Search results for: Gravitational Search Algorithm (GSA)
1853 Subjective Evaluation of Spectral and Time Domain Cascading Algorithm for Speech Enhancement for Mobile Communication
Authors: Harish Chander, Balwinder Singh, Ravinder Khanna
Abstract:
In this paper, we present the comparative subjective analysis of Improved Minima Controlled Recursive Averaging (IMCRA) Algorithm, the Kalman filter and the cascading of IMCRA and Kalman filter algorithms. Performance of speech enhancement algorithms can be predicted in two different ways. One is the objective method of evaluation in which the speech quality parameters are predicted computationally. The second is a subjective listening test in which the processed speech signal is subjected to the listeners who judge the quality of speech on certain parameters. The comparative objective evaluation of these algorithms was analyzed in terms of Global SNR, Segmental SNR and Perceptual Evaluation of Speech Quality (PESQ) by the authors and it was reported that with cascaded algorithms there is a substantial increase in objective parameters. Since subjective evaluation is the real test to judge the quality of speech enhancement algorithms, the authenticity of superiority of cascaded algorithms over individual IMCRA and Kalman algorithms is tested through subjective analysis in this paper. The results of subjective listening tests have confirmed that the cascaded algorithms perform better under all types of noise conditions.
Keywords: Speech enhancement, spectral domain, time domain, PESQ, subjective analysis, objective analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12311852 Analyzing The Effect of Variable Round Time for Clustering Approach in Wireless Sensor Networks
Authors: Vipin Pal, Girdhari Singh, R P Yadav
Abstract:
As wireless sensor networks are energy constraint networks so energy efficiency of sensor nodes is the main design issue. Clustering of nodes is an energy efficient approach. It prolongs the lifetime of wireless sensor networks by avoiding long distance communication. Clustering algorithms operate in rounds. Performance of clustering algorithm depends upon the round time. A large round time consumes more energy of cluster heads while a small round time causes frequent re-clustering. So existing clustering algorithms apply a trade off to round time and calculate it from the initial parameters of networks. But it is not appropriate to use initial parameters based round time value throughout the network lifetime because wireless sensor networks are dynamic in nature (nodes can be added to the network or some nodes go out of energy). In this paper a variable round time approach is proposed that calculates round time depending upon the number of active nodes remaining in the field. The proposed approach makes the clustering algorithm adaptive to network dynamics. For simulation the approach is implemented with LEACH in NS-2 and the results show that there is 6% increase in network lifetime, 7% increase in 50% node death time and 5% improvement over the data units gathered at the base station.Keywords: Wireless Sensor Network, Clustering, Energy Efficiency, Round Time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17871851 Complex-Valued Neural Network in Signal Processing: A Study on the Effectiveness of Complex Valued Generalized Mean Neuron Model
Authors: Anupama Pande, Ashok Kumar Thakur, Swapnoneel Roy
Abstract:
A complex valued neural network is a neural network which consists of complex valued input and/or weights and/or thresholds and/or activation functions. Complex-valued neural networks have been widening the scope of applications not only in electronics and informatics, but also in social systems. One of the most important applications of the complex valued neural network is in signal processing. In Neural networks, generalized mean neuron model (GMN) is often discussed and studied. The GMN includes a new aggregation function based on the concept of generalized mean of all the inputs to the neuron. This paper aims to present exhaustive results of using Generalized Mean Neuron model in a complex-valued neural network model that uses the back-propagation algorithm (called -Complex-BP-) for learning. Our experiments results demonstrate the effectiveness of a Generalized Mean Neuron Model in a complex plane for signal processing over a real valued neural network. We have studied and stated various observations like effect of learning rates, ranges of the initial weights randomly selected, error functions used and number of iterations for the convergence of error required on a Generalized Mean neural network model. Some inherent properties of this complex back propagation algorithm are also studied and discussed.Keywords: Complex valued neural network, Generalized Meanneuron model, Signal processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17301850 Learning to Recognize Faces by Local Feature Design and Selection
Authors: Yanwei Pang, Lei Zhang, Zhengkai Liu
Abstract:
Studies in neuroscience suggest that both global and local feature information are crucial for perception and recognition of faces. It is widely believed that local feature is less sensitive to variations caused by illumination, expression and illumination. In this paper, we target at designing and learning local features for face recognition. We designed three types of local features. They are semi-global feature, local patch feature and tangent shape feature. The designing of semi-global feature aims at taking advantage of global-like feature and meanwhile avoiding suppressing AdaBoost algorithm in boosting weak classifies established from small local patches. The designing of local patch feature targets at automatically selecting discriminative features, and is thus different with traditional ways, in which local patches are usually selected manually to cover the salient facial components. Also, shape feature is considered in this paper for frontal view face recognition. These features are selected and combined under the framework of boosting algorithm and cascade structure. The experimental results demonstrate that the proposed approach outperforms the standard eigenface method and Bayesian method. Moreover, the selected local features and observations in the experiments are enlightening to researches in local feature design in face recognition.Keywords: Face recognition, local feature, AdaBoost, subspace analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15971849 High Accuracy ESPRIT-TLS Technique for Wind Turbine Fault Discrimination
Authors: Saad Chakkor, Mostafa Baghouri, Abderrahmane Hajraoui
Abstract:
ESPRIT-TLS method appears a good choice for high resolution fault detection in induction machines. It has a very high effectiveness in the frequency and amplitude identification. Contrariwise, it presents a high computation complexity which affects its implementation in real time fault diagnosis. To avoid this problem, a Fast-ESPRIT algorithm that combined the IIR band-pass filtering technique, the decimation technique and the original ESPRIT-TLS method was employed to enhance extracting accurately frequencies and their magnitudes from the wind stator current with less computation cost. The proposed algorithm has been applied to verify the wind turbine machine need in the implementation of an online, fast, and proactive condition monitoring. This type of remote and periodic maintenance provides an acceptable machine lifetime, minimize its downtimes and maximize its productivity. The developed technique has evaluated by computer simulations under many fault scenarios. Study results prove the performance of Fast- ESPRIT offering rapid and high resolution harmonics recognizing with minimum computation time and less memory cost.
Keywords: Spectral Estimation, ESPRIT-TLS, Real Time, Diagnosis, Wind Turbine Faults, Band-Pass Filtering, Decimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22591848 A New Intelligent, Dynamic and Real Time Management System of Sewerage
Authors: R. Tlili Yaakoubi, H. Nakouri, O. Blanpain, S. Lallahem
Abstract:
The current tools for real time management of sewer systems are based on two software tools: the software of weather forecast and the software of hydraulic simulation. The use of the first ones is an important cause of imprecision and uncertainty, the use of the second requires temporal important steps of decision because of their need in times of calculation. This way of proceeding fact that the obtained results are generally different from those waited. The major idea of this project is to change the basic paradigm by approaching the problem by the "automatic" face rather than by that "hydrology". The objective is to make possible the realization of a large number of simulations at very short times (a few seconds) allowing to take place weather forecasts by using directly the real time meditative pluviometric data. The aim is to reach a system where the decision-making is realized from reliable data and where the correction of the error is permanent. A first model of control laws was realized and tested with different return-period rainfalls. The gains obtained in rejecting volume vary from 19 to 100 %. The development of a new algorithm was then used to optimize calculation time and thus to overcome the subsequent combinatorial problem in our first approach. Finally, this new algorithm was tested with 16- year-rainfall series. The obtained gains are 40 % of total volume rejected to the natural environment and of 65 % in the number of discharges.Keywords: Automation, optimization, paradigm, RTC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14881847 Computational Analysis of the MembraneTargeting Domains of Plant-specific PRAF Proteins
Authors: Ewa Wywial, Shaneen M. Singh
Abstract:
The PRAF family of proteins is a plant specific family of proteins with distinct domain architecture and various unique sequence/structure traits. We have carried out an extensive search of the Arabidopsis genome using an automated pipeline and manual methods to verify previously known and identify unknown instances of PRAF proteins, characterize their sequence and build 3D structures of their individual domains. Integrating the sequence, structure and whatever little known experimental details for each of these proteins and their domains, we present a comprehensive characterization of the different domains in these proteins and their variant properties.
