Search results for: Discrete dynamical system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8776

Search results for: Discrete dynamical system

8596 Comparison between Haar and Daubechies Wavelet Transformations on FPGA Technology

Authors: Fatma H. Elfouly, Mohamed I. Mahmoud, Moawad I. M. Dessouky, Salah Deyab

Abstract:

Recently, the Field Programmable Gate Array (FPGA) technology offers the potential of designing high performance systems at low cost. The discrete wavelet transform has gained the reputation of being a very effective signal analysis tool for many practical applications. However, due to its computation-intensive nature, current implementation of the transform falls short of meeting real-time processing requirements of most application. The objectives of this paper are implement the Haar and Daubechies wavelets using FPGA technology. In addition, the Bit Error Rate (BER) between the input audio signal and the reconstructed output signal for each wavelet is calculated. From the BER, it is seen that the implementations execute the operation of the wavelet transform correctly and satisfying the perfect reconstruction conditions. The design procedure has been explained and designed using the stat-ofart Electronic Design Automation (EDA) tools for system design on FPGA. Simulation, synthesis and implementation on the FPGA target technology has been carried out.

Keywords: Daubechies wavelet, discrete wavelet transform, Haar wavelet, Xilinx FPGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7200
8595 Investigating the Shear Behaviour of Fouled Ballast Using Discrete Element Modelling

Authors: Ngoc Trung Ngo, Buddhima Indraratna, Cholachat Rujikiathmakjornr

Abstract:

For several hundred years, the design of railway tracks has practically remained unchanged. Traditionally, rail tracks are placed on a ballast layer due to several reasons, including economy, rapid drainage, and high load bearing capacity. The primary function of ballast is to distributing dynamic track loads to sub-ballast and subgrade layers, while also providing lateral resistance and allowing for rapid drainage. Upon repeated trainloads, the ballast becomes fouled due to ballast degradation and the intrusion of fines which adversely affects the strength and deformation behaviour of ballast. This paper presents the use of three-dimensional discrete element method (DEM) in studying the shear behaviour of the fouled ballast subjected to direct shear loading. Irregularly shaped particles of ballast were modelled by grouping many spherical balls together in appropriate sizes to simulate representative ballast aggregates. Fouled ballast was modelled by injecting a specified number of miniature spherical particles into the void spaces. The DEM simulation highlights that the peak shear stress of the ballast assembly decreases and the dilation of fouled ballast increases with an increase level of fouling. Additionally, the distributions of contact force chain and particle displacement vectors were captured during shearing progress, explaining the formation of shear band and the evolutions of volumetric change of fouled ballast.

Keywords: Railway ballast, coal fouling, discrete element modelling, discrete element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
8594 A Coupled Extended-Finite-Discrete Element Method: On the Different Contact Schemes between Continua and Discontinua

Authors: Shervin Khazaeli, Shahab Haj-zamani

Abstract:

Recently, advanced geotechnical engineering problems related to soil movement, particle loss, and modeling of local failure (i.e. discontinua) as well as modeling the in-contact structures (i.e. continua) are of the great interest among researchers. The aim of this research is to meet the requirements with respect to the modeling of the above-mentioned two different domains simultaneously. To this end, a coupled numerical method is introduced based on Discrete Element Method (DEM) and eXtended-Finite Element Method (X-FEM). In the coupled procedure, DEM is employed to capture the interactions and relative movements of soil particles as discontinua, while X-FEM is utilized to model in-contact structures as continua, which may consist of different types of discontinuities. For verification purposes, the new coupled approach is utilized to examine benchmark problems including different contacts between/within continua and discontinua. Results are validated by comparison with those of existing analytical and numerical solutions. This study proves that extended-finite-discrete element method can be used to robustly analyze not only contact problems, but also other types of discontinuities in continua such as (i) crack formations and propagations, (ii) voids and bimaterial interfaces, and (iii) combination of previous cases. In essence, the proposed method can be used vastly in advanced soil-structure interaction problems to investigate the micro and macro behaviour of the surrounding soil and the response of the embedded structure that contains discontinuities.

