Search results for: Ontology search
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 912

Search results for: Ontology search

732 Combining Variable Ordering Heuristics for Improving Search Algorithms Performance

Authors: Abdolreza Hatamlou, Yusef Farhang, Mohammad Reza Meybodi

Abstract:

Variable ordering heuristics are used in constraint satisfaction algorithms. Different characteristics of various variable ordering heuristics are complementary. Therefore we have tried to get the advantages of all heuristics to improve search algorithms performance for solving constraint satisfaction problems. This paper considers combinations based on products and quotients, and then a newer form of combination based on weighted sums of ratings from a set of base heuristics, some of which result in definite improvements in performance.

Keywords: Constraint Satisfaction Problems, Variable Ordering Heuristics, Combination, Search Algorithms

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1368
731 User Guidance for Effective Query Interpretation in Natural Language Interfaces to Ontologies

Authors: Aliyu Isah Agaie, Masrah Azrifah Azmi Murad, Nurfadhlina Mohd Sharef, Aida Mustapha

Abstract:

Natural Language Interfaces typically support a restricted language and also have scopes and limitations that naïve users are unaware of, resulting in errors when the users attempt to retrieve information from ontologies. To overcome this challenge, an auto-suggest feature is introduced into the querying process where users are guided through the querying process using interactive query construction system. Guiding users to formulate their queries, while providing them with an unconstrained (or almost unconstrained) way to query the ontology results in better interpretation of the query and ultimately lead to an effective search. The approach described in this paper is unobtrusive and subtly guides the users, so that they have a choice of either selecting from the suggestion list or typing in full. The user is not coerced into accepting system suggestions and can express himself using fragments or full sentences.

Keywords: Auto-suggest, expressiveness, habitability, natural language interface, query interpretation, user guidance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1475
730 An Improved Fast Video Clip Search Algorithm for Copy Detection using Histogram-based Features

Authors: Feifei Lee, Qiu Chen, Koji Kotani, Tadahiro Ohmi

Abstract:

In this paper, we present an improved fast and robust search algorithm for copy detection using histogram-based features for short MPEG video clips from large video database. There are two types of histogram features used to generate more robust features. The first one is based on the adjacent pixel intensity difference quantization (APIDQ) algorithm, which had been reliably applied to human face recognition previously. An APIDQ histogram is utilized as the feature vector of the frame image. Another one is ordinal histogram feature which is robust to color distortion. Furthermore, by Combining with a temporal division method, the spatial and temporal features of the video sequence are integrated to realize fast and robust video search for copy detection. Experimental results show the proposed algorithm can detect the similar video clip more accurately and robust than conventional fast video search algorithm.

Keywords: Fast search, Copy detection, Adjacent pixel intensity difference quantization (APIDQ), DC image, Histogram feature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1450
729 Optimal Placement of Phasor Measurement Units Using Gravitational Search Method

Authors: Satyendra Pratap Singh, S. P. Singh

Abstract:

This paper presents a methodology using Gravitational Search Algorithm for optimal placement of Phasor Measurement Units (PMUs) in order to achieve complete observability of the power system. The objective of proposed algorithm is to minimize the total number of PMUs at the power system buses, which in turn minimize installation cost of the PMUs. In this algorithm, the searcher agents are collection of masses which interact with each other using Newton’s laws of gravity and motion. This new Gravitational Search Algorithm based method has been applied to the IEEE 14-bus, IEEE 30-bus and IEEE 118-bus test systems. Case studies reveal optimal number of PMUs with better observability by proposed method.

Keywords: Gravitational Search Algorithm (GSA), Law of Motion, Law of Gravity, Observability, Phasor Measurement Unit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2906
728 Hybrid Artificial Immune System for Job Shop Scheduling Problem

Authors: Bin Cai, Shilong Wang, Haibo Hu

Abstract:

The job shop scheduling problem (JSSP) is a notoriously difficult problem in combinatorial optimization. This paper presents a hybrid artificial immune system for the JSSP with the objective of minimizing makespan. The proposed approach combines the artificial immune system, which has a powerful global exploration capability, with the local search method, which can exploit the optimal antibody. The antibody coding scheme is based on the operation based representation. The decoding procedure limits the search space to the set of full active schedules. In each generation, a local search heuristic based on the neighborhood structure proposed by Nowicki and Smutnicki is applied to improve the solutions. The approach is tested on 43 benchmark problems taken from the literature and compared with other approaches. The computation results validate the effectiveness of the proposed algorithm.

