Search results for: Image database
1940 A Similarity Metric for Assessment of Image Fusion Algorithms
Authors: Nedeljko Cvejic, Artur Łoza, David Bull, Nishan Canagarajah
Abstract:
In this paper, we present a novel objective nonreference performance assessment algorithm for image fusion. It takes into account local measurements to estimate how well the important information in the source images is represented by the fused image. The metric is based on the Universal Image Quality Index and uses the similarity between blocks of pixels in the input images and the fused image as the weighting factors for the metrics. Experimental results confirm that the values of the proposed metrics correlate well with the subjective quality of the fused images, giving a significant improvement over standard measures based on mean squared error and mutual information.Keywords: Fusion performance measures, image fusion, nonreferencequality measures, objective quality measures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24901939 A Parallel Quadtree Approach for Image Compression using Wavelets
Authors: Hamed Vahdat Nejad, Hossein Deldari
Abstract:
Wavelet transforms are multiresolution decompositions that can be used to analyze signals and images. Image compression is one of major applications of wavelet transforms in image processing. It is considered as one of the most powerful methods that provides a high compression ratio. However, its implementation is very time-consuming. At the other hand, parallel computing technologies are an efficient method for image compression using wavelets. In this paper, we propose a parallel wavelet compression algorithm based on quadtrees. We implement the algorithm using MatlabMPI (a parallel, message passing version of Matlab), and compute its isoefficiency function, and show that it is scalable. Our experimental results confirm the efficiency of the algorithm also.Keywords: Image compression, MPI, Parallel computing, Wavelets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20231938 Rejuvenate: Face and Body Retouching Using Image Inpainting
Authors: H. AbdelRahman, S. Rostom, Y. Lotfy, S. Salah Eldeen, R. Yassein, N. Awny
Abstract:
People are growing more concerned with their appearance in today's society. But they are terrified of what they will look like after a plastic surgery. People's mental health suffers when they have accidents, burns, or genetic issues that cause them to cleave certain body parts, which makes them feel uncomfortable and unappreciated. The method provides an innovative deep learning-based technique for image inpainting that analyzes different picture structures and fixes damaged images. This study proposes a model based on the Stable Diffusion Inpainting method for in-painting medical images. One significant advancement made possible by deep neural networks is image inpainting, which is the process of reconstructing damaged and missing portions of an image. The patient can see the outcome more easily since the system uses the user's input of an image to identify a problem. It then modifies the image and outputs a fixed image.
Keywords: Generative Adversarial Network, GAN, Large Mask Inpainting, LAMA, Stable Diffusion Inpainting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1071937 A Normalization-based Robust Image Watermarking Scheme Using SVD and DCT
Authors: Say Wei Foo, Qi Dong
Abstract:
Digital watermarking is one of the techniques for copyright protection. In this paper, a normalization-based robust image watermarking scheme which encompasses singular value decomposition (SVD) and discrete cosine transform (DCT) techniques is proposed. For the proposed scheme, the host image is first normalized to a standard form and divided into non-overlapping image blocks. SVD is applied to each block. By concatenating the first singular values (SV) of adjacent blocks of the normalized image, a SV block is obtained. DCT is then carried out on the SV blocks to produce SVD-DCT blocks. A watermark bit is embedded in the highfrequency band of a SVD-DCT block by imposing a particular relationship between two pseudo-randomly selected DCT coefficients. An adaptive frequency mask is used to adjust local watermark embedding strength. Watermark extraction involves mainly the inverse process. The watermark extracting method is blind and efficient. Experimental results show that the quality degradation of watermarked image caused by the embedded watermark is visually transparent. Results also show that the proposed scheme is robust against various image processing operations and geometric attacks.Keywords: Image watermarking, Image normalization, Singularvalue decomposition, Discrete cosine transform, Robustness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20951936 Exact Image Super-Resolution for Pure Translational Motion and Shift-Invariant Blur
