Search results for: Numerical Analysis and Non-Linear partial Differential Equation.
11596 Pricing European Options under Jump Diffusion Models with Fast L-stable Padé Scheme
Authors: Salah Alrabeei, Mohammad Yousuf
Abstract:
The goal of option pricing theory is to help the investors to manage their money, enhance returns and control their financial future by theoretically valuing their options. Modeling option pricing by Black-School models with jumps guarantees to consider the market movement. However, only numerical methods can solve this model. Furthermore, not all the numerical methods are efficient to solve these models because they have nonsmoothing payoffs or discontinuous derivatives at the exercise price. In this paper, the exponential time differencing (ETD) method is applied for solving partial integrodifferential equations arising in pricing European options under Merton’s and Kou’s jump-diffusion models. Fast Fourier Transform (FFT) algorithm is used as a matrix-vector multiplication solver, which reduces the complexity from O(M2) into O(M logM). A partial fraction form of Pad`e schemes is used to overcome the complexity of inverting polynomial of matrices. These two tools guarantee to get efficient and accurate numerical solutions. We construct a parallel and easy to implement a version of the numerical scheme. Numerical experiments are given to show how fast and accurate is our scheme.Keywords: Integral differential equations, L-stable methods, pricing European options, Jump–diffusion model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51711595 A Numerical Solution Based On Operational Matrix of Differentiation of Shifted Second Kind Chebyshev Wavelets for a Stefan Problem
Authors: Rajeev, N. K. Raigar
Abstract:
In this study, one dimensional phase change problem (a Stefan problem) is considered and a numerical solution of this problem is discussed. First, we use similarity transformation to convert the governing equations into ordinary differential equations with its boundary conditions. The solutions of ordinary differential equation with the associated boundary conditions and interface condition (Stefan condition) are obtained by using a numerical approach based on operational matrix of differentiation of shifted second kind Chebyshev wavelets. The obtained results are compared with existing exact solution which is sufficiently accurate.Keywords: Operational matrix of differentiation, Similarity transformation, Shifted second kind Chebyshev wavelets, Stefan problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 200811594 A Nonconforming Mixed Finite Element Method for Semilinear Pseudo-Hyperbolic Partial Integro-Differential Equations
Authors: Jingbo Yang, Hong Li, Yang Liu, Siriguleng He
Abstract:
In this paper, a nonconforming mixed finite element method is studied for semilinear pseudo-hyperbolic partial integrodifferential equations. By use of the interpolation technique instead of the generalized elliptic projection, the optimal error estimates of the corresponding unknown function are given.
Keywords: Pseudo-hyperbolic partial integro-differential equations, Nonconforming mixed element method, Semilinear, Error estimates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 165111593 Positive Solutions for Systems of Nonlinear Third-Order Differential Equations with p-Laplacian
Authors: Li Xiguang
Abstract:
In this paper, by constructing a special set and utilizing fixed point theory, we study the existence and multiplicity of the positive solutions for systems of nonlinear third-order differential equations with p-laplacian, which improve and generalize the result of related paper.Keywords: p-Laplacian, cone, fixed point theorem, positive solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 59811592 Dynamics and Control of a Chaotic Electromagnetic System
Authors: Shun-Chang Chang
Abstract:
In this paper, different nonlinear dynamics analysis techniques are employed to unveil the rich nonlinear phenomena of the electromagnetic system. In particular, bifurcation diagrams, time responses, phase portraits, Poincare maps, power spectrum analysis, and the construction of basins of attraction are all powerful and effective tools for nonlinear dynamics problems. We also employ the method of Lyapunov exponents to show the occurrence of chaotic motion and to verify those numerical simulation results. Finally, two cases of a chaotic electromagnetic system being effectively controlled by a reference signal or being synchronized to another nonlinear electromagnetic system are presented.
