, and a correlation equation is presented.

Keywords: Steady-state, transient, natural convection, Rayleigh number, Nusselt number, Fourier Number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1220
3205 New High Order Group Iterative Schemes in the Solution of Poisson Equation

Authors: Sam Teek Ling, Norhashidah Hj. Mohd. Ali

Abstract:

We investigate the formulation and implementation of new explicit group iterative methods in solving the two-dimensional Poisson equation with Dirichlet boundary conditions. The methods are derived from a fourth order compact nine point finite difference discretization. The methods are compared with the existing second order standard five point formula to show the dramatic improvement in computed accuracy. Numerical experiments are presented to illustrate the effectiveness of the proposed methods.

Keywords: Explicit group iterative method, finite difference, fourth order compact, Poisson equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
3204 A Non-Standard Finite Difference Scheme for the Solution of Laplace Equation with Dirichlet Boundary Conditions

Authors: Khaled Moaddy

Abstract:

In this paper, we present a fast and accurate numerical scheme for the solution of a Laplace equation with Dirichlet boundary conditions. The non-standard finite difference scheme (NSFD) is applied to construct the numerical solutions of a Laplace equation with two different Dirichlet boundary conditions. The solutions obtained using NSFD are compared with the solutions obtained using the standard finite difference scheme (SFD). The NSFD scheme is demonstrated to be reliable and efficient.

Keywords: Standard finite difference schemes, non–standard schemes, Laplace equation, Dirichlet boundary conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 670
3203 The Effects of Tissue Optical Parameters and Interface Reflectivity on Light Diffusion in Biological Tissues

Authors: MA. Ansari

Abstract:

In cancer progress, the optical properties of tissues like absorption and scattering coefficient change, so by these changes, we can trace the progress of cancer, even it can be applied for pre-detection of cancer. In this paper, we investigate the effects of changes of optical properties on light penetrated into tissues. The diffusion equation is widely used to simulate light propagation into biological tissues. In this study, the boundary integral method (BIM) is used to solve the diffusion equation. We illustrate that the changes of optical properties can modified the reflectance or penetrating light.

Keywords: Diffusion equation, boundary element method, refractive index

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
3202 Finite Element Modeling to Predict the Effect of Nose Radius on the Equivalent Strain (PEEQ) for Titanium Alloy (Ti-6Al-4V)

Authors: Moaz H. Ali, M. N. M. Ansari, Pang Jing Shen

Abstract:

In present work, prediction the effect of nose radius, rz (mm) on the equivalent strain (PEEQ) and surface finish during the machining of titanium alloy (Ti-6Al-4V) through orthogonal cutting process. The results were performed at several of the nose radiuses, rz (mm) while the cutting speed, vc (m/min), feed rate, f (mm/tooth) and depth of cut, d (mm) were remained constant. The equivalent plastic strain (PEEQ) was estimated by using finite element modeling (FEM) and applied through ABAQUS/EXPLICIT software. The simulation results led to conclude that the equivalent plastic strain (PEEQ) was increased and surface roughness (Ra) decreased when increasing nose radius, rz (mm) during the machining of titanium alloy (Ti–6Al–4V) in dry cutting conditions.

Keywords: Finite element modeling (FEM), nose radius, plastic strain (PEEQ), titanium alloy (Ti-6Al-4V).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2484
3201 Unique Positive Solution of Nonlinear Fractional Differential Equation Boundary Value Problem

Authors: Fengxia Zheng

Abstract:

By using two new fixed point theorems for mixed monotone operators, the positive solution of nonlinear fractional differential equation boundary value problem is studied. Its existence and uniqueness is proved, and an iterative scheme is constructed to approximate it.

Keywords: Fractional differential equation, boundary value problem, positive solution, existence and uniqueness, fixed point theorem, mixed monotone operator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1602
3200 Hyers-Ulam Stability of Functional Equationf(3x) = 4f(3x − 3) + f(3x − 6)

Authors: Soon-Mo Jung

Abstract:

The functional equation f(3x) = 4f(3x-3)+f(3x- 6) will be solved and its Hyers-Ulam stability will be also investigated in the class of functions f : R → X, where X is a real Banach space.