Keywords: Contact problems, discrete element method, extended-finite element method, soil-structure interaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1199
8593 Numerical Analysis of the SIR-SI Differential Equations with Application to Dengue Disease Mapping in Kuala Lumpur, Malaysia

Authors: N. A. Samat, D. F. Percy

Abstract:

The main aim of this study is to describe and introduce a method of numerical analysis in obtaining approximate solutions for the SIR-SI differential equations (susceptible-infectiverecovered for human populations; susceptible-infective for vector populations) that represent a model for dengue disease transmission. Firstly, we describe the ordinary differential equations for the SIR-SI disease transmission models. Then, we introduce the numerical analysis of solutions of this continuous time, discrete space SIR-SI model by simplifying the continuous time scale to a densely populated, discrete time scale. This is followed by the application of this numerical analysis of solutions of the SIR-SI differential equations to the estimation of relative risk using continuous time, discrete space dengue data of Kuala Lumpur, Malaysia. Finally, we present the results of the analysis, comparing and displaying the results in graphs, table and maps. Results of the numerical analysis of solutions that we implemented offers a useful and potentially superior model for estimating relative risks based on continuous time, discrete space data for vector borne infectious diseases specifically for dengue disease. 

Keywords: Dengue disease, disease mapping, numerical analysis, SIR-SI differential equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2646
8592 Plasmodium Vivax Malaria Transmission in a Network of Villages

Authors: P. Pongsumpun, I. M. Tang

Abstract:

Malaria is a serious, acute and chronic relapsing infection to humans. It is characterized by periodic attacks of chills, fever, nausea, vomiting, back pain, increased sweating anemia, splenomegaly (enlargement of the spleen) and often-fatal complications.The malaria disease is caused by the multiplication of protozoa parasite of the genus Plasmodium. Malaria in humans is due to 4 types of malaria parasites such that Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium ovale. P.vivax malaria differs from P. falciparum malaria in that a person suffering from P. vivax malaria can experience relapses of the disease. Between the relapses, the malaria parasite will remain dormant in the liver of the patient, leading to the patient being classified as being in the dormant class. A mathematical model for the transmission of P. vivax is developed in which the human population is divided into four classes, the susceptible, the infected, the dormant and the recovered. In this paper, we formulate the dynamical model of P. vivax malaria to see the distribution of this disease at the district level.

Keywords: Dynamical model, household, local level, Plasmodium Vivax Malaria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1359
8591 Discrete Particle Swarm Optimization Algorithm Used for TNEP Considering Network Adequacy Restriction

Authors: H. Shayeghi, M. Mahdavi, A. Kazemi

Abstract:

Transmission network expansion planning (TNEP) is a basic part of power system planning that determines where, when and how many new transmission lines should be added to the network. Up till now, various methods have been presented to solve the static transmission network expansion planning (STNEP) problem. But in all of these methods, transmission expansion planning considering network adequacy restriction has not been investigated. Thus, in this paper, STNEP problem is being studied considering network adequacy restriction using discrete particle swarm optimization (DPSO) algorithm. The goal of this paper is obtaining a configuration for network expansion with lowest expansion cost and a specific adequacy. The proposed idea has been tested on the Garvers network and compared with the decimal codification genetic algorithm (DCGA). The results show that the network will possess maximum efficiency economically. Also, it is shown that precision and convergence speed of the proposed DPSO based method for the solution of the STNEP problem is more than DCGA approach.

Keywords: DPSO algorithm, Adequacy restriction, STNEP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1516
8590 A Robust Watermarking using Blind Source Separation

Authors: Anil Kumar, K. Negrat, A. M. Negrat, Abdelsalam Almarimi

Abstract:

In this paper, we present a robust and secure algorithm for watermarking, the watermark is first transformed into the frequency domain using the discrete wavelet transform (DWT). Then the entire DWT coefficient except the LL (Band) discarded, these coefficients are permuted and encrypted by specific mixing. The encrypted coefficients are inserted into the most significant spectral components of the stego-image using a chaotic system. This technique makes our watermark non-vulnerable to the attack (like compression, and geometric distortion) of an active intruder, or due to noise in the transmission link.