Keywords: Artificial immune system, Job shop scheduling problem, Local search, Metaheuristic algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1925
727 Non-Overlapping Hierarchical Index Structure for Similarity Search

Authors: Mounira Taileb, Sid Lamrous, Sami Touati

Abstract:

In order to accelerate the similarity search in highdimensional database, we propose a new hierarchical indexing method. It is composed of offline and online phases. Our contribution concerns both phases. In the offline phase, after gathering the whole of the data in clusters and constructing a hierarchical index, the main originality of our contribution consists to develop a method to construct bounding forms of clusters to avoid overlapping. For the online phase, our idea improves considerably performances of similarity search. However, for this second phase, we have also developed an adapted search algorithm. Our method baptized NOHIS (Non-Overlapping Hierarchical Index Structure) use the Principal Direction Divisive Partitioning (PDDP) as algorithm of clustering. The principle of the PDDP is to divide data recursively into two sub-clusters; division is done by using the hyper-plane orthogonal to the principal direction derived from the covariance matrix and passing through the centroid of the cluster to divide. Data of each two sub-clusters obtained are including by a minimum bounding rectangle (MBR). The two MBRs are directed according to the principal direction. Consequently, the nonoverlapping between the two forms is assured. Experiments use databases containing image descriptors. Results show that the proposed method outperforms sequential scan and SRtree in processing k-nearest neighbors.

Keywords: K-nearest neighbour search, multi-dimensional indexing, multimedia databases, similarity search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562
726 An Approach to Integrate Ontologies of Open Educational Resources in Knowledge Based Management Systems

Authors: Firas A. Al Laban, Mohamed Chabi, Sammani Danwawu Abdullahi

Abstract:

There are real needs to integrate types of Open Educational Resources (OER) with an intelligent system to extract information and knowledge in the semantic searching level. The needs came because most of current learning standard adopted web based learning and the e-learning systems do not always serve all educational goals. Semantic Web systems provide educators, students, and researchers with intelligent queries based on a semantic knowledge management learning system. An ontology-based learning system is an advanced system, where ontology plays the core of the semantic web in a smart learning environment. The objective of this paper is to discuss the potentials of ontologies and mapping different kinds of ontologies; heterogeneous or homogenous to manage and control different types of Open Educational Resources. The important contribution of this research is that it uses logical rules and conceptual relations to map between ontologies of different educational resources. We expect from this methodology to establish an intelligent educational system supporting student tutoring, self and lifelong learning system.

Keywords: Knowledge Management Systems, Ontologies, Semantic Web, Open Educational Resources.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
725 Learning FCM by Tabu Search

Authors: Somayeh Alizadeh, Mehdi Ghazanfari, Mostafa Jafari, Salman Hooshmand

Abstract:

Fuzzy Cognitive Maps (FCMs) is a causal graph, which shows the relations between essential components in complex systems. Experts who are familiar with the system components and their relations can generate a related FCM. There is a big gap when human experts cannot produce FCM or even there is no expert to produce the related FCM. Therefore, a new mechanism must be used to bridge this gap. In this paper, a novel learning method is proposed to construct causal graph based on historical data and by using metaheuristic such Tabu Search (TS). The efficiency of the proposed method is shown via comparison of its results of some numerical examples with those of some other methods.

Keywords: Fuzzy Cognitive Map (FCM), Learning, Meta heuristic, Genetic Algorithm, Tabu search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1864
724 Network Reconfiguration for Load Balancing in Distribution System with Distributed Generation and Capacitor Placement

Authors: T. Lantharthong, N. Rugthaicharoencheep

Abstract:

This paper presents an efficient algorithm for optimization of radial distribution systems by a network reconfiguration to balance feeder loads and eliminate overload conditions. The system load-balancing index is used to determine the loading conditions of the system and maximum system loading capacity. The index value has to be minimum in the optimal network reconfiguration of load balancing. A method based on Tabu search algorithm, The Tabu search algorithm is employed to search for the optimal network reconfiguration. The basic idea behind the search is a move from a current solution to its neighborhood by effectively utilizing a memory to provide an efficient search for optimality. It presents low computational effort and is able to find good quality configurations. Simulation results for a radial 69-bus system with distributed generations and capacitors placement. The study results show that the optimal on/off patterns of the switches can be identified to give the best network reconfiguration involving balancing of feeder loads while respecting all the constraints.