Keywords: Functional equation, Lucas sequence of the first kind, Hyers-Ulam stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1354
3199 Speciation Analysis by Solid-Phase Microextraction and Application to Atrazine

Authors: K. Benhabib, X. Pierens, V-D Nguyen, G. Mimanne

Abstract:

The main hypothesis of the dynamics of solid phase microextraction (SPME) is that steady-state mass transfer is respected throughout the SPME extraction process. It considers steady-state diffusion is established in the two phases and fast exchange of the analyte at the solid phase film/water interface. An improved model is proposed in this paper to handle with the situation when the analyte (atrazine) is in contact with colloid suspensions (carboxylate latex in aqueous solution). A mathematical solution is obtained by substituting the diffusion coefficient by the mean of diffusion coefficient between analyte and carboxylate latex, and also thickness layer by the mean thickness in aqueous solution. This solution provides an equation relating the extracted amount of the analyte to the extraction a little more complicated than previous models. It also gives a better description of experimental observations. Moreover, the rate constant of analyte obtained is in satisfactory agreement with that obtained from the initial curve fitting.

Keywords: Pesticide, SPME methods, polyacrylate, steady state.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 696
3198 Possible Number of Dwelling Units Using Waste Plastic Bottle for Construction

Authors: Dibya Jivan Pati, Kazuhisa Iki, Riken Homma

Abstract:

Unlike other metro cities of India, Bhubaneswar–the capital city of Odisha, is expected to reach 1-million-mark population by now. The demands of dwelling unit requirement mostly among urban poor belonging to Economically Weaker section (EWS) and Low Income groups (LIG) is becoming a challenge due to high housing cost and rents. As a matter of fact, it’s also noted that, with increase in population, the solid waste generation also increases subsequently affecting the environment due to inefficiency in collection of waste by local government bodies. Methods of utilizing Solid Waste - especially in form of Plastic bottles, Glass bottles and Metal cans (PGM) are now widely used as an alternative material for construction of low-cost building by Non-Government Organizations (NGOs) in developing countries like India to help the urban poor afford a shelter. The application of disposed plastic bottle used in construction of single dwelling significantly reduces the overall cost of construction to as much as 14% compared to traditional construction material. Therefore, considering its cost-benefit result, it’s possible to provide housing to EWS and LIGs at an affordable price. In this paper, we estimated the quantity of plastic bottles generated in Bhubaneswar which further helped to estimate the possible number of single dwelling unit that can be constructed on yearly basis so as to refrain from further housing shortage. The estimation results will be practically used for planning and managing low-cost housing business by local government and NGOs.

Keywords: Construction, dwelling unit, plastic bottle, solid waste generation, groups.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1085
3197 Design of Nonlinear Observer by Using Augmented Linear System based on Formal Linearization of Polynomial Type

Authors: Kazuo Komatsu, Hitoshi Takata

Abstract:

The objective of this study is to propose an observer design for nonlinear systems by using an augmented linear system derived by application of a formal linearization method. A given nonlinear differential equation is linearized by the formal linearization method which is based on Taylor expansion considering up to the higher order terms, and a measurement equation is transformed into an augmented linear one. To this augmented dimensional linear system, a linear estimation theory is applied and a nonlinear observer is derived. As an application of this method, an estimation problem of transient state of electric power systems is studied, and its numerical experiments indicate that this observer design shows remarkable performances for nonlinear systems.

Keywords: nonlinear system, augmented linear system, nonlinear observer, formal linearization, electric power system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584
3196 Ginzburg-Landau Model : an Amplitude Evolution Equation for Shallow Wake Flows

Authors: Imad Chaddad, Andrei A. Kolyshkin

Abstract:

Linear and weakly nonlinear analysis of shallow wake flows is presented in the present paper. The evolution of the most unstable linear mode is described by the complex Ginzburg-Landau equation (CGLE). The coefficients of the CGLE are calculated numerically from the solution of the corresponding linear stability problem for a one-parametric family of shallow wake flows. It is shown that the coefficients of the CGLE are not so sensitive to the variation of the base flow profile.