Keywords: Blind source separation (BSS), Chaotic system, Watermarking, DWT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1503
8589 An Efficient Motion Recognition System Based on LMA Technique and a Discrete Hidden Markov Model

Authors: Insaf Ajili, Malik Mallem, Jean-Yves Didier

Abstract:

Human motion recognition has been extensively increased in recent years due to its importance in a wide range of applications, such as human-computer interaction, intelligent surveillance, augmented reality, content-based video compression and retrieval, etc. However, it is still regarded as a challenging task especially in realistic scenarios. It can be seen as a general machine learning problem which requires an effective human motion representation and an efficient learning method. In this work, we introduce a descriptor based on Laban Movement Analysis technique, a formal and universal language for human movement, to capture both quantitative and qualitative aspects of movement. We use Discrete Hidden Markov Model (DHMM) for training and classification motions. We improve the classification algorithm by proposing two DHMMs for each motion class to process the motion sequence in two different directions, forward and backward. Such modification allows avoiding the misclassification that can happen when recognizing similar motions. Two experiments are conducted. In the first one, we evaluate our method on a public dataset, the Microsoft Research Cambridge-12 Kinect gesture data set (MSRC-12) which is a widely used dataset for evaluating action/gesture recognition methods. In the second experiment, we build a dataset composed of 10 gestures(Introduce yourself, waving, Dance, move, turn left, turn right, stop, sit down, increase velocity, decrease velocity) performed by 20 persons. The evaluation of the system includes testing the efficiency of our descriptor vector based on LMA with basic DHMM method and comparing the recognition results of the modified DHMM with the original one. Experiment results demonstrate that our method outperforms most of existing methods that used the MSRC-12 dataset, and a near perfect classification rate in our dataset.

Keywords: Human Motion Recognition, Motion representation, Laban Movement Analysis, Discrete Hidden Markov Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 696
8588 Discrete Wavelet Transform Decomposition Level Determination Exploiting Sparseness Measurement

Authors: Lei Lei, Chao Wang, Xin Liu

Abstract:

Discrete wavelet transform (DWT) has been widely adopted in biomedical signal processing for denoising, compression and so on. Choosing a suitable decomposition level (DL) in DWT is of paramount importance to its performance. In this paper, we propose to exploit sparseness of the transformed signals to determine the appropriate DL. Simulation results have shown that the sparseness of transformed signals after DWT increases with the increasing DLs. Additional Monte-Carlo simulation results have verified the effectiveness of sparseness measure in determining the DL.

Keywords: Sparseness, DWT, decomposition level, ECG.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5839
8587 Development of a Simple laser-based 2D Compensating System for the Contouring Accuracy of Machine Tools

Authors: Wen-Yuh Jywe, Bor-Jeng Lin, Jing-Chung Shen, Jeng-Dao Lee, Hsueh-Liang Huang, Ming-Chen Cho

Abstract:

The dynamical contouring error is a critical element for the accuracy of machine tools. The contouring error is defined as the difference between the processing actual path and commanded path, which is implemented by following the command curves from feeding driving system in machine tools. The contouring error is resulted from various factors, such as the external loads, friction, inertia moment, feed rate, speed control, servo control, and etc. Thus, the study proposes a 2D compensating system for the contouring accuracy of machine tools. Optical method is adopted by using stable frequency laser diode and the high precision position sensor detector (PSD) to performno-contact measurement. Results show the related accuracy of position sensor detector (PSD) of 2D contouring accuracy compensating system was ±1.5 μm for a calculated range of ±3 mm, and improvement accuracy is over 80% at high-speed feed rate.

Keywords: Position sensor detector, laser diode, contouring accuracy, machine tool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770
8586 Exciting Voltage Control for Efficiency Maximization for 2-D Omni-Directional Wireless Power Transfer Systems

Authors: Masato Sasaki, Masayoshi Yamamoto

Abstract:

The majority of wireless power transfer (WPT) systems transfer power in a directional manner. This paper describes a discrete exciting voltage control technique for WPT via magnetic resonant coupling with two orthogonal transmitter coils (2D omni-directional WPT system) which can maximize the power transfer efficiency in response to the change of coupling status. The theory allows the equations of the efficiency of the system to be determined at all the rate of the mutual inductance. The calculated results are included to confirm the advantage to one directional WPT system and the validity of the theory and the equations.