Keywords: Network reconfiguration, Distributed generation Capacitor placement, Load balancing, Optimization technique

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4219
723 Object Identification with Color, Texture, and Object-Correlation in CBIR System

Authors: Awais Adnan, Muhammad Nawaz, Sajid Anwar, Tamleek Ali, Muhammad Ali

Abstract:

Needs of an efficient information retrieval in recent years in increased more then ever because of the frequent use of digital information in our life. We see a lot of work in the area of textual information but in multimedia information, we cannot find much progress. In text based information, new technology of data mining and data marts are now in working that were started from the basic concept of database some where in 1960. In image search and especially in image identification, computerized system at very initial stages. Even in the area of image search we cannot see much progress as in the case of text based search techniques. One main reason for this is the wide spread roots of image search where many area like artificial intelligence, statistics, image processing, pattern recognition play their role. Even human psychology and perception and cultural diversity also have their share for the design of a good and efficient image recognition and retrieval system. A new object based search technique is presented in this paper where object in the image are identified on the basis of their geometrical shapes and other features like color and texture where object-co-relation augments this search process. To be more focused on objects identification, simple images are selected for the work to reduce the role of segmentation in overall process however same technique can also be applied for other images.

Keywords: Object correlation, Geometrical shape, Color, texture, features, contents.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028
722 PUMA 560 Optimal Trajectory Control using Genetic Algorithm, Simulated Annealing and Generalized Pattern Search Techniques

Authors: Sufian Ashraf Mazhari, Surendra Kumar

Abstract:

Robot manipulators are highly coupled nonlinear systems, therefore real system and mathematical model of dynamics used for control system design are not same. Hence, fine-tuning of controller is always needed. For better tuning fast simulation speed is desired. Since, Matlab incorporates LAPACK to increase the speed and complexity of matrix computation, dynamics, forward and inverse kinematics of PUMA 560 is modeled on Matlab/Simulink in such a way that all operations are matrix based which give very less simulation time. This paper compares PID parameter tuning using Genetic Algorithm, Simulated Annealing, Generalized Pattern Search (GPS) and Hybrid Search techniques. Controller performances for all these methods are compared in terms of joint space ITSE and cartesian space ISE for tracking circular and butterfly trajectories. Disturbance signal is added to check robustness of controller. GAGPS hybrid search technique is showing best results for tuning PID controller parameters in terms of ITSE and robustness.

Keywords: Controller Tuning, Genetic Algorithm, Pattern Search, Robotic Controller, Simulated Annealing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3718
721 A Text Clustering System based on k-means Type Subspace Clustering and Ontology

Authors: Liping Jing, Michael K. Ng, Xinhua Yang, Joshua Zhexue Huang

Abstract:

This paper presents a text clustering system developed based on a k-means type subspace clustering algorithm to cluster large, high dimensional and sparse text data. In this algorithm, a new step is added in the k-means clustering process to automatically calculate the weights of keywords in each cluster so that the important words of a cluster can be identified by the weight values. For understanding and interpretation of clustering results, a few keywords that can best represent the semantic topic are extracted from each cluster. Two methods are used to extract the representative words. The candidate words are first selected according to their weights calculated by our new algorithm. Then, the candidates are fed to the WordNet to identify the set of noun words and consolidate the synonymy and hyponymy words. Experimental results have shown that the clustering algorithm is superior to the other subspace clustering algorithms, such as PROCLUS and HARP and kmeans type algorithm, e.g., Bisecting-KMeans. Furthermore, the word extraction method is effective in selection of the words to represent the topics of the clusters.