Keywords: Ginzburg-Landau equation, shallow wake flow, weakly nonlinear theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1578
3195 The Finite Difference Scheme for the Suspended String Equation with the Nonlinear Damping Term

Authors: Jaipong Kasemsuwan

Abstract:

A numerical solution of the initial boundary value problem of the suspended string vibrating equation with the particular nonlinear damping term based on the finite difference scheme is presented in this paper. The investigation of how the second and third power terms of the nonlinear term affect the vibration characteristic. We compare the vibration amplitude as a result of the third power nonlinear damping with the second power obtained from previous report provided that the same initial shape and initial velocities are assumed. The comparison results show that the vibration amplitude is inversely proportional to the coefficient of the damping term for the third power nonlinear damping case, while the vibration amplitude is proportional to the coefficient of the damping term in the second power nonlinear damping case.

Keywords: Finite-difference method, the nonlinear damped equation, the numerical simulation, the suspended string equation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451
3194 Investigating the Thermal Characteristics of Reclaimed Solid Waste from a Landfill Site Using Thermogravimetry

Authors: S. M. Al-Salem, G.A. Leeke, H. J. Karam, R. Al-Enzi, A. T. Al-Dhafeeri, J. Wang

Abstract:

Thermogravimetry has been popularized as a thermal characterization technique since the 1950s. It aims at investigating the weight loss against both reaction time and temperature, whilst being able to characterize the evolved gases from the volatile components of the organic material being tested using an appropriate hyphenated analytical technique. In an effort to characterize and identify the reclaimed waste from an unsanitary landfill site, this approach was initiated. Solid waste (SW) reclaimed from an active landfill site in the State of Kuwait was collected and prepared for characterization in accordance with international protocols. The SW was segregated and its major components were identified after washing and air drying. Shredding and cryomilling was conducted on the plastic solid waste (PSW) component to yield a material that is representative for further testing and characterization. The material was subjected to five heating rates (b) with minimal repeatable weight for high accuracy thermogravimetric analysis (TGA) following the recommendation of the International Confederation for Thermal Analysis and Calorimetry (ICTAC). The TGA yielded thermograms that showed an off-set from typical behavior of commercial grade resin which was attributed to contact of material with soil and thermal/photo-degradation.

Keywords: Polymer, TGA, Pollution, Landfill, Waste, Plastic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 704
3193 Experimental Study of Upsetting and Die Forging with Controlled Impact

Authors: T. Penchev, D. Karastoyanov

Abstract:

The results from experimental research of deformation by upsetting and die forging of lead specimens wit controlled impact are presented. Laboratory setup for conducting the investigations, which uses cold rocket engine operated with compressed air, is described. The results show that when using controlled impact is achieving greater plastic deformation and consumes less impact energy than at ordinary impact deformation process.

Keywords: Rocket Engine, Forging Hammer, Sticking Impact, Plastic Deformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2133
3192 Significance of Splitting Method in Non-linear Grid system for the Solution of Navier-Stokes Equation

Authors: M. Zamani, O. Kahar

Abstract:

Solution to unsteady Navier-Stokes equation by Splitting method in physical orthogonal algebraic curvilinear coordinate system, also termed 'Non-linear grid system' is presented. The linear terms in Navier-Stokes equation are solved by Crank- Nicholson method while the non-linear term is solved by the second order Adams-Bashforth method. This work is meant to bring together the advantage of Splitting method as pressure-velocity solver of higher efficiency with the advantage of consuming Non-linear grid system which produce more accurate results in relatively equal number of grid points as compared to Cartesian grid. The validation of Splitting method as a solution of Navier-Stokes equation in Nonlinear grid system is done by comparison with the benchmark results for lid driven cavity flow by Ghia and some case studies including Backward Facing Step Flow Problem.

Keywords: Navier-Stokes, 'Non-linear grid system', Splitting method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528
3191 Allometric Models for Biomass Estimation in Savanna Woodland Area, Niger State, Nigeria

Authors: Abdullahi Jibrin, Aishetu Abdulkadir

Abstract:

The development of allometric models is crucial to accurate forest biomass/carbon stock assessment. The aim of this study was to develop a set of biomass prediction models that will enable the determination of total tree aboveground biomass for savannah woodland area in Niger State, Nigeria. Based on the data collected through biometric measurements of 1816 trees and destructive sampling of 36 trees, five species specific and one site specific models were developed. The sample size was distributed equally between the five most dominant species in the study site (Vitellaria paradoxa, Irvingia gabonensis, Parkia biglobosa, Anogeissus leiocarpus, Pterocarpus erinaceous). Firstly, the equations were developed for five individual species. Secondly these five species were mixed and were used to develop an allometric equation of mixed species. Overall, there was a strong positive relationship between total tree biomass and the stem diameter. The coefficient of determination (R2 values) ranging from 0.93 to 0.99 P < 0.001 were realised for the models; with considerable low standard error of the estimates (SEE) which confirms that the total tree above ground biomass has a significant relationship with the dbh. F-test values for the biomass prediction models were also significant at p < 0.001 which indicates that the biomass prediction models are valid. This study recommends that for improved biomass estimates in the study site, the site specific biomass models should preferably be used instead of using generic models.

Keywords: Allometriy, biomass, carbon stock, model, regression equation, woodland, inventory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2788
3190 A Hybrid Neural Network and Gravitational Search Algorithm (HNNGSA) Method to Solve well known Wessinger's Equation

Authors: M. Ghalambaz, A.R. Noghrehabadi, M.A. Behrang, E. Assareh, A. Ghanbarzadeh, N.Hedayat

Abstract:

This study presents a hybrid neural network and Gravitational Search Algorithm (HNGSA) method to solve well known Wessinger's equation. To aim this purpose, gravitational search algorithm (GSA) technique is applied to train a multi-layer perceptron neural network, which is used as approximation solution of the Wessinger's equation. A trial solution of the differential equation is written as sum of two parts. The first part satisfies the initial/ boundary conditions and does not contain any adjustable parameters and the second part which is constructed so as not to affect the initial/boundary conditions. The second part involves adjustable parameters (the weights and biases) for a multi-layer perceptron neural network. In order to demonstrate the presented method, the obtained results of the proposed method are compared with some known numerical methods. The given results show that presented method can introduce a closer form to the analytic solution than other numerical methods. Present method can be easily extended to solve a wide range of problems.

Keywords: Neural Networks, Gravitational Search Algorithm (GSR), Wessinger's Equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2399
3189 Performances Analysis of the Pressure and Production of an Oil Zone by Simulation of the Flow of a Fluid through the Porous Media

Authors: Makhlouf Mourad, Medkour Mihoub, Bouchher Omar, Messabih Sidi Mohamed, Benrachedi Khaled

Abstract:

This work is the modeling and simulation of fluid flow (liquid) through porous media. This type of flow occurs in many situations of interest in applied sciences and engineering, fluid (oil) consists of several individual substances in pure, single-phase flow is incompressible and isothermal. The porous medium is isotropic, homogeneous optionally, with the rectangular format and the flow is two-dimensional. Modeling of hydrodynamic phenomena incorporates Darcy's law and the equation of mass conservation. Correlations are used to model the density and viscosity of the fluid. A finite volume code is used in the discretization of differential equations. The nonlinearity is treated by Newton's method with relaxation coefficient. The results of the simulation of the pressure and the mobility of liquid flowing through porous media are presented, analyzed, and illustrated.

Keywords: Darcy equation, middle porous, continuity equation, Peng Robinson equation, mobility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 783
3188 Septic B-Spline Collocation Method for Numerical Solution of the Kuramoto-Sivashinsky Equation

Authors: M. Zarebnia, R. Parvaz

Abstract:

In this paper the Kuramoto-Sivashinsky equation is solved numerically by collocation method. The solution is approximated as a linear combination of septic B-spline functions. Applying the Von-Neumann stability analysis technique, we show that the method is unconditionally stable. The method is applied on some test examples, and the numerical results have been compared with the exact solutions. The global relative error and L∞ in the solutions show the efficiency of the method computationally.

Keywords: Kuramoto-Sivashinsky equation, Septic B-spline, Collocation method, Finite difference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063
3187 Practical Techniques of Improving State Estimator Solution

Authors: Kiamran Radjabli

Abstract:

State Estimator became an intrinsic part of Energy Management Systems (EMS). The SCADA measurements received from the field are processed by the State Estimator in order to accurately determine the actual operating state of the power systems and provide that information to other real-time network applications. All EMS vendors offer a State Estimator functionality in their baseline products. However, setting up and ensuring that State Estimator consistently produces a reliable solution often consumes a substantial engineering effort. This paper provides generic recommendations and describes a simple practical approach to efficient tuning of State Estimator, based on the working experience with major EMS software platforms and consulting projects in many electrical utilities of the USA.