Keywords: PRAF proteins, homology modeling, Arabidopsisthaliana
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14151846 Secure Low-Bandwidth Video Streaming through Reliable Multipath Propagation in MANETs
Authors: S. Mohideen Badhusha, K. Duraiswamy
Abstract:
Most of the existing video streaming protocols provide video services without considering security aspects in decentralized mobile ad-hoc networks. The security policies adapted to the currently existing non-streaming protocols, do not comply with the live video streaming protocols resulting in considerable vulnerability, high bandwidth consumption and unreliability which cause severe security threats, low bandwidth and error prone transmission respectively in video streaming applications. Therefore a synergized methodology is required to reduce vulnerability and bandwidth consumption, and enhance reliability in the video streaming applications in MANET. To ensure the security measures with reduced bandwidth consumption and improve reliability of the video streaming applications, a Secure Low-bandwidth Video Streaming through Reliable Multipath Propagation (SLVRMP) protocol architecture has been proposed by incorporating the two algorithms namely Secure Low-bandwidth Video Streaming Algorithm and Reliable Secure Multipath Propagation Algorithm using Layered Video Coding in non-overlapping zone routing network topology. The performances of the proposed system are compared to those of the other existing secure multipath protocols Sec-MR, SPREAD using NS 2.34 and the simulation results show that the performances of the proposed system get considerably improved.Keywords: Bandwidth consumption, layered video coding, multipath propagation, reliability, security threats, video streaming applications, vulnerability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18831845 More than Two Decades of Research on Groupware: A Systematic Lexical Analysis
Authors: Loay A. Altamimi
Abstract:
Collaborative technologies or software known as groupware are key enabling tools for communication, collaboration and co-ordination among individuals, work groups and businesses. Available reviews of the groupware literature are very few, and mostly neither systematic nor recent. This paper is an effort to fill this gap, and to provide researchers, with a more up-to-date and wide systematic literature review. For this purpose, 1087 scholarly articles, published from 1990 to 2013, on the topic of groupware, were collected by the literature search. The study here adopted the systematic approach of lexical analysis for the analysis of those articles.
Keywords: Lexical Analysis, Literature review, Groupware, collaborative Software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23721844 A Comparative Analysis of Heuristics Applied to Collecting Used Lubricant Oils Generated in the City of Pereira, Colombia
Authors: Diana Fajardo, Sebastián Ortiz, Oscar Herrera, Angélica Santis
Abstract:
Currently, in Colombia is arising a problem related to collecting used lubricant oils which are generated by the increment of the vehicle fleet. This situation does not allow a proper disposal of this type of waste, which in turn results in a negative impact on the environment. Therefore, through the comparative analysis of various heuristics, the best solution to the VRP (Vehicle Routing Problem) was selected by comparing costs and times for the collection of used lubricant oils in the city of Pereira, Colombia; since there is no presence of management companies engaged in the direct administration of the collection of this pollutant. To achieve this aim, six proposals of through methods of solution of two phases were discussed. First, the assignment of the group of generator points of the residue was made (previously identified). Proposals one and four of through methods are based on the closeness of points. The proposals two and five are using the scanning method and the proposals three and six are considering the restriction of the capacity of collection vehicle. Subsequently, the routes were developed - in the first three proposals by the Clarke and Wright's savings algorithm and in the following proposals by the Traveling Salesman optimization mathematical model. After applying techniques, a comparative analysis of the results was performed and it was determined which of the proposals presented the most optimal values in terms of the distance, cost and travel time.
Keywords: Heuristics, optimization model, savings algorithm used vehicular oil, VRP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13141843 An Efficient Backward Semi-Lagrangian Scheme for Nonlinear Advection-Diffusion Equation
Authors: Soyoon Bak, Sunyoung Bu, Philsu Kim
Abstract:
In this paper, a backward semi-Lagrangian scheme combined with the second-order backward difference formula is designed to calculate the numerical solutions of nonlinear advection-diffusion equations. The primary aims of this paper are to remove any iteration process and to get an efficient algorithm with the convergence order of accuracy 2 in time. In order to achieve these objects, we use the second-order central finite difference and the B-spline approximations of degree 2 and 3 in order to approximate the diffusion term and the spatial discretization, respectively. For the temporal discretization, the second order backward difference formula is applied. To calculate the numerical solution of the starting point of the characteristic curves, we use the error correction methodology developed by the authors recently. The proposed algorithm turns out to be completely iteration free, which resolves the main weakness of the conventional backward semi-Lagrangian method. Also, the adaptability of the proposed method is indicated by numerical simulations for Burgers’ equations. Throughout these numerical simulations, it is shown that the numerical results is in good agreement with the analytic solution and the present scheme offer better accuracy in comparison with other existing numerical schemes.
Keywords: Semi-Lagrangian method, Iteration free method, Nonlinear advection-diffusion equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24931842 Group of p-th Roots of Unity Modulo n
Authors: Rochdi Omami, Mohamed Omami, Raouf Ouni
Abstract:
Let n ≥ 3 be an integer and p be a prime odd number. Let us consider Gp(n) the subgroup of (Z/nZ)* defined by : Gp(n) = {x ∈ (Z/nZ)* / xp = 1}. In this paper, we give an algorithm that computes a generating set of this subgroup.