Keywords: bifurcation, Poincare map, Lyapunov exponent, chaotic motion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 160711591 The Global Stability Using Lyapunov Function
Authors: R. Kongnuy, E. Naowanich, T. Kruehong
Abstract:
An important technique in stability theory for differential equations is known as the direct method of Lyapunov. In this work we deal global stability properties of Leptospirosis transmission model by age group in Thailand. First we consider the data from Division of Epidemiology Ministry of Public Health, Thailand between 1997-2011. Then we construct the mathematical model for leptospirosis transmission by eight age groups. The Lyapunov functions are used for our model which takes the forms of an Ordinary Differential Equation system. The globally asymptotically for equilibrium states are analyzed.Keywords: Age Group, Leptospirosis, Lyapunov Function, Ordinary Differential Equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 216011590 Research of Amplitude-Frequency Characteristics of Nonlinear Oscillations of the Interface of Two-Layered Liquid
Authors: Win Ko Ko, A. N. Temnov
Abstract:
The problem of nonlinear oscillations of a two-layer liquid completely filling a limited volume is considered. Using two basic asymmetric harmonics excited in two mutually perpendicular planes, ordinary differential equations of nonlinear oscillations of the interface of a two-layer liquid are investigated. In this paper, hydrodynamic coefficients of linear and nonlinear problems in integral relations were determined. As a result, the instability regions of forced oscillations of a two-layered liquid in a cylindrical tank occurring in the plane of action of the disturbing force are constructed, as well as the dynamic instability regions of the parametric resonance for different ratios of densities of the upper and lower liquids depending on the amplitudes of liquids from the excitations frequencies. Steady-state regimes of fluid motion were found in the regions of dynamic instability of the initial oscillation form. The Bubnov-Galerkin method is used to construct instability regions for approximate solution of nonlinear differential equations.
Keywords: Hydrodynamic coefficients, instability region, nonlinear oscillations, resonance frequency, two-layered liquid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 57511589 Group Similarity Transformation of a Time Dependent Chemical Convective Process
Authors: M. M. Kassem, A. S. Rashed
Abstract:
The time dependent progress of a chemical reaction over a flat horizontal plate is here considered. The problem is solved through the group similarity transformation method which reduces the number of independent by one and leads to a set of nonlinear ordinary differential equation. The problem shows a singularity at the chemical reaction order n=1 and is analytically solved through the perturbation method. The behavior of the process is then numerically investigated for n≠1 and different Schmidt numbers. Graphical results for the velocity and concentration of chemicals based on the analytical and numerical solutions are presented and discussed.
Keywords: Time dependent, chemical convection, grouptransformation method, perturbation method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163311588 Study of Real Gas Behavior in a Single-Stage Gas Gun
Authors: A. Moradi, S. Khodadadiyan
Abstract:
In this paper, one-dimensional analysis of flow in a single-stage gas gun is conducted. The compressible inviscid flow equations are numerically solved by the second-order Roe TVD method, by using moving boundaries. For investigation of real gas effect the Noble-Able equation is applied. The numerical results are compared with the experimental data to validate the numerical scheme. The results show that with using the Noble-Able equation, the muzzle velocity decreases.Keywords: Gas gun, Roe, projectile, muzzle velocity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 232111587 Rational Chebyshev Tau Method for Solving Natural Convection of Darcian Fluid About a Vertical Full Cone Embedded in Porous Media Whit a Prescribed Wall Temperature
Authors: Kourosh Parand, Zahra Delafkar, Fatemeh Baharifard
Abstract:
The problem of natural convection about a cone embedded in a porous medium at local Rayleigh numbers based on the boundary layer approximation and the Darcy-s law have been studied before. Similarity solutions for a full cone with the prescribed wall temperature or surface heat flux boundary conditions which is the power function of distance from the vertex of the inverted cone give us a third-order nonlinear differential equation. In this paper, an approximate method for solving higher-order ordinary differential equations is proposed. The approach is based on a rational Chebyshev Tau (RCT) method. The operational matrices of the derivative and product of rational Chebyshev (RC) functions are presented. These matrices together with the Tau method are utilized to reduce the solution of the higher-order ordinary differential equations to the solution of a system of algebraic equations. We also present the comparison of this work with others and show that the present method is applicable.