Keywords: Convergence, monitoring, performance, state estimator, troubleshooting, tuning, power systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 873
3186 Bendability Analysis for Bending of C-Mn Steel Plates on Heavy Duty 3-Roller Bending Machine

Authors: Himanshu V. Gajjar, Anish H. Gandhi, Tanvir A Jafri, Harit K. Raval

Abstract:

Bendability is constrained by maximum top roller load imparting capacity of the machine. Maximum load is encountered during the edge pre-bending stage of roller bending. Capacity of 3-roller plate bending machine is specified by maximum thickness and minimum shell diameter combinations that can be pre-bend for given plate material of maximum width. Commercially available plate width or width of the plate that can be accommodated on machine decides the maximum rolling width. Original equipment manufacturers (OEM) provide the machine capacity chart based on reference material considering perfectly plastic material model. Reported work shows the bendability analysis of heavy duty 3-roller plate bending machine. The input variables for the industry are plate thickness, shell diameter and material property parameters, as it is fixed by the design. Analytical models of equivalent thickness, equivalent width and maximum width based on power law material model were derived to study the bendability. Equation of maximum width provides bendability for designed configuration i.e. material property, shell diameter and thickness combinations within the machine limitations. Equivalent thicknesses based on perfectly plastic and power law material model were compared for four different materials grades of C-Mn steel in order to predict the bend-ability. Effect of top roller offset on the bendability at maximum top roller load imparting capacity is reported.

Keywords: 3-Roller bending, Bendability, Equivalent thickness, Equivalent width, Maximum width.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4610
3185 Lagrange-s Inversion Theorem and Infiltration

Authors: Pushpa N. Rathie, Prabhata K. Swamee, André L. B. Cavalcante, Luan Carlos de S. M. Ozelim

Abstract:

Implicit equations play a crucial role in Engineering. Based on this importance, several techniques have been applied to solve this particular class of equations. When it comes to practical applications, in general, iterative procedures are taken into account. On the other hand, with the improvement of computers, other numerical methods have been developed to provide a more straightforward methodology of solution. Analytical exact approaches seem to have been continuously neglected due to the difficulty inherent in their application; notwithstanding, they are indispensable to validate numerical routines. Lagrange-s Inversion Theorem is a simple mathematical tool which has proved to be widely applicable to engineering problems. In short, it provides the solution to implicit equations by means of an infinite series. To show the validity of this method, the tree-parameter infiltration equation is, for the first time, analytically and exactly solved. After manipulating these series, closed-form solutions are presented as H-functions.

Keywords: Green-Ampt Equation, Lagrange's Inversion Theorem, Talsma-Parlange Equation, Three-Parameter Infiltration Equation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1888
3184 A Sum Operator Method for Unique Positive Solution to a Class of Boundary Value Problem of Nonlinear Fractional Differential Equation

Authors: Fengxia Zheng, Chuanyun Gu

Abstract:

By using a fixed point theorem of a sum operator, the existence and uniqueness of positive solution for a class of boundary value problem of nonlinear fractional differential equation is studied. An iterative scheme is constructed to approximate it. Finally, an example is given to illustrate the main result.

Keywords: Fractional differential equation, Boundary value problem, Positive solution, Existence and uniqueness, Fixed point theorem of a sum operator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1484
3183 Solution of First kind Fredholm Integral Equation by Sinc Function

Authors: Khosrow Maleknejad, Reza Mollapourasl, Parvin Torabi, Mahdiyeh Alizadeh,

Abstract:

Sinc-collocation scheme is one of the new techniques used in solving numerical problems involving integral equations. This method has been shown to be a powerful numerical tool for finding fast and accurate solutions. So, in this paper, some properties of the Sinc-collocation method required for our subsequent development are given and are utilized to reduce integral equation of the first kind to some algebraic equations. Then convergence with exponential rate is proved by a theorem to guarantee applicability of numerical technique. Finally, numerical examples are included to demonstrate the validity and applicability of the technique.

Keywords: Integral equation, Fredholm type, Collocation method, Sinc approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2756