Search results for: Consensus function
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2210

Search results for: Consensus function

170 Application Reliability Method for Concrete Dams

Authors: Mustapha Kamel Mihoubi, Mohamed Essadik Kerkar

Abstract:

Probabilistic risk analysis models are used to provide a better understanding of the reliability and structural failure of works, including when calculating the stability of large structures to a major risk in the event of an accident or breakdown. This work is interested in the study of the probability of failure of concrete dams through the application of reliability analysis methods including the methods used in engineering. It is in our case, the use of level 2 methods via the study limit state. Hence, the probability of product failures is estimated by analytical methods of the type first order risk method (FORM) and the second order risk method (SORM). By way of comparison, a level three method was used which generates a full analysis of the problem and involves an integration of the probability density function of random variables extended to the field of security using the Monte Carlo simulation method. Taking into account the change in stress following load combinations: normal, exceptional and extreme acting on the dam, calculation of the results obtained have provided acceptable failure probability values which largely corroborate the theory, in fact, the probability of failure tends to increase with increasing load intensities, thus causing a significant decrease in strength, shear forces then induce a shift that threatens the reliability of the structure by intolerable values of the probability of product failures. Especially, in case the increase of uplift in a hypothetical default of the drainage system.

Keywords: Dam, failure, limit-state, Monte Carlo simulation, reliability, probability, simulation, sliding, Taylor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1225
169 Support Vector Regression for Retrieval of Soil Moisture Using Bistatic Scatterometer Data at X-Band

Authors: Dileep Kumar Gupta, Rajendra Prasad, Pradeep Kumar, Varun Narayan Mishra, Ajeet Kumar Vishwakarma, Prashant Kumar Srivastava

Abstract:

An approach was evaluated for the retrieval of soil moisture of bare soil surface using bistatic scatterometer data in the angular range of 200 to 700 at VV- and HH- polarization. The microwave data was acquired by specially designed X-band (10 GHz) bistatic scatterometer. The linear regression analysis was done between scattering coefficients and soil moisture content to select the suitable incidence angle for retrieval of soil moisture content. The 250 incidence angle was found more suitable. The support vector regression analysis was used to approximate the function described by the input output relationship between the scattering coefficient and corresponding measured values of the soil moisture content. The performance of support vector regression algorithm was evaluated by comparing the observed and the estimated soil moisture content by statistical performance indices %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE). The values of %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE) were found 2.9451, 1.0986 and 0.9214 respectively at HHpolarization. At VV- polarization, the values of %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE) were found 3.6186, 0.9373 and 0.9428 respectively.

Keywords: Bistatic scatterometer, soil moisture, support vector regression, RMSE, %Bias, NSE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3228
168 Implication and Genetic Variations on Lipid Profile of the Fasting Respondent

Authors: Rohayu Izanwati M. R., Muhamad Ridhwan M. R., Abbe Maleyki M. J., Ahmad Zubaidi A. L., Zahri M. K.

Abstract:

PPARs function as regulators of lipid and lipoprotein metabolism. The aim of the study was to compare the lipid profile between two phases of fasting and to examine the frequency and relationship of peroxisome proliferator-activated receptor, PPARα gene polymorphisms to lipid profile in fasting respondents. We conducted a case-control study protocol, which included 21 healthy volunteers without gender discrimination at the age of 18 years old. 3 ml of blood sample was drawn before the fasting phase and during the fasting phase (in Ramadhan month). 1ml of serum for the lipid profile was analyzed by using the automated chemistry analyser (Olympus, AU 400) and the data were analysed using the Paired T-Test (SPSS ver.20). DNA was extracted and PCR was conducted utilising 6 sets of primer. Primers were designed within 6 exons of interest in PPARα gene. Genetic and metabolic characteristics of fasting respondents and controls were estimated and compared. Fasting respondents were significantly have lowered the LDL levels (p=0.03). There were no polymorphisms detected except in exon 1 with 5% of this population study respectively. The polymorphisms in exon 1 of the PPARα gene were found in low frequency. Regarding the 1375G/T and 1386G/T polymorphisms in the exon 1 of the PPARα gene, the T-allele in fasting phase had no association with the decreased LDL levels (Fisher Exact Test). However this association is more promising when the sample size is larger in order to elucidate the precise impact of the polymorphisms on lipid profile in the population. In conclusion, the PPARα gene polymorphisms do not appear to affect the LDL of fasting respondents.