Keywords: Subspace Clustering, Text Mining, Feature Weighting, Cluster Interpretation, Ontology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2462
720 Comparative Analysis of Different Page Ranking Algorithms

Authors: S. Prabha, K. Duraiswamy, J. Indhumathi

Abstract:

Search engine plays an important role in internet, to retrieve the relevant documents among the huge number of web pages. However, it retrieves more number of documents, which are all relevant to your search topics. To retrieve the most meaningful documents related to search topics, ranking algorithm is used in information retrieval technique. One of the issues in data miming is ranking the retrieved document. In information retrieval the ranking is one of the practical problems. This paper includes various Page Ranking algorithms, page segmentation algorithms and compares those algorithms used for Information Retrieval. Diverse Page Rank based algorithms like Page Rank (PR), Weighted Page Rank (WPR), Weight Page Content Rank (WPCR), Hyperlink Induced Topic Selection (HITS), Distance Rank, Eigen Rumor, Distance Rank Time Rank, Tag Rank, Relational Based Page Rank and Query Dependent Ranking algorithms are discussed and compared.

Keywords: Information Retrieval, Web Page Ranking, search engine, web mining, page segmentations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4288
719 Efficient Block Matching Algorithm for Motion Estimation

Authors: Zong Chen

Abstract:

Motion estimation is a key problem in video processing and computer vision. Optical flow motion estimation can achieve high estimation accuracy when motion vector is small. Three-step search algorithm can handle large motion vector but not very accurate. A joint algorithm was proposed in this paper to achieve high estimation accuracy disregarding whether the motion vector is small or large, and keep the computation cost much lower than full search.

Keywords: Motion estimation, Block Matching, Optical flow, Three step search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2166
718 Optimizing PID Parameters Using Harmony Search

Authors: N. Arulanand, P. Dhara

Abstract:

Optimizing the parameters in the controller plays a vital role in the control theory and its applications. Optimizing the PID parameters is finding out the best value from the feasible solutions. Finding the optimal value is an optimization problem. Inverted Pendulum is a very good platform for control engineers to verify and apply different logics in the field of control theory. It is necessary to find an optimization technique for the controller to tune the values automatically in order to minimize the error within the given bounds. In this paper, the algorithmic concepts of Harmony search (HS) and Genetic Algorithm (GA) have been analyzed for the given range of values. The experimental results show that HS performs well than GA.

Keywords: Genetic Algorithm, Harmony Search Algorithm, Inverted Pendulum, PID Controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1808
717 Harmony Search-based K-Coverage Enhancement in Wireless Sensor Networks

Authors: Shaimaa M. Mohamed, Haitham S. Hamza, Imane A. Saroit

Abstract:

Many wireless sensor network applications require K-coverage of the monitored area. In this paper, we propose a scalable harmony search based algorithm in terms of execution time, K-Coverage Enhancement Algorithm (KCEA), it attempts to enhance initial coverage, and achieve the required K-coverage degree for a specific application efficiently. Simulation results show that the proposed algorithm achieves coverage improvement of 5.34% compared to K-Coverage Rate Deployment (K-CRD), which achieves 1.31% when deploying one additional sensor. Moreover, the proposed algorithm is more time efficient.

Keywords: Wireless Sensor Networks (WSN), Harmony Search Algorithms, K-Coverage, Mobile WSN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2165
716 Pay Per Click Attribution: Effects on Direct Search Traffic and Purchases

Authors: Toni Raurich, Joan Llonch-Andreu

Abstract:

This research focused on the relationship between Search Engine Marketing (SEM) and traditional advertising. The dominant assumption is that SEM does not help brand awareness and only does it in session as if it were the cost of manufacturing the product being sold. The study is methodologically developed using an experiment where the effects were determined to analyze the billboard effect. The research allowed the cross-linking of theoretical and empirical knowledge on digital marketing. This paper has validated that, this marketing generates retention as traditional advertising would by measuring brand awareness and its improvements. This changes the way performance and brand campaigns are distributed within marketing departments, effectively rebalancing budgets moving forward.