Keywords: Wireless power transfer, orthogonal, omni-directional, efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 910
8585 An H1-Galerkin Mixed Method for the Coupled Burgers Equation

Authors: Xianbiao Jia, Hong Li, Yang Liu, Zhichao Fang

Abstract:

In this paper, an H1-Galerkin mixed finite element method is discussed for the coupled Burgers equations. The optimal error estimates of the semi-discrete and fully discrete schemes of the coupled Burgers equation are derived.

Keywords: The coupled Burgers equation, H1-Galerkin mixed finite element method, Backward Euler's method, Optimal error estimates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
8584 A Comparison of Real Valued Transforms for Image Compression

Authors: Shivali D. Kulkarni, Ameya K. Naik, Nitin S. Nagori

Abstract:

In this paper we present simulation results for the application of a bandwidth efficient algorithm (mapping algorithm) to an image transmission system. This system considers three different real valued transforms to generate energy compact coefficients. First results are presented for gray scale and color image transmission in the absence of noise. It is seen that the system performs its best when discrete cosine transform is used. Also the performance of the system is dominated more by the size of the transform block rather than the number of coefficients transmitted or the number of bits used to represent each coefficient. Similar results are obtained in the presence of additive white Gaussian noise. The varying values of the bit error rate have very little or no impact on the performance of the algorithm. Optimum results are obtained for the system considering 8x8 transform block and by transmitting 15 coefficients from each block using 8 bits.

Keywords: Additive white Gaussian noise channel, mapping algorithm, peak signal to noise ratio, transform encoding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1476
8583 Modeling and Simulation of a Serial Production Line with Constant Work-In-Process

Authors: Mehmet Savsar

Abstract:

This paper presents a model for an unreliable production line, which is operated according to demand with constant work-in-process (CONWIP). A simulation model is developed based on the discrete model and several case problems are analyzed using the model. The model is utilized to optimize storage space capacities at intermediate stages and the number of kanbans at the last stage, which is used to trigger the production at the first stage. Furthermore, effects of several line parameters on production rate are analyzed using design of experiments.

Keywords: Production line simulator, Push-pull system, JIT system, Constant WIP, Machine failures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990
8582 ISTER (Immune System - Tumor Efficiency Rate): An Important Key for Planning in Radiotherapic Facilities

Authors: O. Sotolongo-Grau, D. Rodriguez-Perez, J. A. Santos-Miranda, M. M. Desco, O. Sotolongo-Costa, J. C. Antoranz

Abstract:

The use of the oncologic index ISTER allows for a more effective planning of the radiotherapic facilities in the hospitals. Any change in the radiotherapy treatment, due to unexpected stops, may be adapted by recalculating the doses to the new treatment duration while keeping the optimal prognosis. The results obtained in a simulation model on millions of patients allow the definition of optimal success probability algorithms.

Keywords: Mathematical model, radiation oncology, dynamical systems applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500
8581 Transonic Flutter Analysis Using Euler Equation and Reduced Order Modeling Technique

Authors: D. H. Kim, Y. H. Kim, T. Kim

Abstract:

A new method identifies coupled fluid-structure system with a reduced set of state variables is presented. Assuming that the structural model is known a priori either from an analysis or a test and using linear transformations between structural and aeroelastic states, it is possible to deduce aerodynamic information from sampled time histories of the aeroelastic system. More specifically given a finite set of structural modes the method extracts generalized aerodynamic force matrix corresponding to these mode shapes. Once the aerodynamic forces are known, an aeroelastic reduced-order model can be constructed in discrete-time, state-space format by coupling the structural model and the aerodynamic system. The resulting reduced-order model is suitable for constant Mach, varying density analysis.

Keywords: ROM (Reduced-Order Model), aero elasticity, AGARD 445.6 wing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2563
8580 Using Interval Constrained Petri Nets and Fuzzy Method for Regulation of Quality: The Case of Weight in Tobacco Factory

Authors: Nabli L., Dhouibi H., Collart Dutilleul S., Craye E.