Keywords: Fasting, LDL, Peroxisome proliferator activated receptor alpha (PPAR-α), Polymorphisms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
167 Tom Stoppard: The Amorality of the Artist

Authors: Majeed Mohammed Midhin, Clare Finburgh

Abstract:

To maintain a healthy balanced loyalty, whether to art or society, posits a debatable issue. The artist is always on the look out for the potential tension between those two realms. Therefore, one of the most painful dilemmas the artist finds is how to function in a society without sacrificing the aesthetic values of his/her work. In other words, the life-long awareness of failure which derives from the concept of the artist as caught between unflattering social realities and the need to invent genuine art forms becomes a fertilizing soil for the artists to be tackled. Thus, within the framework of this dilemma, the question of the responsibility of the artist and the relationship of the art to politics will be illuminating. To a larger extent, however, in drama, this dilemma is represented by the fictional characters of the play. The present paper tackles the idea of the amorality of the artist in selected plays by Tom Stoppard. However, Stoppard’s awareness of his situation as a refugee has led him to keep at a distance from politics. He tried hard to avoid any intervention into the realms of political debate, especially in his earliest work. On the one hand, it is not meant that he did not interest in politics as such, but rather he preferred to question it than to create a fixed ideological position. On the other hand, Stoppard’s refusal to intervene in politics is ascribed to his feeling of gratitude to Britain where he settled. As a result, Stoppard has frequently been criticized for a lack of political engagement and also for not leaning too much for the left when he does engage. His reaction to these public criticisms finds expression in his self-conscious statements which defensively stressed the artifice of his work. He, like Oscar Wilde thinks that the responsibility of the artist is devoted to the realm of his/her art. Consequently, his consciousness for the role of the artist is truly reflected in his two plays, Artist Descending a Staircase (1972) and Travesties (1974).

Keywords: Amorality, responsibility, politics, ideology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1714
166 A Research on the Coordinated Development of Chengdu-Chongqing Economic Circle Under the Background of New Urbanization

Authors: Deng Tingting

Abstract:

The coordinated and integrated development of regions is an inevitable requirement for China to move towards high-quality sustainable development. As one of the regions with the best economic foundation and the strongest economic strength in the western China, it is a typical area with national importance and strong network connection characteristics in terms of the comprehensive effect of linking the inland hinterland and connecting the western and national urban networks. The integrated development of the Chengdu-Chongqing economic circle is of great strategic significance for the rapid and high-quality development of the western region. In the context of new urbanization, this paper takes 16 urban units within the economic circle as the research object, based on the 5-year panel data of population, regional economy and spatial construction and development from 2016 to 2020, using the entropy method and Theil index to analyze the three target layers, and cause analysis. The research shows that there are temporal and spatial differences in the Chengdu-Chongqing economic circle, and there are significant differences between the core city and the surrounding cities. Therefore, by reforming and innovating the regional coordinated development mechanism, breaking administrative barriers, and strengthening the "polar nucleus" radiation function to release the driving force for economic development, especially in the gully areas of economic development belts, will not only promote the coordinated development of internal regions, but also promote the coordinated and sustainable development of the western region and toward a high-quality development path.

Keywords: Chengdu-Chongqing economic circle, new urbanization, coordinated regional development, Theil Index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 202
165 Extracting Terrain Points from Airborne Laser Scanning Data in Densely Forested Areas

Authors: Ziad Abdeldayem, Jakub Markiewicz, Kunal Kansara, Laura Edwards

Abstract:

Airborne Laser Scanning (ALS) is one of the main technologies for generating high-resolution digital terrain models (DTMs). DTMs are crucial to several applications, such as topographic mapping, flood zone delineation, geographic information systems (GIS), hydrological modelling, spatial analysis, etc. Laser scanning system generates irregularly spaced three-dimensional cloud of points. Raw ALS data are mainly ground points (that represent the bare earth) and non-ground points (that represent buildings, trees, cars, etc.). Removing all the non-ground points from the raw data is referred to as filtering. Filtering heavily forested areas is considered a difficult and challenging task as the canopy stops laser pulses from reaching the terrain surface. This research presents an approach for removing non-ground points from raw ALS data in densely forested areas. Smoothing splines are exploited to interpolate and fit the noisy ALS data. The presented filter utilizes a weight function to allocate weights for each point of the data. Furthermore, unlike most of the methods, the presented filtering algorithm is designed to be automatic. Three different forested areas in the United Kingdom are used to assess the performance of the algorithm. The results show that the generated DTMs from the filtered data are accurate (when compared against reference terrain data) and the performance of the method is stable for all the heavily forested data samples. The average root mean square error (RMSE) value is 0.35 m.