Keywords: Search engine marketing, click-through ratios, pay-per-click, marketing attribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 420
715 Electroencephalography-Based Intention Recognition and Consensus Assessment during Emergency Response

Authors: Siyao Zhu, Yifang Xu

Abstract:

After natural and man-made disasters, robots can bypass the danger, expedite the search, and acquire unprecedented situational awareness to design rescue plans. Brain-computer interface is a promising option to overcome the limitations of tedious manual control and operation of robots in the urgent search-and-rescue tasks. This study aims to test the feasibility of using electroencephalography (EEG) signals to decode human intentions and detect the level of consensus on robot-provided information. EEG signals were classified using machine-learning and deep-learning methods to discriminate search intentions and agreement perceptions. The results show that the average classification accuracy for intention recognition and consensus assessment is 67% and 72%, respectively, proving the potential of incorporating recognizable users’ bioelectrical responses into advanced robot-assisted systems for emergency response.

Keywords: Consensus assessment, electroencephalogram, EEG, emergency response, human-robot collaboration, intention recognition, search and rescue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 345
714 A New Heuristic Algorithm for the Classical Symmetric Traveling Salesman Problem

Authors: S. B. Liu, K. M. Ng, H. L. Ong

Abstract:

This paper presents a new heuristic algorithm for the classical symmetric traveling salesman problem (TSP). The idea of the algorithm is to cut a TSP tour into overlapped blocks and then each block is improved separately. It is conjectured that the chance of improving a good solution by moving a node to a position far away from its original one is small. By doing intensive search in each block, it is possible to further improve a TSP tour that cannot be improved by other local search methods. To test the performance of the proposed algorithm, computational experiments are carried out based on benchmark problem instances. The computational results show that algorithm proposed in this paper is efficient for solving the TSPs.

Keywords: Local search, overlapped neighborhood, travelingsalesman problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2222
713 A Tabu Search Heuristic for Scratch-Pad Memory Management

Authors: Maha Idrissi Aouad, Rene Schott, Olivier Zendra

Abstract:

Reducing energy consumption of embedded systems requires careful memory management. It has been shown that Scratch- Pad Memories (SPMs) are low size, low cost, efficient (i.e. energy saving) data structures directly managed at the software level. In this paper, the focus is on heuristic methods for SPMs management. A method is efficient if the number of accesses to SPM is as large as possible and if all available space (i.e. bits) is used. A Tabu Search (TS) approach for memory management is proposed which is, to the best of our knowledge, a new original alternative to the best known existing heuristic (BEH). In fact, experimentations performed on benchmarks show that the Tabu Search method is as efficient as BEH (in terms of energy consumption) but BEH requires a sorting which can be computationally expensive for a large amount of data. TS is easy to implement and since no sorting is necessary, unlike BEH, the corresponding sorting time is saved. In addition to that, in a dynamic perspective where the maximum capacity of the SPM is not known in advance, the TS heuristic will perform better than BEH.

Keywords: Energy consumption, memory allocation management, optimization, tabu search heuristic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679
712 A Hybrid Particle Swarm Optimization Solution to Ramping Rate Constrained Dynamic Economic Dispatch

Authors: Pichet Sriyanyong

Abstract:

This paper presents the application of an enhanced Particle Swarm Optimization (EPSO) combined with Gaussian Mutation (GM) for solving the Dynamic Economic Dispatch (DED) problem considering the operating constraints of generators. The EPSO consists of the standard PSO and a modified heuristic search approaches. Namely, the ability of the traditional PSO is enhanced by applying the modified heuristic search approach to prevent the solutions from violating the constraints. In addition, Gaussian Mutation is aimed at increasing the diversity of global search, whilst it also prevents being trapped in suboptimal points during search. To illustrate its efficiency and effectiveness, the developed EPSO-GM approach is tested on the 3-unit and 10-unit 24-hour systems considering valve-point effect. From the experimental results, it can be concluded that the proposed EPSO-GM provides, the accurate solution, the efficiency, and the feature of robust computation compared with other algorithms under consideration.