Authors: Fatih Kara, Cabir Vural
Abstract:
In this work, a special case of the image superresolution problem where the only type of motion is global translational motion and the blurs are shift-invariant is investigated. The necessary conditions for exact reconstruction of the original image by using finite impulse-response reconstruction filters are developed. Given that the conditions are satisfied, a method for exact super-resolution is presented and some simulation results are shown.Keywords: Image processing, image super-resolution, finite impulse-response filters, existence-uniqueness conditions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13021935 Mining Sequential Patterns Using I-PrefixSpan
Authors: Dhany Saputra, Dayang R. A. Rambli, Oi Mean Foong
Abstract:
In this paper, we propose an improvement of pattern growth-based PrefixSpan algorithm, called I-PrefixSpan. The general idea of I-PrefixSpan is to use sufficient data structure for Seq-Tree framework and separator database to reduce the execution time and memory usage. Thus, with I-PrefixSpan there is no in-memory database stored after index set is constructed. The experimental result shows that using Java 2, this method improves the speed of PrefixSpan up to almost two orders of magnitude as well as the memory usage to more than one order of magnitude.Keywords: ArrayList, ArrayIntList, minimum support, sequence database, sequential patterns.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15631934 Influence of Ambiguity Cluster on Quality Improvement in Image Compression
Authors: Safaa Al-Ali, Ahmad Shahin, Fadi Chakik
Abstract:
Image coding based on clustering provides immediate access to targeted features of interest in a high quality decoded image. This approach is useful for intelligent devices, as well as for multimedia content-based description standards. The result of image clustering cannot be precise in some positions especially on pixels with edge information which produce ambiguity among the clusters. Even with a good enhancement operator based on PDE, the quality of the decoded image will highly depend on the clustering process. In this paper, we introduce an ambiguity cluster in image coding to represent pixels with vagueness properties. The presence of such cluster allows preserving some details inherent to edges as well for uncertain pixels. It will also be very useful during the decoding phase in which an anisotropic diffusion operator, such as Perona-Malik, enhances the quality of the restored image. This work also offers a comparative study to demonstrate the effectiveness of a fuzzy clustering technique in detecting the ambiguity cluster without losing lot of the essential image information. Several experiments have been carried out to demonstrate the usefulness of ambiguity concept in image compression. The coding results and the performance of the proposed algorithms are discussed in terms of the peak signal-tonoise ratio and the quantity of ambiguous pixels.Keywords: Ambiguity Cluster, Anisotropic Diffusion, Fuzzy Clustering, Image Compression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15691933 Image Spam Detection Using Color Features and K-Nearest Neighbor Classification
Authors: T. Kumaresan, S. Sanjushree, C. Palanisamy
Abstract:
Image spam is a kind of email spam where the spam text is embedded with an image. It is a new spamming technique being used by spammers to send their messages to bulk of internet users. Spam email has become a big problem in the lives of internet users, causing time consumption and economic losses. The main objective of this paper is to detect the image spam by using histogram properties of an image. Though there are many techniques to automatically detect and avoid this problem, spammers employing new tricks to bypass those techniques, as a result those techniques are inefficient to detect the spam mails. In this paper we have proposed a new method to detect the image spam. Here the image features are extracted by using RGB histogram, HSV histogram and combination of both RGB and HSV histogram. Based on the optimized image feature set classification is done by using k- Nearest Neighbor(k-NN) algorithm. Experimental result shows that our method has achieved better accuracy. From the result it is known that combination of RGB and HSV histogram with k-NN algorithm gives the best accuracy in spam detection.