Keywords: Airborne laser scanning, digital terrain models, filtering, forested areas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 718
164 Hybrid Adaptive Modeling to Enhance Robustness of Real-Time Optimization

Authors: Hussain Syed Asad, Richard Kwok Kit Yuen, Gongsheng Huang

Abstract:

Real-time optimization has been considered an effective approach for improving energy efficient operation of heating, ventilation, and air-conditioning (HVAC) systems. In model-based real-time optimization, model mismatches cannot be avoided. When model mismatches are significant, the performance of the real-time optimization will be impaired and hence the expected energy saving will be reduced. In this paper, the model mismatches for chiller plant on real-time optimization are considered. In the real-time optimization of the chiller plant, simplified semi-physical or grey box model of chiller is always used, which should be identified using available operation data. To overcome the model mismatches associated with the chiller model, hybrid Genetic Algorithms (HGAs) method is used for online real-time training of the chiller model. HGAs combines Genetic Algorithms (GAs) method (for global search) and traditional optimization method (i.e. faster and more efficient for local search) to avoid conventional hit and trial process of GAs. The identification of model parameters is synthesized as an optimization problem; and the objective function is the Least Square Error between the output from the model and the actual output from the chiller plant. A case study is used to illustrate the implementation of the proposed method. It has been shown that the proposed approach is able to provide reliability in decision making, enhance the robustness of the real-time optimization strategy and improve on energy performance.

Keywords: Energy performance, hybrid adaptive modeling, hybrid genetic algorithms, real-time optimization, heating, ventilation, and air-conditioning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1140
163 Improved Estimation of Evolutionary Spectrum based on Short Time Fourier Transforms and Modified Magnitude Group Delay by Signal Decomposition

Authors: H K Lakshminarayana, J S Bhat, H M Mahesh

Abstract:

A new estimator for evolutionary spectrum (ES) based on short time Fourier transform (STFT) and modified group delay function (MGDF) by signal decomposition (SD) is proposed. The STFT due to its built-in averaging, suppresses the cross terms and the MGDF preserves the frequency resolution of the rectangular window with the reduction in the Gibbs ripple. The present work overcomes the magnitude distortion observed in multi-component non-stationary signals with STFT and MGDF estimation of ES using SD. The SD is achieved either through discrete cosine transform based harmonic wavelet transform (DCTHWT) or perfect reconstruction filter banks (PRFB). The MGDF also improves the signal to noise ratio by removing associated noise. The performance of the present method is illustrated for cross chirp and frequency shift keying (FSK) signals, which indicates that its performance is better than STFT-MGDF (STFT-GD) alone. Further its noise immunity is better than STFT. The SD based methods, however cannot bring out the frequency transition path from band to band clearly, as there will be gap in the contour plot at the transition. The PRFB based STFT-SD shows good performance than DCTHWT decomposition method for STFT-GD.

Keywords: Evolutionary Spectrum, Modified Group Delay, Discrete Cosine Transform, Harmonic Wavelet Transform, Perfect Reconstruction Filter Banks, Short Time Fourier Transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611
162 A Perceptually Optimized Foveation Based Wavelet Embedded Zero Tree Image Coding

Authors: A. Bajit, M. Nahid, A. Tamtaoui, E. H. Bouyakhf

Abstract:

In this paper, we propose a Perceptually Optimized Foveation based Embedded ZeroTree Image Coder (POEFIC) that introduces a perceptual weighting to wavelet coefficients prior to control SPIHT encoding algorithm in order to reach a targeted bit rate with a perceptual quality improvement with respect to a given bit rate a fixation point which determines the region of interest ROI. The paper also, introduces a new objective quality metric based on a Psychovisual model that integrates the properties of the HVS that plays an important role in our POEFIC quality assessment. Our POEFIC coder is based on a vision model that incorporates various masking effects of human visual system HVS perception. Thus, our coder weights the wavelet coefficients based on that model and attempts to increase the perceptual quality for a given bit rate and observation distance. The perceptual weights for all wavelet subbands are computed based on 1) foveation masking to remove or reduce considerable high frequencies from peripheral regions 2) luminance and Contrast masking, 3) the contrast sensitivity function CSF to achieve the perceptual decomposition weighting. The new perceptually optimized codec has the same complexity as the original SPIHT techniques. However, the experiments results show that our coder demonstrates very good performance in terms of quality measurement.