Keywords: Tau method, semi-infinite, nonlinear ODE, rational Chebyshev, porous media.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 194711586 Solitons in Nonlinear Optical Lattices
Authors: Tapas Kumar Sinha, Joseph Mathew
Abstract:
Based on the Lagrangian for the Gross –Pitaevskii equation as derived by H. Sakaguchi and B.A Malomed [5] we have derived a double well model for the nonlinear optical lattice. This model explains the various features of nonlinear optical lattices. Further, from this model we obtain and simulate the probability for tunneling from one well to another which agrees with experimental results [4].Keywords: Double well model, nonlinear optical lattice, Solitons, tunneling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 152811585 Adomian Method for Second-order Fuzzy Differential Equation
Authors: Lei Wang, Sizong Guo
Abstract:
In this paper, we study the numerical method for solving second-order fuzzy differential equations using Adomian method under strongly generalized differentiability. And, we present an example with initial condition having four different solutions to illustrate the efficiency of the proposed method under strongly generalized differentiability.
Keywords: Fuzzy-valued function, fuzzy initial value problem, strongly generalized differentiability, adomian decomposition method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 254711584 A Study of Numerical Reaction-Diffusion Systems on Closed Surfaces
Authors: Mei-Hsiu Chi, Jyh-Yang Wu, Sheng-Gwo Chen
Abstract:
The diffusion-reaction equations are important Partial Differential Equations in mathematical biology, material science, physics, and so on. However, finding efficient numerical methods for diffusion-reaction systems on curved surfaces is still an important and difficult problem. The purpose of this paper is to present a convergent geometric method for solving the reaction-diffusion equations on closed surfaces by an O(r)-LTL configuration method. The O(r)-LTL configuration method combining the local tangential lifting technique and configuration equations is an effective method to estimate differential quantities on curved surfaces. Since estimating the Laplace-Beltrami operator is an important task for solving the reaction-diffusion equations on surfaces, we use the local tangential lifting method and a generalized finite difference method to approximate the Laplace-Beltrami operators and we solve this reaction-diffusion system on closed surfaces. Our method is not only conceptually simple, but also easy to implement.Keywords: Close surfaces, high-order approach, numerical solutions, reaction-diffusion systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 127611583 A New Inversion-free Method for Hermitian Positive Definite Solution of Matrix Equation
Authors: Minghui Wang, Juntao Zhang
Abstract:
An inversion-free iterative algorithm is presented for solving nonlinear matrix equation with a stepsize parameter t. The existence of the maximal solution is discussed in detail, and the method for finding it is proposed. Finally, two numerical examples are reported that show the efficiency of the method.
Keywords: Inversion-free method, Hermitian positive definite solution, Maximal solution, Convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 161611582 Magnetic Field Analysis for a Distribution Transformer with Unbalanced Load Conditions by using 3-D Finite Element Method
Authors: P. Meesuk, T. Kulworawanichpong, P. Pao-la-or
Abstract:
This paper proposes a set of quasi-static mathematical model of magnetic fields caused by high voltage conductors of distribution transformer by using a set of second-order partial differential equation. The modification for complex magnetic field analysis and time-harmonic simulation are also utilized. In this research, transformers were study in both balanced and unbalanced loading conditions. Computer-based simulation utilizing the threedimensional finite element method (3-D FEM) is exploited as a tool for visualizing magnetic fields distribution volume a distribution transformer. Finite Element Method (FEM) is one among popular numerical methods that is able to handle problem complexity in various forms. At present, the FEM has been widely applied in most engineering fields. Even for problems of magnetic field distribution, the FEM is able to estimate solutions of Maxwell-s equations governing the power transmission systems. The computer simulation based on the use of the FEM has been developed in MATLAB programming environment.Keywords: Distribution Transformer, Magnetic Field, Load Unbalance, 3-D Finite Element Method (3-D FEM)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 270711581 Analysis of Nonlinear Pulse Propagation Characteristics in Semiconductor Optical Amplifier for Different Input Pulse Shapes
Authors: Suchi Barua, Narottam Das, Sven Nordholm, Mohammad Razaghi
Abstract:
This paper presents nonlinear pulse propagation characteristics for different input optical pulse shapes with various input pulse energy levels in semiconductor optical amplifiers. For simulation of nonlinear pulse propagation, finite-difference beam propagation method is used to solve the nonlinear Schrödinger equation. In this equation, gain spectrum dynamics, gain saturation are taken into account which depends on carrier depletion, carrier heating, spectral-hole burning, group velocity dispersion, self-phase modulation and two photon absorption. From this analysis, we obtained the output waveforms and spectra for different input pulse shapes as well as for different input energies. It shows clearly that the peak position of the output waveforms are shifted toward the leading edge which due to the gain saturation of the SOA for higher input pulse energies. We also analyzed and compared the normalized difference of full-width at half maximum for different input pulse shapes in the SOA.