Abstract:

The existence of maximal durations drastically modifies the performance evaluation in Discrete Event Systems (DES). The same particularity may be found on systems where the associated constraints do not concern the time. For example weight measures, in chemical industry, are used in order to control the quantity of consumed raw materials. This parameter also takes a fundamental part in the product quality as the correct transformation process is based upon a given percentage of each essence. Weight regulation therefore increases the global productivity of the system by decreasing the quantity of rejected products. In this paper we present an approach based on mixing different characteristics theories, the fuzzy system and Petri net system to describe the behaviour. An industriel application on a tobacco manufacturing plant, where the critical parameter is the weight is presented as an illustration.

Keywords: Petri Net, Manufacturing systems, Performance evaluation, Fuzzy logic, Tolerant system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897
8579 Variational Evolutionary Splines for Solving a Model of Temporomandibular Disorders

Authors: Alberto Hananel

Abstract:

The aim of this work is to modelize the occlusion of a person with temporomandibular disorders as an evolutionary equation and approach its solution by the construction and characterizing of discrete variational splines. To formulate the problem, certain boundary conditions have been considered. After showing the existence and the uniqueness of the solution of such a problem, a convergence result of a discrete variational evolutionary spline is shown. A stress analysis of the occlusion of a human jaw with temporomandibular disorders by finite elements is carried out in FreeFem++ in order to prove the validity of the presented method.

Keywords: Approximation, evolutionary PDE, finite element method, temporomandibular disorders, variational spline.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1549
8578 Membrane Distillation Process Modeling: Dynamical Approach

Authors: Fadi Eleiwi, Taous Meriem Laleg-Kirati

Abstract:

This paper presents a complete dynamic modeling of a membrane distillation process. The model contains two consistent dynamic models. A 2D advection-diffusion equation for modeling the whole process and a modified heat equation for modeling the membrane itself. The complete model describes the temperature diffusion phenomenon across the feed, membrane, permeate containers and boundary layers of the membrane. It gives an online and complete temperature profile for each point in the domain. It explains heat conduction and convection mechanisms that take place inside the process in terms of mathematical parameters, and justify process behavior during transient and steady state phases. The process is monitored for any sudden change in the performance at any instance of time. In addition, it assists maintaining production rates as desired, and gives recommendations during membrane fabrication stages. System performance and parameters can be optimized and controlled using this complete dynamic model. Evolution of membrane boundary temperature with time, vapor mass transfer along the process, and temperature difference between membrane boundary layers are depicted and included. Simulations were performed over the complete model with real membrane specifications. The plots show consistency between 2D advection-diffusion model and the expected behavior of the systems as well as literature. Evolution of heat inside the membrane starting from transient response till reaching steady state response for fixed and varying times is illustrated.

Keywords: Membrane distillation, Dynamical modeling, Advection-diffusion equation, Thermal equilibrium, Heat equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2820
8577 Dense Chaos in Coupled Map Lattices

Authors: Tianxiu Lu, Peiyong Zhu

Abstract:

This paper is mainly concerned with a kind of coupled map lattices (CMLs). New definitions of dense δ-chaos and dense chaos (which is a special case of dense δ-chaos with δ = 0) in discrete spatiotemporal systems are given and sufficient conditions for these systems to be densely chaotic or densely δ-chaotic are derived.

Keywords: Discrete spatiotemporal systems, coupled map lattices, dense δ-chaos, Li-Yorke pairs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
8576 Fundamental Equation of Complete Factor Synergetics of Complex Systems with Normalization of Dimension

Authors: Li Zong-Cheng

Abstract:

It is by reason of the unified measure of varieties of resources and the unified processing of the disposal of varieties of resources, that these closely related three of new basic models called the resources assembled node and the disposition integrated node as well as the intelligent organizing node are put forth in this paper; the three closely related quantities of integrative analytical mechanics including the disposal intensity and disposal- weighted intensity as well as the charge of resource charge are set; and then the resources assembled space and the disposition integrated space as well as the intelligent organizing space are put forth. The system of fundamental equations and model of complete factor synergetics is preliminarily approached for the general situation in this paper, to form the analytical base of complete factor synergetics. By the essential variables constituting this system of equations we should set twenty variables respectively with relation to the essential dynamical effect, external synergetic action and internal synergetic action of the system.