Keywords: DWT, linear-phase 9/7 filter, Foveation Filtering, CSF implementation approaches, 9/7 Wavelet JND Thresholds and Wavelet Error Sensitivity WES, Luminance and Contrast masking, standard SPIHT, Objective Quality Measure, Probability Score PS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1795
161 General Formula for Water Surface Profile over Side Weir in the Combined, Trapezoidal and Exponential, Channels

Authors: Abdulrahman Abdulrahman

Abstract:

A side weir is a hydraulic structure set into the side of a channel. This structure is used for water level control in channels, to divert flow from a main channel into a side channel when the water level in the main channel exceeds a specific limit and as storm overflows from urban sewerage system. Computation of water surface over the side weirs is essential to determine the flow rate of the side weir. Analytical solutions for water surface profile along rectangular side weir are available only for the special cases of rectangular and trapezoidal channels considering constant specific energy. In this paper, a rectangular side weir located in a combined (trapezoidal with exponential) channel was considered. Expanding binominal series of integer and fraction powers and the using of reduction formula of cosine function integrals, a general analytical formula was obtained for water surface profile along a side weir in a combined (trapezoidal with exponential) channel. Since triangular, rectangular, trapezoidal and parabolic cross-sections are special cases of the combined cross section, the derived formula, is applicable to triangular, rectangular, trapezoidal cross-sections as analytical solution and semi-analytical solution to parabolic cross-section with maximum relative error smaller than 0.76%. The proposed solution should be a useful engineering tool for the evaluation and design of side weirs in open channel.

Keywords: Analytical solution, combined channel, exponential channel, side weirs, trapezoidal channel, water surface profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 927
160 Study on the Addition of Solar Generating and Energy Storage Units to a Power Distribution System

Authors: T. Costa, D. Narvaez, K. Melo, M. Villalva

Abstract:

Installation of micro-generators based on renewable energy in power distribution system has increased in recent years, with the main renewable sources being solar and wind. Due to the intermittent nature of renewable energy sources, such micro-generators produce time-varying energy which does not correspond at certain times of the day to the peak energy consumption of end users. For this reason, the use of energy storage units next to the grid contributes to the proper leveling of the buses’ voltage level according to Brazilian energy quality standards. In this work, the effect of the addition of a photovoltaic solar generator and a store of energy in the busbar voltages of an electric system is analyzed. The consumption profile is defined as the average hourly use of appliances in a common residence, and the generation profile is defined as a function of the solar irradiation available in a locality. The power summation method is validated with analytical calculation and is used to calculate the modules and angles of the voltages in the buses of an electrical system based on the IEEE standard, at each hour of the day and with defined load and generation profiles. The results show that bus 5 presents the worst voltage level at the power consumption peaks and stabilizes at the appropriate range with the inclusion of the energy storage during the night time period. Solar generator maintains improvement of the voltage level during the period when it receives solar irradiation, having peaks of production during the 12 pm (without exceeding the appropriate maximum levels of tension).

Keywords: Energy storage, power distribution system, solar generator, voltage level.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 829
159 Time Series Forecasting Using Various Deep Learning Models

Authors: Jimeng Shi, Mahek Jain, Giri Narasimhan

Abstract:

Time Series Forecasting (TSF) is used to predict the target variables at a future time point based on the learning from previous time points. To keep the problem tractable, learning methods use data from a fixed length window in the past as an explicit input. In this paper, we study how the performance of predictive models change as a function of different look-back window sizes and different amounts of time to predict into the future. We also consider the performance of the recent attention-based transformer models, which had good success in the image processing and natural language processing domains. In all, we compare four different deep learning methods (Recurrent Neural Network (RNN), Long Short-term Memory (LSTM), Gated Recurrent Units (GRU), and Transformer) along with a baseline method. The dataset (hourly) we used is the Beijing Air Quality Dataset from the website of University of California, Irvine (UCI), which includes a multivariate time series of many factors measured on an hourly basis for a period of 5 years (2010-14). For each model, we also report on the relationship between the performance and the look-back window sizes and the number of predicted time points into the future. Our experiments suggest that Transformer models have the best performance with the lowest Mean   Absolute Errors (MAE = 14.599, 23.273) and Root Mean Square Errors (RSME = 23.573, 38.131) for most of our single-step and multi-steps predictions. The best size for the look-back window to predict 1 hour into the future appears to be one day, while 2 or 4 days perform the best to predict 3 hours into the future.