Keywords: Finite-difference beam propagation method, pulse shape, pulse propagation, semiconductor optical amplifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 237611580 Traffic Density Estimation for Multiple Segment Freeways
Authors: Karandeep Singh, Baibing Li
Abstract:
Traffic density, an indicator of traffic conditions, is one of the most critical characteristics to Intelligent Transport Systems (ITS). This paper investigates recursive traffic density estimation using the information provided from inductive loop detectors. On the basis of the phenomenological relationship between speed and density, the existing studies incorporate a state space model and update the density estimate using vehicular speed observations via the extended Kalman filter, where an approximation is made because of the linearization of the nonlinear observation equation. In practice, this may lead to substantial estimation errors. This paper incorporates a suitable transformation to deal with the nonlinear observation equation so that the approximation is avoided when using Kalman filter to estimate the traffic density. A numerical study is conducted. It is shown that the developed method outperforms the existing methods for traffic density estimation.Keywords: Density estimation, Kalman filter, speed-densityrelationship, Traffic surveillance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 184511579 Revealing Nonlinear Couplings between Oscillators from Time Series
Authors: B.P. Bezruchko, D.A. Smirnov
Abstract:
Quantitative characterization of nonlinear directional couplings between stochastic oscillators from data is considered. We suggest coupling characteristics readily interpreted from a physical viewpoint and their estimators. An expression for a statistical significance level is derived analytically that allows reliable coupling detection from a relatively short time series. Performance of the technique is demonstrated in numerical experiments.Keywords: Nonlinear time series analysis, directional couplings, coupled oscillators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 127211578 On the Determination of a Time-like Dual Curve in Dual Lorentzian Space
Authors: Emin Özyılmaz
Abstract:
In this work, position vector of a time-like dual curve according to standard frame of D31 is investigated. First, it is proven that position vector of a time-like dual curve satisfies a dual vector differential equation of fourth order. The general solution of this dual vector differential equation has not yet been found. Due to this, in terms of special solutions, position vectors of some special time-like dual curves with respect to standard frame of D31 are presented.Keywords: Classical Differential Geometry, Dual Numbers, DualFrenet Equations, Time-like Dual Curve, Position Vector, DualLorentzian Space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 148311577 Adomian’s Decomposition Method to Generalized Magneto-Thermoelasticity
Authors: Hamdy M. Youssef, Eman A. Al-Lehaibi
Abstract:
Due to many applications and problems in the fields of plasma physics, geophysics, and other many topics, the interaction between the strain field and the magnetic field has to be considered. Adomian introduced the decomposition method for solving linear and nonlinear functional equations. This method leads to accurate, computable, approximately convergent solutions of linear and nonlinear partial and ordinary differential equations even the equations with variable coefficients. This paper is dealing with a mathematical model of generalized thermoelasticity of a half-space conducting medium. A magnetic field with constant intensity acts normal to the bounding plane has been assumed. Adomian’s decomposition method has been used to solve the model when the bounding plane is taken to be traction free and thermally loaded by harmonic heating. The numerical results for the temperature increment, the stress, the strain, the displacement, the induced magnetic, and the electric fields have been represented in figures. The magnetic field, the relaxation time, and the angular thermal load have significant effects on all the studied fields.