Keywords: File Type, HSV Histogram, k-NN, RGB Histogram, Spam Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21421932 A Complexity-Based Approach in Image Compression using Neural Networks
Authors: Hadi Veisi, Mansour Jamzad
Abstract:
In this paper we present an adaptive method for image compression that is based on complexity level of the image. The basic compressor/de-compressor structure of this method is a multilayer perceptron artificial neural network. In adaptive approach different Back-Propagation artificial neural networks are used as compressor and de-compressor and this is done by dividing the image into blocks, computing the complexity of each block and then selecting one network for each block according to its complexity value. Three complexity measure methods, called Entropy, Activity and Pattern-based are used to determine the level of complexity in image blocks and their ability in complexity estimation are evaluated and compared. In training and evaluation, each image block is assigned to a network based on its complexity value. Best-SNR is another alternative in selecting compressor network for image blocks in evolution phase which chooses one of the trained networks such that results best SNR in compressing the input image block. In our evaluations, best results are obtained when overlapping the blocks is allowed and choosing the networks in compressor is based on the Best-SNR. In this case, the results demonstrate superiority of this method comparing with previous similar works and JPEG standard coding.Keywords: Adaptive image compression, Image complexity, Multi-layer perceptron neural network, JPEG Standard, PSNR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22211931 Edge-end Pixel Extraction for Edge-based Image Segmentation
Authors: Mahinda P. Pathegama, Özdemir Göl
Abstract:
Extraction of edge-end-pixels is an important step for the edge linking process to achieve edge-based image segmentation. This paper presents an algorithm to extract edge-end pixels together with their directional sensitivities as an augmentation to the currently available mathematical models. The algorithm is implemented in the Java environment because of its inherent compatibility with web interfaces since its main use is envisaged to be for remote image analysis on a virtual instrumentation platform.
Keywords: edge-end pixels, image processing, imagesegmentation, pixel extraction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21531930 Shift Invariant Support Vector Machines Face Recognition System
Authors: J. Ruiz-Pinales, J. J. Acosta-Reyes, A. Salazar-Garibay, R. Jaime-Rivas
Abstract:
In this paper, we present a new method for incorporating global shift invariance in support vector machines. Unlike other approaches which incorporate a feature extraction stage, we first scale the image and then classify it by using the modified support vector machines classifier. Shift invariance is achieved by replacing dot products between patterns used by the SVM classifier with the maximum cross-correlation value between them. Unlike the normal approach, in which the patterns are treated as vectors, in our approach the patterns are treated as matrices (or images). Crosscorrelation is computed by using computationally efficient techniques such as the fast Fourier transform. The method has been tested on the ORL face database. The tests indicate that this method can improve the recognition rate of an SVM classifier.Keywords: Face recognition, support vector machines, shiftinvariance, image registration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17561929 De-noising Infrared Image Using OWA Based Filter
Authors: Ruchika, Munish Vashisht, S. Qamar
Abstract:
Detection of small ship is crucial task in many automatic surveillance systems which are employed for security of maritime boundaries of a country. To address this problem, image de-noising is technique to identify the target ship in between many other ships in the sea. Image de-noising technique needs to extract the ship’s image from sea background for the analysis as the ship’s image may submerge in the background and flooding waves. In this paper, a noise filter is presented that is based on fuzzy linguistic ‘most’ quantifier. Ordered weighted averaging (OWA) function is used to remove salt-pepper noise of ship’s image. Results obtained are in line with the results available by other well-known median filters and OWA based approach shows better performance.
Keywords: Linguistic quantifier, impulse noise, OWA filter, median filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9331928 Color Image Segmentation and Multi-Level Thresholding by Maximization of Conditional Entropy
Authors: R.Sukesh Kumar, Abhisek Verma, Jasprit Singh
Abstract:
In this work a novel approach for color image segmentation using higher order entropy as a textural feature for determination of thresholds over a two dimensional image histogram is discussed. A similar approach is applied to achieve multi-level thresholding in both grayscale and color images. The paper discusses two methods of color image segmentation using RGB space as the standard processing space. The threshold for segmentation is decided by the maximization of conditional entropy in the two dimensional histogram of the color image separated into three grayscale images of R, G and B. The features are first developed independently for the three ( R, G, B ) spaces, and combined to get different color component segmentation. By considering local maxima instead of the maximum of conditional entropy yields multiple thresholds for the same image which forms the basis for multilevel thresholding.Keywords: conditional entropy, multi-level thresholding, segmentation, two dimensional image histogram
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29971927 Image Retrieval Using Fused Features
Authors: K. Sakthivel, R. Nallusamy, C. Kavitha
Abstract:
The system is designed to show images which are related to the query image. Extracting color, texture, and shape features from an image plays a vital role in content-based image retrieval (CBIR). Initially RGB image is converted into HSV color space due to its perceptual uniformity. From the HSV image, Color features are extracted using block color histogram, texture features using Haar transform and shape feature using Fuzzy C-means Algorithm. Then, the characteristics of the global and local color histogram, texture features through co-occurrence matrix and Haar wavelet transform and shape are compared and analyzed for CBIR. Finally, the best method of each feature is fused during similarity measure to improve image retrieval effectiveness and accuracy.