Keywords: complex system, disposal of resources, completefactor synergetics, fundamental equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1390
8575 Robust Control for Discrete-Time Sector Bounded Systems with Time-Varying Delay

Authors: Ju H. Park, S.M. Lee

Abstract:

In this paper, we propose a robust controller design method for discrete-time systems with sector-bounded nonlinearities and time-varying delay. Based on the Lyapunov theory, delaydependent stabilization criteria are obtained in terms of linear matrix inequalities (LMIs) by constructing the new Lyapunov-Krasovskii functional and using some inequalities. A robust state feedback controller is designed by LMI framework and a reciprocally convex combination technique. The effectiveness of the proposed method is verified throughout a numerical example.

Keywords: Lur'e systems, Time-delay, Stabilization, LMIs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1659
8574 M-band Wavelet and Cosine Transform Based Watermark Algorithm Using Randomization and Principal Component Analysis

Authors: Tong Liu, Xuan Xu, Xiaodi Wang

Abstract:

Computational techniques derived from digital image processing are playing a significant role in the security and digital copyrights of multimedia and visual arts. This technology has the effect within the domain of computers. This research presents discrete M-band wavelet transform (MWT) and cosine transform (DCT) based watermarking algorithm by incorporating the principal component analysis (PCA). The proposed algorithm is expected to achieve higher perceptual transparency. Specifically, the developed watermarking scheme can successfully resist common signal processing, such as geometric distortions, and Gaussian noise. In addition, the proposed algorithm can be parameterized, thus resulting in more security. To meet these requirements, the image is transformed by a combination of MWT & DCT. In order to improve the security further, we randomize the watermark image to create three code books. During the watermark embedding, PCA is applied to the coefficients in approximation sub-band. Finally, first few component bands represent an excellent domain for inserting the watermark.

Keywords: discrete M-band wavelet transform , discrete M-band wavelet transform, randomized watermark, principal component analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1979
8573 Analytical Analysis of Image Representation by Their Discrete Wavelet Transform

Authors: R. M. Farouk

Abstract:

In this paper, we present an analytical analysis of the representation of images as the magnitudes of their transform with the discrete wavelets. Such a representation plays as a model for complex cells in the early stage of visual processing and of high technical usefulness for image understanding, because it makes the representation insensitive to small local shifts. We found that if the signals are band limited and of zero mean, then reconstruction from the magnitudes is unique up to the sign for almost all signals. We also present an iterative reconstruction algorithm which yields very good reconstruction up to the sign minor numerical errors in the very low frequencies.

Keywords: Wavelets, Image processing signal processing, Image reconstruction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1362
8572 On the Variability of Tool Wear and Life at Disparate Operating Parameters

Authors: S. E. Oraby, A.M. Alaskari

Abstract:

The stochastic nature of tool life using conventional discrete-wear data from experimental tests usually exists due to many individual and interacting parameters. It is a common practice in batch production to continually use the same tool to machine different parts, using disparate machining parameters. In such an environment, the optimal points at which tools have to be changed, while achieving minimum production cost and maximum production rate within the surface roughness specifications, have not been adequately studied. In the current study, two relevant aspects are investigated using coated and uncoated inserts in turning operations: (i) the accuracy of using machinability information, from fixed parameters testing procedures, when variable parameters situations are emerged, and (ii) the credibility of tool life machinability data from prior discrete testing procedures in a non-stop machining. A novel technique is proposed and verified to normalize the conventional fixed parameters machinability data to suit the cases when parameters have to be changed for the same tool. Also, an experimental investigation has been established to evaluate the error in the tool life assessment when machinability from discrete testing procedures is employed in uninterrupted practical machining.

Keywords: Machinability, tool life, tool wear, wear variability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1767
8571 Effect of Robot Configuration Parameters, Masses and Friction on Painlevé Paradox for a Sliding Two-Link (P-R) Robot

Authors: Hassan M. Alkomy, Hesham A. Elkaranshawy, Ahmed S. Ashour, Khaled T. Mohamed

Abstract:

For a rigid body sliding on a rough surface, a range of uncertainty or non-uniqueness of solution could be found, which is termed: Painlevé paradox. Painlevé paradox is the reason of a wide range of bouncing motion, observed during sliding of robotic manipulators on rough surfaces. In this research work, the existence of the paradox zone during the sliding motion of a two-link (P-R) robotic manipulator with a unilateral constraint is investigated. Parametric study is performed to investigate the effect of friction, link-length ratio, total height and link-mass ratio on the paradox zone.