Keywords: Adomian’s Decomposition Method, magneto-thermoelasticity, finite conductivity, iteration method, thermal load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 80911576 A New Derivative-Free Quasi-Secant Algorithm For Solving Non-Linear Equations
Authors: F. Soleymani, M. Sharifi
Abstract:
Most of the nonlinear equation solvers do not converge always or they use the derivatives of the function to approximate the root of such equations. Here, we give a derivative-free algorithm that guarantees the convergence. The proposed two-step method, which is to some extent like the secant method, is accompanied with some numerical examples. The illustrative instances manifest that the rate of convergence in proposed algorithm is more than the quadratically iterative schemes.Keywords: Non-linear equation, iterative methods, derivative-free, convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 178911575 Septic B-Spline Collocation Method for Numerical Solution of the Kuramoto-Sivashinsky Equation
Authors: M. Zarebnia, R. Parvaz
Abstract:
In this paper the Kuramoto-Sivashinsky equation is solved numerically by collocation method. The solution is approximated as a linear combination of septic B-spline functions. Applying the Von-Neumann stability analysis technique, we show that the method is unconditionally stable. The method is applied on some test examples, and the numerical results have been compared with the exact solutions. The global relative error and L∞ in the solutions show the efficiency of the method computationally.
Keywords: Kuramoto-Sivashinsky equation, Septic B-spline, Collocation method, Finite difference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 207111574 Dynamic Analysis of Composite Doubly Curved Panels with Variable Thickness
Authors: I. Algul, G. Akgun, H. Kurtaran
Abstract:
Dynamic analysis of composite doubly curved panels with variable thickness subjected to different pulse types using Generalized Differential Quadrature method (GDQ) is presented in this study. Panels with variable thickness are used in the construction of aerospace and marine industry. Giving variable thickness to panels can allow the designer to get optimum structural efficiency. For this reason, estimating the response of variable thickness panels is very important to design more reliable structures under dynamic loads. Dynamic equations for composite panels with variable thickness are obtained using virtual work principle. Partial derivatives in the equation of motion are expressed with GDQ and Newmark average acceleration scheme is used for temporal discretization. Several examples are used to highlight the effectiveness of the proposed method. Results are compared with finite element method. Effects of taper ratios, boundary conditions and loading type on the response of composite panel are investigated.
Keywords: Generalized differential quadrature method, doubly curved panels, laminated composite materials, small displacement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 95511573 The Martingale Options Price Valuation for European Puts Using Stochastic Differential Equation Models
Authors: H. C. Chinwenyi, H. D. Ibrahim, F. A. Ahmed
Abstract:
In modern financial mathematics, valuing derivatives such as options is often a tedious task. This is simply because their fair and correct prices in the future are often probabilistic. This paper examines three different Stochastic Differential Equation (SDE) models in finance; the Constant Elasticity of Variance (CEV) model, the Balck-Karasinski model, and the Heston model. The various Martingales option price valuation formulas for these three models were obtained using the replicating portfolio method. Also, the numerical solution of the derived Martingales options price valuation equations for the SDEs models was carried out using the Monte Carlo method which was implemented using MATLAB. Furthermore, results from the numerical examples using published data from the Nigeria Stock Exchange (NSE), all share index data show the effect of increase in the underlying asset value (stock price) on the value of the European Put Option for these models. From the results obtained, we see that an increase in the stock price yields a decrease in the value of the European put option price. Hence, this guides the option holder in making a quality decision by not exercising his right on the option.
Keywords: Equivalent Martingale Measure, European Put Option, Girsanov Theorem, Martingales, Monte Carlo method, option price valuation, option price valuation formula.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 74611572 Septic B-spline Collocation Method for Solving One-dimensional Hyperbolic Telegraph Equation
Authors: Marzieh Dosti, Alireza Nazemi
Abstract:
Recently, it is found that telegraph equation is more suitable than ordinary diffusion equation in modelling reaction diffusion for such branches of sciences. In this paper, a numerical solution for the one-dimensional hyperbolic telegraph equation by using the collocation method using the septic splines is proposed. The scheme works in a similar fashion as finite difference methods. Test problems are used to validate our scheme by calculate L2-norm and L∞-norm. The accuracy of the presented method is demonstrated by two test problems. The numerical results are found to be in good agreement with the exact solutions.