Keywords: Color Histogram, Haar Wavelet Transform, Fuzzy C-means, Co-occurrence matrix; Similarity measure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21271926 Hybrid Genetic-Simulated Annealing Approach for Fractal Image Compression
Authors: Y.Chakrapani, K.Soundera Rajan
Abstract:
In this paper a hybrid technique of Genetic Algorithm and Simulated Annealing (HGASA) is applied for Fractal Image Compression (FIC). With the help of this hybrid evolutionary algorithm effort is made to reduce the search complexity of matching between range block and domain block. The concept of Simulated Annealing (SA) is incorporated into Genetic Algorithm (GA) in order to avoid pre-mature convergence of the strings. One of the image compression techniques in the spatial domain is Fractal Image Compression but the main drawback of FIC is that it involves more computational time due to global search. In order to improve the computational time along with acceptable quality of the decoded image, HGASA technique has been proposed. Experimental results show that the proposed HGASA is a better method than GA in terms of PSNR for Fractal image Compression.Keywords: Fractal Image Compression, Genetic Algorithm, HGASA, Simulated Annealing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16641925 On the EM Algorithm and Bootstrap Approach Combination for Improving Satellite Image Fusion
Authors: Tijani Delleji, Mourad Zribi, Ahmed Ben Hamida
Abstract:
This paper discusses EM algorithm and Bootstrap approach combination applied for the improvement of the satellite image fusion process. This novel satellite image fusion method based on estimation theory EM algorithm and reinforced by Bootstrap approach was successfully implemented and tested. The sensor images are firstly split by a Bayesian segmentation method to determine a joint region map for the fused image. Then, we use the EM algorithm in conjunction with the Bootstrap approach to develop the bootstrap EM fusion algorithm, hence producing the fused targeted image. We proposed in this research to estimate the statistical parameters from some iterative equations of the EM algorithm relying on a reference of representative Bootstrap samples of images. Sizes of those samples are determined from a new criterion called 'hybrid criterion'. Consequently, the obtained results of our work show that using the Bootstrap EM (BEM) in image fusion improve performances of estimated parameters which involve amelioration of the fused image quality; and reduce the computing time during the fusion process.Keywords: Satellite image fusion, Bayesian segmentation, Bootstrap approach, EM algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22591924 Sub-Image Detection Using Fast Neural Processors and Image Decomposition
Authors: Hazem M. El-Bakry, Qiangfu Zhao
Abstract:
In this paper, an approach to reduce the computation steps required by fast neural networksfor the searching process is presented. The principle ofdivide and conquer strategy is applied through imagedecomposition. Each image is divided into small in sizesub-images and then each one is tested separately usinga fast neural network. The operation of fast neuralnetworks based on applying cross correlation in thefrequency domain between the input image and theweights of the hidden neurons. Compared toconventional and fast neural networks, experimentalresults show that a speed up ratio is achieved whenapplying this technique to locate human facesautomatically in cluttered scenes. Furthermore, fasterface detection is obtained by using parallel processingtechniques to test the resulting sub-images at the sametime using the same number of fast neural networks. Incontrast to using only fast neural networks, the speed upratio is increased with the size of the input image whenusing fast neural networks and image decomposition.