Keywords: Air quality prediction, deep learning algorithms, time series forecasting, look-back window.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1168
158 On the AC-Side Interface Filter in Three-Phase Shunt Active Power Filter Systems

Authors: Mihaela Popescu, Alexandru Bitoleanu, Mircea Dobriceanu

Abstract:

The proper selection of the AC-side passive filter interconnecting the voltage source converter to the power supply is essential to obtain satisfactory performances of an active power filter system. The use of the LCL-type filter has the advantage of eliminating the high frequency switching harmonics in the current injected into the power supply. This paper is mainly focused on analyzing the influence of the interface filter parameters on the active filtering performances. Some design aspects are pointed out. Thus, the design of the AC interface filter starts from transfer functions by imposing the filter performance which refers to the significant current attenuation of the switching harmonics without affecting the harmonics to be compensated. A Matlab/Simulink model of the entire active filtering system including a concrete nonlinear load has been developed to examine the system performances. It is shown that a gamma LC filter could accomplish the attenuation requirement of the current provided by converter. Moreover, the existence of an optimal value of the grid-side inductance which minimizes the total harmonic distortion factor of the power supply current is pointed out. Nevertheless, a small converter-side inductance and a damping resistance in series with the filter capacitance are absolutely needed in order to keep the ripple and oscillations of the current at the converter side within acceptable limits. The effect of change in the LCL-filter parameters is evaluated. It is concluded that good active filtering performances can be achieved with small values of the capacitance and converter-side inductance.

Keywords: Active power filter, LCL filter, Matlab/Simulinkmodeling, Passive filters, Transfer function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3020
157 Simulation of Dynamic Behavior of Seismic Isolators Using a Parallel Elasto-Plastic Model

Authors: Nicolò Vaiana, Giorgio Serino

Abstract:

In this paper, a one-dimensional (1d) Parallel Elasto- Plastic Model (PEPM), able to simulate the uniaxial dynamic behavior of seismic isolators having a continuously decreasing tangent stiffness with increasing displacement, is presented. The parallel modeling concept is applied to discretize the continuously decreasing tangent stiffness function, thus allowing to simulate the dynamic behavior of seismic isolation bearings by putting linear elastic and nonlinear elastic-perfectly plastic elements in parallel. The mathematical model has been validated by comparing the experimental force-displacement hysteresis loops, obtained testing a helical wire rope isolator and a recycled rubber-fiber reinforced bearing, with those predicted numerically. Good agreement between the simulated and experimental results shows that the proposed model can be an effective numerical tool to predict the forcedisplacement relationship of seismic isolators within relatively large displacements. Compared to the widely used Bouc-Wen model, the proposed one allows to avoid the numerical solution of a first order ordinary nonlinear differential equation for each time step of a nonlinear time history analysis, thus reducing the computation effort, and requires the evaluation of only three model parameters from experimental tests, namely the initial tangent stiffness, the asymptotic tangent stiffness, and a parameter defining the transition from the initial to the asymptotic tangent stiffness.

Keywords: Base isolation, earthquake engineering, parallel elasto-plastic model, seismic isolators, softening hysteresis loops.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1041
156 Limiting Fiber Extensibility as Parameter for Damage in Venous Wall

Authors: Lukas Horny, Rudolf Zitny, Hynek Chlup, Tomas Adamek, Michal Sara

Abstract:

An inflation–extension test with human vena cava inferior was performed with the aim to fit a material model. The vein was modeled as a thick–walled tube loaded by internal pressure and axial force. The material was assumed to be an incompressible hyperelastic fiber reinforced continuum. Fibers are supposed to be arranged in two families of anti–symmetric helices. Considered anisotropy corresponds to local orthotropy. Used strain energy density function was based on a concept of limiting strain extensibility. The pressurization was comprised by four pre–cycles under physiological venous loading (0 – 4kPa) and four cycles under nonphysiological loading (0 – 21kPa). Each overloading cycle was performed with different value of axial weight. Overloading data were used in regression analysis to fit material model. Considered model did not fit experimental data so good. Especially predictions of axial force failed. It was hypothesized that due to nonphysiological values of loading pressure and different values of axial weight the material was not preconditioned enough and some damage occurred inside the wall. A limiting fiber extensibility parameter Jm was assumed to be in relation to supposed damage. Each of overloading cycles was fitted separately with different values of Jm. Other parameters were held the same. This approach turned out to be successful. Variable value of Jm can describe changes in the axial force – axial stretch response and satisfy pressure – radius dependence simultaneously.