Keywords: B-spline, collocation method, second-order hyperbolic telegraph equation, difference schemes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 180911571 Iteration Acceleration for Nonlinear Coupled Parabolic-Hyperbolic System
Authors: Xia Cui, Guang-wei Yuan, Jing-yan Yue
Abstract:
A Picard-Newton iteration method is studied to accelerate the numerical solution procedure of a class of two-dimensional nonlinear coupled parabolic-hyperbolic system. The Picard-Newton iteration is designed by adding higher-order terms of small quantity to an existing Picard iteration. The discrete functional analysis and inductive hypothesis reasoning techniques are used to overcome difficulties coming from nonlinearity and coupling, and theoretical analysis is made for the convergence and approximation properties of the iteration scheme. The Picard-Newton iteration has a quadratic convergent ratio, and its solution has second order spatial approximation and first order temporal approximation to the exact solution of the original problem. Numerical tests verify the results of the theoretical analysis, and show the Picard-Newton iteration is more efficient than the Picard iteration.
Keywords: Nonlinearity, iterative acceleration, coupled parabolic hyperbolic system, quadratic convergence, numerical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 156311570 Existence of Solution for Boundary Value Problems of Differential Equations with Delay
Authors: Xiguang Li
Abstract:
In this paper , by using fixed point theorem , upper and lower solution-s method and monotone iterative technique , we prove the existence of maximum and minimum solutions of differential equations with delay , which improved and generalize the result of related paper.
Keywords: Banach space, boundary value problem, differential equation, delay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 125011569 Signal Transmission Analysis of Differential Pairs Using Semicircle-Shaped Via Structure
Authors: Moonjung Kim, Chang-Ho Hyun, Won-Ho Kim
Abstract:
In this paper, the signal transmission analysis of the semicircle-shaped via structure for the differential pairs is presented in the frequency range up to 10 GHz. In order to improve the signal transmission properties in the differential pairs, single via is separated centrally into two semicircle-shaped sections, which are interconnected with the traces of differential pairs respectively. This via structure make possible to route differential pairs using only one via. In addition, it can improve impedance discontinuity around its region and then enhance the signal transmission properties in the differential pairs. The electrical analysis such as S-parameter calculation and eye diagram simulation has been performed to investigate the improvement of the signal transmission property in the differential pairs with new via structure.Keywords: Differential pairs, signal transmission property, via, S-parameter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 393611568 Parallel Particle Swarm Optimization Optimized LDI Controller with Lyapunov Stability Criterion for Nonlinear Structural Systems
Authors: P.-W. Tsai, W.-L. Hong, C.-W. Chen, C.-Y. Chen
Abstract:
In this paper, we present a neural-network (NN) based approach to represent a nonlinear Tagagi-Sugeno (T-S) system. A linear differential inclusion (LDI) state-space representation is utilized to deal with the NN models. Taking advantage of the LDI representation, the stability conditions and controller design are derived for a class of nonlinear structural systems. Moreover, the concept of utilizing the Parallel Particle Swarm Optimization (PPSO) algorithm to solve the common P matrix under the stability criteria is given in this paper.
Keywords: Lyapunov Stability, Parallel Particle Swarm Optimization, Linear Differential Inclusion, Artificial Intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 187011567 A New Iterative Method for Solving Nonlinear Equations
Authors: Ibrahim Abu-Alshaikh
Abstract:
In this study, a new root-finding method for solving nonlinear equations is proposed. This method requires two starting values that do not necessarily bracketing a root. However, when the starting values are selected to be close to a root, the proposed method converges to the root quicker than the secant method. Another advantage over all iterative methods is that; the proposed method usually converges to two distinct roots when the given function has more than one root, that is, the odd iterations of this new technique converge to a root and the even iterations converge to another root. Some numerical examples, including a sine-polynomial equation, are solved by using the proposed method and compared with results obtained by the secant method; perfect agreements are found.
Keywords: Iterative method, root-finding method, sine-polynomial equations, nonlinear equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703