Keywords: Fast Neural Networks, 2D-FFT, CrossCorrelation, Image decomposition, Parallel Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21781923 Image Steganography Using Least Significant Bit Technique
Authors: Preeti Kumari, Ridhi Kapoor
Abstract:
In any communication, security is the most important issue in today’s world. In this paper, steganography is the process of hiding the important data into other data, such as text, audio, video, and image. The interest in this topic is to provide availability, confidentiality, integrity, and authenticity of data. The steganographic technique that embeds hides content with unremarkable cover media so as not to provoke eavesdropper’s suspicion or third party and hackers. In which many applications of compression, encryption, decryption, and embedding methods are used for digital image steganography. Due to compression, the nose produces in the image. To sustain noise in the image, the LSB insertion technique is used. The performance of the proposed embedding system with respect to providing security to secret message and robustness is discussed. We also demonstrate the maximum steganography capacity and visual distortion.Keywords: Steganography, LSB, encoding, information hiding, color image.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10911922 A Scheme of Model Verification of the Concurrent Discrete Wavelet Transform (DWT) for Image Compression
Authors: Kamrul Hasan Talukder, Koichi Harada
Abstract:
The scientific community has invested a great deal of effort in the fields of discrete wavelet transform in the last few decades. Discrete wavelet transform (DWT) associated with the vector quantization has been proved to be a very useful tool for the compression of image. However, the DWT is very computationally intensive process requiring innovative and computationally efficient method to obtain the image compression. The concurrent transformation of the image can be an important solution to this problem. This paper proposes a model of concurrent DWT for image compression. Additionally, the formal verification of the model has also been performed. Here the Symbolic Model Verifier (SMV) has been used as the formal verification tool. The system has been modeled in SMV and some properties have been verified formally.
Keywords: Computation Tree Logic, Discrete WaveletTransform, Formal Verification, Image Compression, Symbolic Model Verifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17481921 Performance Analysis of Brain Tumor Detection Based On Image Fusion
Authors: S. Anbumozhi, P. S. Manoharan
Abstract:
Medical Image fusion plays a vital role in medical field to diagnose the brain tumors which can be classified as benign or malignant. It is the process of integrating multiple images of the same scene into a single fused image to reduce uncertainty and minimizing redundancy while extracting all the useful information from the source images. Fuzzy logic is used to fuse two brain MRI images with different vision. The fused image will be more informative than the source images. The texture and wavelet features are extracted from the fused image. The multilevel Adaptive Neuro Fuzzy Classifier classifies the brain tumors based on trained and tested features. The proposed method achieved 80.48% sensitivity, 99.9% specificity and 99.69% accuracy. Experimental results obtained from fusion process prove that the use of the proposed image fusion approach shows better performance while compared with conventional fusion methodologies.
Keywords: Image fusion, Fuzzy rules, Neuro-fuzzy classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30581920 Developing the Color Temperature Histogram Method for Improving the Content-Based Image Retrieval
Authors: P. Phokharatkul, S. Chaisriya, S. Somkuarnpanit, S. Phaiboon, C. Kimpan
Abstract:
This paper proposes a new method for image searches and image indexing in databases with a color temperature histogram. The color temperature histogram can be used for performance improvement of content–based image retrieval by using a combination of color temperature and histogram. The color temperature histogram can be represented by a range of 46 colors. That is more than the color histogram and the dominant color temperature. Moreover, with our method the colors that have the same color temperature can be separated while the dominant color temperature can not. The results showed that the color temperature histogram retrieved an accurate image more often than the dominant color temperature method or color histogram method. This also took less time so the color temperature can be used for indexing and searching for images.
Keywords: Color temperature histogram, color temperature, animage retrieval and content-based image retrieval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24521919 Retrieval of User Specific Images Using Semantic Signatures
Authors: K. Venkateswari, U. K. Balaji Saravanan, K. Thangaraj, K. V. Deepana
Abstract:
Image search engines rely on the surrounding textual keywords for the retrieval of images. It is a tedious work for the search engines like Google and Bing to interpret the user’s search intention and to provide the desired results. The recent researches also state that the Google image search engines do not work well on all the images. Consequently, this leads to the emergence of efficient image retrieval technique, which interprets the user’s search intention and shows the desired results. In order to accomplish this task, an efficient image re-ranking framework is required. Sequentially, to provide best image retrieval, the new image re-ranking framework is experimented in this paper. The implemented new image re-ranking framework provides best image retrieval from the image dataset by making use of re-ranking of retrieved images that is based on the user’s desired images. This is experimented in two sections. One is offline section and other is online section. In offline section, the reranking framework studies differently (reference classes or Semantic Spaces) for diverse user query keywords. The semantic signatures get generated by combining the textual and visual features of the images. In the online section, images are re-ranked by comparing the semantic signatures that are obtained from the reference classes with the user specified image query keywords. This re-ranking methodology will increases the retrieval image efficiency and the result will be effective to the user.