Keywords: Particle Swarm Optimization (PSO), GaussianMutation (GM), Dynamic Economic Dispatch (DED).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1794
711 Linking OpenCourseWares and Open Education Resources: Creating an Effective Search and Recommendation System

Authors: Brett E. Shelton, Joel Duffin, Yuxuan Wang, Justin Ball

Abstract:

With a growing number of digital libraries and other open education repositories being made available throughout the world, effective search and retrieval tools are necessary to access the desired materials that surpass the effectiveness of traditional, allinclusive search engines. This paper discusses the design and use of Folksemantic, a platform that integrates OpenCourseWare search, Open Educational Resource recommendations, and social network functionality into a single open source project. The paper describes how the system was originally envisioned, its goals for users, and data that provides insight into how it is actually being used. Data sources include website click-through data, query logs, web server log files and user account data. Based on a descriptive analysis of its current use, modifications to the platform's design are recommended to better address goals of the system, along with recommendations for additional phases of research.

Keywords: Digital libraries, open education, recommendation system, social networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2200
710 Elitist Self-Adaptive Step-Size Search in Optimum Sizing of Steel Structures

Authors: Oğuzhan Hasançebi, Saeid Kazemzadeh Azad

Abstract:

This paper covers application of an elitist selfadaptive
step-size search (ESASS) to optimum design of steel
skeletal structures. In the ESASS two approaches are considered for
improving the convergence accuracy as well as the computational
efficiency of the original technique namely the so called selfadaptive
step-size search (SASS). Firstly, an additional randomness
is incorporated into the sampling step of the technique to preserve
exploration capability of the algorithm during the optimization.
Moreover, an adaptive sampling scheme is introduced to improve the
quality of final solutions. Secondly, computational efficiency of the
technique is accelerated via avoiding unnecessary analyses during the
optimization process using an upper bound strategy. The numerical
results demonstrate the usefulness of the ESASS in the sizing
optimization problems of steel truss and frame structures.

Keywords: Structural design optimization, optimal sizing, metaheuristics, self-adaptive step-size search, steel trusses, steel frames.}

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423
709 Design and Implementation of Optimal Winner Determination Algorithm in Combinatorial e- Auctions

Authors: S. Khanpour, A. Movaghar

Abstract:

The one of best robust search technique on large scale search area is heuristic and meta heuristic approaches. Especially in issue that the exploitation of combinatorial status in the large scale search area prevents the solution of the problem via classical calculating methods, so such problems is NP-complete. in this research, the problem of winner determination in combinatorial auctions have been formulated and by assessing older heuristic functions, we solve the problem by using of genetic algorithm and would show that this new method would result in better performance in comparison to other heuristic function such as simulated annealing greedy approach.

Keywords: Bids, genetic algorithm, heuristic, metaheuristic, simulated annealing greedy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787
708 Web Content Mining: A Solution to Consumer's Product Hunt

Authors: Syed Salman Ahmed, Zahid Halim, Rauf Baig, Shariq Bashir

Abstract:

With the rapid growth in business size, today's businesses orient towards electronic technologies. Amazon.com and e-bay.com are some of the major stakeholders in this regard. Unfortunately the enormous size and hugely unstructured data on the web, even for a single commodity, has become a cause of ambiguity for consumers. Extracting valuable information from such an everincreasing data is an extremely tedious task and is fast becoming critical towards the success of businesses. Web content mining can play a major role in solving these issues. It involves using efficient algorithmic techniques to search and retrieve the desired information from a seemingly impossible to search unstructured data on the Internet. Application of web content mining can be very encouraging in the areas of Customer Relations Modeling, billing records, logistics investigations, product cataloguing and quality management. In this paper we present a review of some very interesting, efficient yet implementable techniques from the field of web content mining and study their impact in the area specific to business user needs focusing both on the customer as well as the producer. The techniques we would be reviewing include, mining by developing a knowledge-base repository of the domain, iterative refinement of user queries for personalized search, using a graphbased approach for the development of a web-crawler and filtering information for personalized search using website captions. These techniques have been analyzed and compared on the basis of their execution time and relevance of the result they produced against a particular search.