Keywords: Group, p-th roots, modulo, unity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10341841 A Review on Applications of Evolutionary Algorithms to Reservoir Operation for Hydropower Production
Authors: Nkechi Neboh, Josiah Adeyemo, Abimbola Enitan, Oludayo Olugbara
Abstract:
Evolutionary Algorithms (EAs) have been used widely through evolution theory to discover acceptable solutions that corresponds to challenges such as natural resources management. EAs are also used to solve varied problems in the real world. EAs have been rapidly identified for its ease in handling multiple objective problems. Reservoir operations is a vital and researchable area which has been studied in the last few decades due to the limited nature of water resources that is found mostly in the semi-arid regions of the world. The state of some developing economy that depends on electricity for overall development through hydropower production, a renewable form of energy, is appalling due to water scarcity. This paper presents a review of the applications of evolutionary algorithms to reservoir operation for hydropower production. This review includes the discussion on areas such as genetic algorithm, differential evolution, and reservoir operation. It also identified the research gaps discovered in these areas. The results of this study will be an eye opener for researchers and decision makers to think deeply of the adverse effect of water scarcity and drought towards economic development of a nation. Hence, it becomes imperative to identify evolutionary algorithms that can address this issue which can hamper effective hydropower generation.Keywords: Evolutionary algorithms, genetic algorithm, hydropower, multi-objective, reservoir operations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27941840 Statistical Measures and Optimization Algorithms for Gene Selection in Lung and Ovarian Tumor
Authors: C. Gunavathi, K. Premalatha
Abstract:
Microarray technology is universally used in the study of disease diagnosis using gene expression levels. The main shortcoming of gene expression data is that it includes thousands of genes and a small number of samples. Abundant methods and techniques have been proposed for tumor classification using microarray gene expression data. Feature or gene selection methods can be used to mine the genes that directly involve in the classification and to eliminate irrelevant genes. In this paper statistical measures like T-Statistics, Signal-to-Noise Ratio (SNR) and F-Statistics are used to rank the genes. The ranked genes are used for further classification. Particle Swarm Optimization (PSO) algorithm and Shuffled Frog Leaping (SFL) algorithm are used to find the significant genes from the top-m ranked genes. The Naïve Bayes Classifier (NBC) is used to classify the samples based on the significant genes. The proposed work is applied on Lung and Ovarian datasets. The experimental results show that the proposed method achieves 100% accuracy in all the three datasets and the results are compared with previous works.
Keywords: Microarray, T-Statistics, Signal-to-Noise Ratio, FStatistics, Particle Swarm Optimization, Shuffled Frog Leaping, Naïve Bayes Classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19451839 Genetic-Based Planning with Recursive Subgoals
Authors: Han Yu, Dan C. Marinescu, Annie S. Wu, Howard Jay Siegel
Abstract:
In this paper, we introduce an effective strategy for subgoal division and ordering based upon recursive subgoals and combine this strategy with a genetic-based planning approach. This strategy can be applied to domains with conjunctive goals. The main idea is to recursively decompose a goal into a set of serializable subgoals and to specify a strict ordering among the subgoals. Empirical results show that the recursive subgoal strategy reduces the size of the search space and improves the quality of solutions to planning problems.Keywords: Planning, recursive subgoals, Sliding-tile puzzle, subgoal interaction, genetic algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15091838 Optimization of Kinematics for Birds and UAVs Using Evolutionary Algorithms
Authors: Mohamed Hamdaoui, Jean-Baptiste Mouret, Stephane Doncieux, Pierre Sagaut
Abstract:
The aim of this work is to present a multi-objective optimization method to find maximum efficiency kinematics for a flapping wing unmanned aerial vehicle. We restrained our study to rectangular wings with the same profile along the span and to harmonic dihedral motion. It is assumed that the birdlike aerial vehicle (whose span and surface area were fixed respectively to 1m and 0.15m2) is in horizontal mechanically balanced motion at fixed speed. We used two flight physics models to describe the vehicle aerodynamic performances, namely DeLaurier-s model, which has been used in many studies dealing with flapping wings, and the model proposed by Dae-Kwan et al. Then, a constrained multi-objective optimization of the propulsive efficiency is performed using a recent evolutionary multi-objective algorithm called є-MOEA. Firstly, we show that feasible solutions (i.e. solutions that fulfil the imposed constraints) can be obtained using Dae-Kwan et al.-s model. Secondly, we highlight that a single objective optimization approach (weighted sum method for example) can also give optimal solutions as good as the multi-objective one which nevertheless offers the advantage of directly generating the set of the best trade-offs. Finally, we show that the DeLaurier-s model does not yield feasible solutions.