Keywords: CBIR, Image Re-ranking, Image Retrieval, Semantic Signature, Semantic Space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19381918 Enhancing Privacy-Preserving Cloud Database Querying by Preventing Brute Force Attacks
Authors: Ambika Vishal Pawar, Ajay Dani
Abstract:
Considering the complexities involved in Cloud computing, there are still plenty of issues that affect the privacy of data in cloud environment. Unless these problems get solved, we think that the problem of preserving privacy in cloud databases is still open. In tokenization and homomorphic cryptography based solutions for privacy preserving cloud database querying, there is possibility that by colluding with service provider adversary may run brute force attacks that will reveal the attribute values.
In this paper we propose a solution by defining the variant of K –means clustering algorithm that effectively detects such brute force attacks and enhances privacy of cloud database querying by preventing this attacks.
Keywords: Privacy, Database, Cloud Computing, Clustering, K-means, Cryptography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25561917 A Methodology for Creating a Conceptual Model Under Uncertainty
Authors: Bogdan Walek, Jiri Bartos, Cyril Klimes
Abstract:
This article deals with the conceptual modeling under uncertainty. First, the division of information systems with their definition will be described, focusing on those where the construction of a conceptual model is suitable for the design of future information system database. Furthermore, the disadvantages of the traditional approach in creating a conceptual model and database design will be analyzed. A comprehensive methodology for the creation of a conceptual model based on analysis of client requirements and the selection of a suitable domain model is proposed here. This article presents the expert system used for the construction of a conceptual model and is a suitable tool for database designers to create a conceptual model.
Keywords: Conceptual model, conceptual modeling, database, methodology, uncertainty, information system, entity, attribute, relationship, conceptual domain model, fuzzy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15841916 Medical Image Segmentation Based On Vigorous Smoothing and Edge Detection Ideology
Authors: Jagadish H. Pujar, Pallavi S. Gurjal, Shambhavi D. S, Kiran S. Kunnur
Abstract:
Medical image segmentation based on image smoothing followed by edge detection assumes a great degree of importance in the field of Image Processing. In this regard, this paper proposes a novel algorithm for medical image segmentation based on vigorous smoothening by identifying the type of noise and edge diction ideology which seems to be a boom in medical image diagnosis. The main objective of this algorithm is to consider a particular medical image as input and make the preprocessing to remove the noise content by employing suitable filter after identifying the type of noise and finally carrying out edge detection for image segmentation. The algorithm consists of three parts. First, identifying the type of noise present in the medical image as additive, multiplicative or impulsive by analysis of local histograms and denoising it by employing Median, Gaussian or Frost filter. Second, edge detection of the filtered medical image is carried out using Canny edge detection technique. And third part is about the segmentation of edge detected medical image by the method of Normalized Cut Eigen Vectors. The method is validated through experiments on real images. The proposed algorithm has been simulated on MATLAB platform. The results obtained by the simulation shows that the proposed algorithm is very effective which can deal with low quality or marginal vague images which has high spatial redundancy, low contrast and biggish noise, and has a potential of certain practical use of medical image diagnosis.
Keywords: Image Segmentation, Image smoothing, Edge Detection, Impulsive noise, Gaussian noise, Median filter, Canny edge, Eigen values, Eigen vector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19101915 An Image Enhancement Method Based on Curvelet Transform for CBCT-Images
Authors: Shahriar Farzam, Maryam Rastgarpour
Abstract:
Image denoising plays extremely important role in digital image processing. Enhancement of clinical image research based on Curvelet has been developed rapidly in recent years. In this paper, we present a method for image contrast enhancement for cone beam CT (CBCT) images based on fast discrete curvelet transforms (FDCT) that work through Unequally Spaced Fast Fourier Transform (USFFT). These transforms return a table of Curvelet transform coefficients indexed by a scale parameter, an orientation and a spatial location. Accordingly, the coefficients obtained from FDCT-USFFT can be modified in order to enhance contrast in an image. Our proposed method first uses a two-dimensional mathematical transform, namely the FDCT through unequal-space fast Fourier transform on input image and then applies thresholding on coefficients of Curvelet to enhance the CBCT images. Consequently, applying unequal-space fast Fourier Transform leads to an accurate reconstruction of the image with high resolution. The experimental results indicate the performance of the proposed method is superior to the existing ones in terms of Peak Signal to Noise Ratio (PSNR) and Effective Measure of Enhancement (EME).