Keywords: Dynamical system, friction, multibody system, Painlevé paradox, robotic systems, sliding robots, unilateral constraint.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4707
8570 Mixing Behaviors of Wet Granular Materials in Gas Fluidized Beds

Authors: Eldin Wee Chuan Lim

Abstract:

The mixing behaviors of dry and wet granular materials in gas fluidized bed systems were investigated computationally using the combined Computational Fluid Dynamics and Discrete Element Method (CFD-DEM). Dry particles were observed to mix fairly rapidly during the fluidization process due to vigorous relative motions between particles induced by the flow of gas. In contrast, due to the presence of strong cohesive forces arising from capillary liquid bridges between wet particles, the mixing efficiencies of wet granular materials under similar operating conditions were observed to be reduced significantly.

Keywords: Computational Fluid Dynamics, Discrete Element Method, Gas Fluidization, Mixing, Wet particles

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738
8569 Synchronization of Semiconductor Laser Networks

Authors: R. M. López-Gutiérrez, L. Cardoza-Avendaño, H. Cervantes-De Ávila, J. A. Michel-Macarty, C. Cruz-Hernández, A. Arellano-Delgado, R. Carmona-Rodríguez

Abstract:

In this paper, synchronization of multiple chaotic semiconductor lasers is achieved by appealing to complex system theory. In particular, we consider dynamical networks composed by semiconductor laser, as interconnected nodes, where the interaction in the networks are defined by coupling the first state of each node. An interest case is synchronized with master-slave configuration in star topology. Nodes of these networks are modeled for the laser and simulate by Matlab. These results are applicable to private communication.

Keywords: Synchronization, chaotic laser, network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2272
8568 Time-Frequency Modeling and Analysis of Faulty Rotor

Authors: B. X. Tchomeni, A. A. Alugongo, T. B. Tengen

Abstract:

In this paper, de Laval rotor system has been characterized by a hinge model and its transient response numerically treated for a dynamic solution. The effect of the ensuing non-linear disturbances namely rub and breathing crack is numerically simulated. Subsequently, three analysis methods: Orbit Analysis, Fast Fourier Transform (FFT), and Wavelet Transform (WT) are employed to extract features of the vibration signal of the faulty system. An analysis of the system response orbits clearly indicates the perturbations due to the rotor-to-stator contact. The sensitivities of WT to the variation in system speed have been investigated by Continuous Wavelet Transform (CWT). The analysis reveals that features of crack, rubs and unbalance in vibration response can be useful for condition monitoring. WT reveals its ability to detect nonlinear signal, and obtained results provide a useful tool method for detecting machinery faults.

Keywords: Continuous wavelet, crack, discrete wavelet, high acceleration, low acceleration, nonlinear, rotor-stator, rub.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678
8567 Dynamic-Stochastic Influence Diagrams: Integrating Time-Slices IDs and Discrete Event Systems Modeling

Authors: Xin Zhao, Yin-fan Zhu, Wei-ping Wang, Qun Li

Abstract:

The Influence Diagrams (IDs) is a kind of Probabilistic Belief Networks for graphic modeling. The usage of IDs can improve the communication among field experts, modelers, and decision makers, by showing the issue frame discussed from a high-level point of view. This paper enhances the Time-Sliced Influence Diagrams (TSIDs, or called Dynamic IDs) based formalism from a Discrete Event Systems Modeling and Simulation (DES M&S) perspective, for Exploring Analysis (EA) modeling. The enhancements enable a modeler to specify times occurred of endogenous events dynamically with stochastic sampling as model running and to describe the inter- influences among them with variable nodes in a dynamic situation that the existing TSIDs fails to capture. The new class of model is named Dynamic-Stochastic Influence Diagrams (DSIDs). The paper includes a description of the modeling formalism and the hiberarchy simulators implementing its simulation algorithm, and shows a case study to illustrate its enhancements.

Keywords: Time-sliced influence diagrams, discrete event systems, dynamic-stochastic influence diagrams, modeling formalism, simulation algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1407