Keywords: Flight physics, evolutionary algorithm, optimization, Pareto surface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16461837 PSO Based Weight Selection and Fixed Structure Robust Loop Shaping Control for Pneumatic Servo System with 2DOF Controller
Authors: Randeep Kaur, Jyoti Ohri
Abstract:
This paper proposes a new technique to design a fixed-structure robust loop shaping controller for the pneumatic servosystem. In this paper, a new method based on a particle swarm optimization (PSO) algorithm for tuning the weighting function parameters to design an H∞ controller is presented. The PSO algorithm is used to minimize the infinity norm of the transfer function of the nominal closed loop system to obtain the optimal parameters of the weighting functions. The optimal stability margin is used as an objective in PSO for selecting the optimal weighting parameters; it is shown that the proposed method can simplify the design procedure of H∞ control to obtain optimal robust controller for pneumatic servosystem. In addition, the order of the proposed controller is much lower than that of the conventional robust loop shaping controller, making it easy to implement in practical works. Also two-degree-of-freedom (2DOF) control design procedure is proposed to improve tracking performance in the face of noise and disturbance. Result of simulations demonstrates the advantages of the proposed controller in terms of simple structure and robustness against plant perturbations and disturbances.
Keywords: Robust control, Pneumatic Servosystem, PSO, H∞ control, 2DOF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24251836 Real Time Acquisition and Analysis of Neural Response for Rehabilitative Control
Authors: Dipali Bansal, Rashima Mahajan, Shweta Singh, Dheeraj Rathee, Sujit Roy
Abstract:
Non-invasive Brain Computer Interface like Electroencephalography (EEG) which directly taps neurological signals, is being widely explored these days to connect paralytic patients/elderly with the external environment. However, in India the research is confined to laboratory settings and is not reaching the mass for rehabilitation purposes. An attempt has been made in this paper to analyze real time acquired EEG signal using cost effective and portable headset unit EMOTIV. Signal processing of real time acquired EEG is done using EEGLAB in MATLAB and EDF Browser application software platforms. Independent Component Analysis algorithm of EEGLAB is explored to identify deliberate eye blink in the attained neural signal. Time Frequency transforms and Data statistics obtained using EEGLAB along with component activation results of EDF browser clearly indicate voluntary eye blink in AF3 channel. The spectral analysis indicates dominant frequency component at 1.536000Hz representing the delta wave component of EEG during voluntary eye blink action. An algorithm is further designed to generate an active high signal based on thoughtful eye blink that can be used for plethora of control applications for rehabilitation.
Keywords: Brain Computer Interface, EDF Browser, EEG, EEGLab, EMOTIV, Real time Acquisition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32371835 The Use of Minor Setups in an EPQ Model with Constrained Production Period Length
Authors: Behrouz Afshar Nadjafi
Abstract:
Extensive research has been devoted to economic production quantity (EPQ) problem. However, no attention has been paid to problems where production period length is constrained. In this paper, we address the problem of deciding the optimal production quantity and the number of minor setups within each cycle, in which, production period length is constrained but a minor setup is possible for pass the constraint. A mathematical model is developed and Iterated Local Search (ILS) is proposed to solve this problem. Finally, solution procedure illustrated with a numerical example and results are analyzed.Keywords: EPQ, Inventory control, minor setup, ILS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13471834 Featured based Segmentation of Color Textured Images using GLCM and Markov Random Field Model
Authors: Dipti Patra, Mridula J
Abstract:
In this paper, we propose a new image segmentation approach for colour textured images. The proposed method for image segmentation consists of two stages. In the first stage, textural features using gray level co-occurrence matrix(GLCM) are computed for regions of interest (ROI) considered for each class. ROI acts as ground truth for the classes. Ohta model (I1, I2, I3) is the colour model used for segmentation. Statistical mean feature at certain inter pixel distance (IPD) of I2 component was considered to be the optimized textural feature for further segmentation. In the second stage, the feature matrix obtained is assumed to be the degraded version of the image labels and modeled as Markov Random Field (MRF) model to model the unknown image labels. The labels are estimated through maximum a posteriori (MAP) estimation criterion using ICM algorithm. The performance of the proposed approach is compared with that of the existing schemes, JSEG and another scheme which uses GLCM and MRF in RGB colour space. The proposed method is found to be outperforming the existing ones in terms of segmentation accuracy with acceptable rate of convergence. The results are validated with synthetic and real textured images.