Keywords: Curvelet transform, image enhancement, CBCT, image denoising.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12601914 Design and Implementation of an Image Based System to Enhance the Security of ATM
Authors: Seyed Nima Tayarani Bathaie
Abstract:
In this paper, an image-receiving system was designed and implemented through optimization of object detection algorithms using Haar features. This optimized algorithm served as face and eye detection separately. Then, cascading them led to a clear image of the user. Utilization of this feature brought about higher security by preventing fraud. This attribute results from the fact that services will be given to the user on condition that a clear image of his face has already been captured which would exclude the inappropriate person. In order to expedite processing and eliminating unnecessary ones, the input image was compressed, a motion detection function was included in the program, and detection window size was confined.
Keywords: Face detection algorithm, Haar features, Security of ATM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21091913 Statistical Estimation of Spring-back Degree Using Texture Database
Authors: Takashi Sakai, Shinsaku Kikuta, Jun-ichi Koyama
Abstract:
Using a texture database, a statistical estimation of spring-back was conducted in this study on the basis of statistical analysis. Both spring-back in bending deformation and experimental data related to the crystal orientation show significant dispersion. Therefore, a probabilistic statistical approach was established for the proper quantification of these values. Correlation was examined among the parameters F(x) of spring-back, F(x) of the buildup fraction to three orientations after 92° bending, and F(x) at an as-received part on the basis of the three-parameter Weibull distribution. Consequent spring-back estimation using a texture database yielded excellent estimates compared with experimental values.
Keywords: Bending, Spring-back, Database, Crystallographic Orientation, Texture, SEM-EBSD, Weibull distribution, Statistical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18991912 Enhanced Planar Pattern Tracking for an Outdoor Augmented Reality System
Authors: L. Yu, W. K. Li, S. K. Ong, A. Y. C. Nee
Abstract:
In this paper, a scalable augmented reality framework for handheld devices is presented. The presented framework is enabled by using a server-client data communication structure, in which the search for tracking targets among a database of images is performed on the server-side while pixel-wise 3D tracking is performed on the client-side, which, in this case, is a handheld mobile device. Image search on the server-side adopts a residual-enhanced image descriptors representation that gives the framework a scalability property. The tracking algorithm on the client-side is based on a gravity-aligned feature descriptor which takes the advantage of a sensor-equipped mobile device and an optimized intensity-based image alignment approach that ensures the accuracy of 3D tracking. Automatic content streaming is achieved by using a key-frame selection algorithm, client working phase monitoring and standardized rules for content communication between the server and client. The recognition accuracy test performed on a standard dataset shows that the method adopted in the presented framework outperforms the Bag-of-Words (BoW) method that has been used in some of the previous systems. Experimental test conducted on a set of video sequences indicated the real-time performance of the tracking system with a frame rate at 15-30 frames per second. The presented framework is exposed to be functional in practical situations with a demonstration application on a campus walk-around.Keywords: Augmented reality framework, server-client model, vision-based tracking, image search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11401911 A Graph-Based Approach for Placement of No-Replicated Databases in Grid
Authors: Cherif Haddad, Faouzi Ben Charrada
Abstract:
On a such wide-area environment as a Grid, data placement is an important aspect of distributed database systems. In this paper, we address the problem of initial placement of database no-replicated fragments in Grid architecture. We propose a graph based approach that considers resource restrictions. The goal is to optimize the use of computing, storage and communication resources. The proposed approach is developed in two phases: in the first phase, we perform fragment grouping using knowledge about fragments dependency and, in the second phase, we determine an efficient placement of the fragment groups on the Grid. We also show, via experimental analysis that our approach gives solutions that are close to being optimal for different databases and Grid configurations.Keywords: Grid computing, Distributed systems, Data resourcesmanagement, Database systems, Database placement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640