Keywords: Data mining, web mining, search engines, knowledge discovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053
707 A Search Algorithm for Solving the Economic Lot Scheduling Problem with Reworks under the Basic Period Approach

Authors: Yu-Jen Chang, Shih-Chieh Chen, Yu-Wei Kuo

Abstract:

In this study, we are interested in the economic lot scheduling problem (ELSP) that considers manufacturing of the serviceable products and remanufacturing of the reworked products. In this paper, we formulate a mathematical model for the ELSP with reworks using the basic period approach. In order to solve this problem, we propose a search algorithm to find the cyclic multiplier ki of each product that can be cyclically produced for every ki basic periods. This research also uses two heuristics to search for the optimal production sequence of all lots and the optimal time length of the basic period so as to minimize the average total cost. This research uses a numerical example to show the effectiveness of our approach.

Keywords: Economic lot, reworks, inventory, basic period.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1517
706 K-Means Based Matching Algorithm for Multi-Resolution Feature Descriptors

Authors: Shao-Tzu Huang, Chen-Chien Hsu, Wei-Yen Wang

Abstract:

Matching high dimensional features between images is computationally expensive for exhaustive search approaches in computer vision. Although the dimension of the feature can be degraded by simplifying the prior knowledge of homography, matching accuracy may degrade as a tradeoff. In this paper, we present a feature matching method based on k-means algorithm that reduces the matching cost and matches the features between images instead of using a simplified geometric assumption. Experimental results show that the proposed method outperforms the previous linear exhaustive search approaches in terms of the inlier ratio of matched pairs.

Keywords: Feature matching, k-means clustering, scale invariant feature transform, linear exhaustive search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1086
705 Parallel 2-Opt Local Search on GPU

Authors: Wen-Bao Qiao, Jean-Charles Créput

Abstract:

To accelerate the solution for large scale traveling salesman problems (TSP), a parallel 2-opt local search algorithm with simple implementation based on Graphics Processing Unit (GPU) is presented and tested in this paper. The parallel scheme is based on technique of data decomposition by dynamically assigning multiple K processors on the integral tour to treat K edges’ 2-opt local optimization simultaneously on independent sub-tours, where K can be user-defined or have a function relationship with input size N. We implement this algorithm with doubly linked list on GPU. The implementation only requires O(N) memory. We compare this parallel 2-opt local optimization against sequential exhaustive 2-opt search along integral tour on TSP instances from TSPLIB with more than 10000 cities.

Keywords: Doubly linked list, parallel 2-opt, tour division, GPU.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1223
704 Predicting the Minimum Free Energy RNA Secondary Structures using Harmony Search Algorithm

Authors: Abdulqader M. Mohsen, Ahamad Tajudin Khader, Dhanesh Ramachandram, Abdullatif Ghallab

Abstract:

The physical methods for RNA secondary structure prediction are time consuming and expensive, thus methods for computational prediction will be a proper alternative. Various algorithms have been used for RNA structure prediction including dynamic programming and metaheuristic algorithms. Musician's behaviorinspired harmony search is a recently developed metaheuristic algorithm which has been successful in a wide variety of complex optimization problems. This paper proposes a harmony search algorithm (HSRNAFold) to find RNA secondary structure with minimum free energy and similar to the native structure. HSRNAFold is compared with dynamic programming benchmark mfold and metaheuristic algorithms (RnaPredict, SetPSO and HelixPSO). The results showed that HSRNAFold is comparable to mfold and better than metaheuristics in finding the minimum free energies and the number of correct base pairs.

Keywords: Metaheuristic algorithms, dynamic programming algorithms, harmony search optimization, RNA folding, Minimum free energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2338
703 An Effective Hybrid Genetic Algorithm for Job Shop Scheduling Problem

Authors: Bin Cai, Shilong Wang, Haibo Hu

Abstract:

The job shop scheduling problem (JSSP) is well known as one of the most difficult combinatorial optimization problems. This paper presents a hybrid genetic algorithm for the JSSP with the objective of minimizing makespan. The efficiency of the genetic algorithm is enhanced by integrating it with a local search method. The chromosome representation of the problem is based on operations. Schedules are constructed using a procedure that generates full active schedules. In each generation, a local search heuristic based on Nowicki and Smutnicki-s neighborhood is applied to improve the solutions. The approach is tested on a set of standard instances taken from the literature and compared with other approaches. The computation results validate the effectiveness of the proposed algorithm.

Keywords: Genetic algorithm, Job shop scheduling problem, Local search, Meta-heuristic algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652