Keywords: Texture Image Segmentation, Gray Level Cooccurrence Matrix, Markov Random Field Model, Ohta colour space, ICM algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21731833 A Comprehensive Survey on RAT Selection Algorithms for Heterogeneous Networks
Authors: Abdallah AL Sabbagh, Robin Braun, Mehran Abolhasan
Abstract:
Due to the coexistence of different Radio Access Technologies (RATs), Next Generation Wireless Networks (NGWN) are predicted to be heterogeneous in nature. The coexistence of different RATs requires a need for Common Radio Resource Management (CRRM) to support the provision of Quality of Service (QoS) and the efficient utilization of radio resources. RAT selection algorithms are part of the CRRM algorithms. Simply, their role is to verify if an incoming call will be suitable to fit into a heterogeneous wireless network, and to decide which of the available RATs is most suitable to fit the need of the incoming call and admit it. Guaranteeing the requirements of QoS for all accepted calls and at the same time being able to provide the most efficient utilization of the available radio resources is the goal of RAT selection algorithm. The normal call admission control algorithms are designed for homogeneous wireless networks and they do not provide a solution to fit a heterogeneous wireless network which represents the NGWN. Therefore, there is a need to develop RAT selection algorithm for heterogeneous wireless network. In this paper, we propose an approach for RAT selection which includes receiving different criteria, assessing and making decisions, then selecting the most suitable RAT for incoming calls. A comprehensive survey of different RAT selection algorithms for a heterogeneous wireless network is studied.Keywords: Heterogeneous Wireless Network, RAT selection algorithms, Next Generation Wireless Network (NGWN), Beyond 3G Network, Common Radio Resource Management (CRRM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20271832 Development of a Neural Network based Algorithm for Multi-Scale Roughness Parameters and Soil Moisture Retrieval
Authors: L. Bennaceur Farah, I. R. Farah, R. Bennaceur, Z. Belhadj, M. R. Boussema
Abstract:
The overall objective of this paper is to retrieve soil surfaces parameters namely, roughness and soil moisture related to the dielectric constant by inverting the radar backscattered signal from natural soil surfaces. Because the classical description of roughness using statistical parameters like the correlation length doesn't lead to satisfactory results to predict radar backscattering, we used a multi-scale roughness description using the wavelet transform and the Mallat algorithm. In this description, the surface is considered as a superposition of a finite number of one-dimensional Gaussian processes each having a spatial scale. A second step in this study consisted in adapting a direct model simulating radar backscattering namely the small perturbation model to this multi-scale surface description. We investigated the impact of this description on radar backscattering through a sensitivity analysis of backscattering coefficient to the multi-scale roughness parameters. To perform the inversion of the small perturbation multi-scale scattering model (MLS SPM) we used a multi-layer neural network architecture trained by backpropagation learning rule. The inversion leads to satisfactory results with a relative uncertainty of 8%.Keywords: Remote sensing, rough surfaces, inverse problems, SAR, radar scattering, Neural networks and Fractals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15951831 Evolutionary Training of Hybrid Systems of Recurrent Neural Networks and Hidden Markov Models
Authors: Rohitash Chandra, Christian W. Omlin
Abstract:
We present a hybrid architecture of recurrent neural networks (RNNs) inspired by hidden Markov models (HMMs). We train the hybrid architecture using genetic algorithms to learn and represent dynamical systems. We train the hybrid architecture on a set of deterministic finite-state automata strings and observe the generalization performance of the hybrid architecture when presented with a new set of strings which were not present in the training data set. In this way, we show that the hybrid system of HMM and RNN can learn and represent deterministic finite-state automata. We ran experiments with different sets of population sizes in the genetic algorithm; we also ran experiments to find out which weight initializations were best for training the hybrid architecture. The results show that the hybrid architecture of recurrent neural networks inspired by hidden Markov models can train and represent dynamical systems. The best training and generalization performance is achieved when the hybrid architecture is initialized with random real weight values of range -15 to 15.Keywords: Deterministic finite-state automata, genetic algorithm, hidden Markov models, hybrid systems and recurrent neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18901830 Sustainable Water Utilization in Arid Region of Iran by Qanats
Authors: F. Boustani
Abstract:
To make use of the limited amounts of water in arid region, the Iranians developed man-made underground water channels called qanats (kanats) .In fact, qanats may be considered as the first long-distance water transfer system. Qanats are an ancient water transfer system found in arid regions wherein groundwater from mountainous areas, aquifers and sometimes from rivers, was brought to points of re-emergence such as an oasis, through one or more underground tunnels. The tunnels, many of which were kilometers in length, had designed for slopes to provide gravitational flow. The tunnels allowed water to drain out to the surface by gravity to supply water to lower and flatter agricultural land. Qanats have been an ancient, sustainable system facilitating the harvesting of water for centuries in Iran, and more than 35 additional countries of the world such as India, Arabia, Egypt, North Africa, Spain and even to New world. There are about 22000 qanats in Iran with 274000 kilometers of underground conduits all built by manual labor. The amount of water of the usable qanats of Iran produce is altogether 750 to 1000 cubic meter per second. The longest chain of qanat is situated in Gonabad region in Khorasan province. It is 70 kilometers long. Qanats are renewable water supply systems that have sustained agricultural settlement on the Iranian plateau for millennia. The great advantages of Qanats are no evaporation during transit, little seepage , no raising of the water- table and no pollution in the area surrounding the conduits. Qanat systems have a profound influence on the lives of the water users in Iran, and conform to Iran-s climate. Qanat allows those living in a desert environment adjacent to a mountain watershed to create a large oasis in an otherwise stark environment. This paper explains qanats structure designs, their history, objectives causing their creation, construction materials, locations and their importance in different times, as well as their present sustainable role in Iran.Keywords: Iran, qanat, Sustainable water utilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25621829 CQAR: Closed Quarter Aerial Robot Design for Reconnaissance, Surveillance and Target Acquisition Tasks in Urban Areas
Authors: Paul Y. Oh, William E. Green
Abstract:
This paper describes a prototype aircraft that can fly slowly, safely and transmit wireless video for tasks like reconnaissance, surveillance and target acquisition. The aircraft is designed to fly in closed quarters like forests, buildings, caves and tunnels which are often spacious but GPS reception is poor. Envisioned is that a small, safe and slow flying vehicle can assist in performing dull, dangerous and dirty tasks like disaster mitigation, search-and-rescue and structural damage assessment.Keywords: Unmanned aerial vehicles, autonomous collisionavoidance, optic flow, near-Earth environments
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17611828 The Wavelet-Based DFT: A New Interpretation, Extensions and Applications
Authors: Abdulnasir Hossen, Ulrich Heute
Abstract:
In 1990 [1] the subband-DFT (SB-DFT) technique was proposed. This technique used the Hadamard filters in the decomposition step to split the input sequence into low- and highpass sequences. In the next step, either two DFTs are needed on both bands to compute the full-band DFT or one DFT on one of the two bands to compute an approximate DFT. A combination network with correction factors was to be applied after the DFTs. Another approach was proposed in 1997 [2] for using a special discrete wavelet transform (DWT) to compute the discrete Fourier transform (DFT). In the first step of the algorithm, the input sequence is decomposed in a similar manner to the SB-DFT into two sequences using wavelet decomposition with Haar filters. The second step is to perform DFTs on both bands to obtain the full-band DFT or to obtain a fast approximate DFT by implementing pruning at both input and output sides. In this paper, the wavelet-based DFT (W-DFT) with Haar filters is interpreted as SB-DFT with Hadamard filters. The only difference is in a constant factor in the combination network. This result is very important to complete the analysis of the W-DFT, since all the results concerning the accuracy and approximation errors in the SB-DFT are applicable. An application example in spectral analysis is given for both SB-DFT and W-DFT (with different filters). The adaptive capability of the SB-DFT is included in the W-DFT algorithm to select the band of most energy as the band to be computed. Finally, the W-DFT is extended to the two-dimensional case. An application in image transformation is given using two different types of wavelet filters.
Keywords: Image Transform, Spectral Analysis, Sub-Band DFT, Wavelet DFT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16691827 Novel Hybrid Method for Gene Selection and Cancer Prediction
Authors: Liping Jing, Michael K. Ng, Tieyong Zeng
Abstract:
Microarray data profiles gene expression on a whole genome scale, therefore, it provides a good way to study associations between gene expression and occurrence or progression of cancer. More and more researchers realized that microarray data is helpful to predict cancer sample. However, the high dimension of gene expressions is much larger than the sample size, which makes this task very difficult. Therefore, how to identify the significant genes causing cancer becomes emergency and also a hot and hard research topic. Many feature selection algorithms have been proposed in the past focusing on improving cancer predictive accuracy at the expense of ignoring the correlations between the features. In this work, a novel framework (named by SGS) is presented for stable gene selection and efficient cancer prediction . The proposed framework first performs clustering algorithm to find the gene groups where genes in each group have higher correlation coefficient, and then selects the significant genes in each group with Bayesian Lasso and important gene groups with group Lasso, and finally builds prediction model based on the shrinkage gene space with efficient classification algorithm (such as, SVM, 1NN, Regression and etc.). Experiment results on real world data show that the proposed framework often outperforms the existing feature selection and prediction methods, say SAM, IG and Lasso-type prediction model.Keywords: Gene Selection, Cancer Prediction, Lasso, Clustering, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20441826 A Family Cars- Life Cycle Cost (LCC)-Oriented Hybrid Modelling Approach Combining ANN and CBR
Authors: Xiaochuan Chen, Jianguo Yang, Beizhi Li
Abstract:
Design for cost (DFC) is a method that reduces life cycle cost (LCC) from the angle of designers. Multiple domain features mapping (MDFM) methodology was given in DFC. Using MDFM, we can use design features to estimate the LCC. From the angle of DFC, the design features of family cars were obtained, such as all dimensions, engine power and emission volume. At the conceptual design stage, cars- LCC were estimated using back propagation (BP) artificial neural networks (ANN) method and case-based reasoning (CBR). Hamming space was used to measure the similarity among cases in CBR method. Levenberg-Marquardt (LM) algorithm and genetic algorithm (GA) were used in ANN. The differences of LCC estimation model between CBR and artificial neural networks (ANN) were provided. ANN and CBR separately each method has its shortcomings. By combining ANN and CBR improved results accuracy was obtained. Firstly, using ANN selected some design features that affect LCC. Then using LCC estimation results of ANN could raise the accuracy of LCC estimation in CBR method. Thirdly, using ANN estimate LCC errors and correct errors in CBR-s estimation results if the accuracy is not enough accurate. Finally, economically family cars and sport utility vehicle (SUV) was given as LCC estimation cases using this hybrid approach combining ANN and CBR.Keywords: case-based reasoning, life cycle cost (LCC), artificialneural networks (ANN), family cars
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19601825 Tree Based Data Fusion Clustering Routing Algorithm for Illimitable Network Administration in Wireless Sensor Network
Authors: Y. Harold Robinson, M. Rajaram, E. Golden Julie, S. Balaji
Abstract:
In wireless sensor networks, locality and positioning information can be captured using Global Positioning System (GPS). This message can be congregated initially from spot to identify the system. Users can retrieve information of interest from a wireless sensor network (WSN) by injecting queries and gathering results from the mobile sink nodes. Routing is the progression of choosing optimal path in a mobile network. Intermediate node employs permutation of device nodes into teams and generating cluster heads that gather the data from entity cluster’s node and encourage the collective data to base station. WSNs are widely used for gathering data. Since sensors are power-constrained devices, it is quite vital for them to reduce the power utilization. A tree-based data fusion clustering routing algorithm (TBDFC) is used to reduce energy consumption in wireless device networks. Here, the nodes in a tree use the cluster formation, whereas the elevation of the tree is decided based on the distance of the member nodes to the cluster-head. Network simulation shows that this scheme improves the power utilization by the nodes, and thus considerably improves the lifetime.
Keywords: WSN, TBDFC, LEACH, PEGASIS, TREEPSI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11161824 Isolation and Classification of Red Blood Cells in Anemic Microscopic Images
Authors: Jameela Ali Alkrimi, Loay E. George, Azizah Suliman, Abdul Rahim Ahmad, Karim Al-Jashamy
Abstract:
Red blood cells (RBCs) are among the most commonly and intensively studied type of blood cells in cell biology. Anemia is a lack of RBCs is characterized by its level compared to the normal hemoglobin level. In this study, a system based image processing methodology was developed to localize and extract RBCs from microscopic images. Also, the machine learning approach is adopted to classify the localized anemic RBCs images. Several textural and geometrical features are calculated for each extracted RBCs. The training set of features was analyzed using principal component analysis (PCA). With the proposed method, RBCs were isolated in 4.3secondsfrom an image containing 18 to 27 cells. The reasons behind using PCA are its low computation complexity and suitability to find the most discriminating features which can lead to accurate classification decisions. Our classifier algorithm yielded accuracy rates of 100%, 99.99%, and 96.50% for K-nearest neighbor (K-NN) algorithm, support vector machine (SVM), and neural network RBFNN, respectively. Classification was evaluated in highly sensitivity, specificity, and kappa statistical parameters. In conclusion, the classification results were obtained within short time period, and the results became better when PCA was used.
Keywords: Red blood cells, pre-processing image algorithms, classification algorithms, principal component analysis PCA, confusion matrix, kappa statistical parameters, ROC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3199