Keywords: Constitutive model, damage, fiber reinforcedcomposite, limiting fiber extensibility, preconditioning, vena cavainferior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1472
155 Optimal Image Representation for Linear Canonical Transform Multiplexing

Authors: Navdeep Goel, Salvador Gabarda

Abstract:

Digital images are widely used in computer applications. To store or transmit the uncompressed images requires considerable storage capacity and transmission bandwidth. Image compression is a means to perform transmission or storage of visual data in the most economical way. This paper explains about how images can be encoded to be transmitted in a multiplexing time-frequency domain channel. Multiplexing involves packing signals together whose representations are compact in the working domain. In order to optimize transmission resources each 4 × 4 pixel block of the image is transformed by a suitable polynomial approximation, into a minimal number of coefficients. Less than 4 × 4 coefficients in one block spares a significant amount of transmitted information, but some information is lost. Different approximations for image transformation have been evaluated as polynomial representation (Vandermonde matrix), least squares + gradient descent, 1-D Chebyshev polynomials, 2-D Chebyshev polynomials or singular value decomposition (SVD). Results have been compared in terms of nominal compression rate (NCR), compression ratio (CR) and peak signal-to-noise ratio (PSNR) in order to minimize the error function defined as the difference between the original pixel gray levels and the approximated polynomial output. Polynomial coefficients have been later encoded and handled for generating chirps in a target rate of about two chirps per 4 × 4 pixel block and then submitted to a transmission multiplexing operation in the time-frequency domain.

Keywords: Chirp signals, Image multiplexing, Image transformation, Linear canonical transform, Polynomial approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2129
154 Investigation of Improved Chaotic Signal Tracking by Echo State Neural Networks and Multilayer Perceptron via Training of Extended Kalman Filter Approach

Authors: Farhad Asadi, S. Hossein Sadati

Abstract:

This paper presents a prediction performance of feedforward Multilayer Perceptron (MLP) and Echo State Networks (ESN) trained with extended Kalman filter. Feedforward neural networks and ESN are powerful neural networks which can track and predict nonlinear signals. However, their tracking performance depends on the specific signals or data sets, having the risk of instability accompanied by large error. In this study we explore this process by applying different network size and leaking rate for prediction of nonlinear or chaotic signals in MLP neural networks. Major problems of ESN training such as the problem of initialization of the network and improvement in the prediction performance are tackled. The influence of coefficient of activation function in the hidden layer and other key parameters are investigated by simulation results. Extended Kalman filter is employed in order to improve the sequential and regulation learning rate of the feedforward neural networks. This training approach has vital features in the training of the network when signals have chaotic or non-stationary sequential pattern. Minimization of the variance in each step of the computation and hence smoothing of tracking were obtained by examining the results, indicating satisfactory tracking characteristics for certain conditions. In addition, simulation results confirmed satisfactory performance of both of the two neural networks with modified parameterization in tracking of the nonlinear signals.

Keywords: Feedforward neural networks, nonlinear signal prediction, echo state neural networks approach, leaking rates, capacity of neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 758
153 Modeling of Surface Roughness for Flow over a Complex Vegetated Surface

Authors: Wichai Pattanapol, Sarah J. Wakes, Michael J. Hilton, Katharine J.M. Dickinson

Abstract:

Turbulence modeling of large-scale flow over a vegetated surface is complex. Such problems involve large scale computational domains, while the characteristics of flow near the surface are also involved. In modeling large scale flow, surface roughness including vegetation is generally taken into account by mean of roughness parameters in the modified law of the wall. However, the turbulence structure within the canopy region cannot be captured with this method, another method which applies source/sink terms to model plant drag can be used. These models have been developed and tested intensively but with a simple surface geometry. This paper aims to compare the use of roughness parameter, and additional source/sink terms in modeling the effect of plant drag on wind flow over a complex vegetated surface. The RNG k-ε turbulence model with the non-equilibrium wall function was tested with both cases. In addition, the k-ω turbulence model, which is claimed to be computationally stable, was also investigated with the source/sink terms. All numerical results were compared to the experimental results obtained at the study site Mason Bay, Stewart Island, New Zealand. In the near-surface region, it is found that the results obtained by using the source/sink term are more accurate than those using roughness parameters. The k-ω turbulence model with source/sink term is more appropriate as it is more accurate and more computationally stable than the RNG k-ε turbulence model. At higher region, there is no significant difference amongst the results obtained from all simulations.

Keywords: CFD, canopy flow, surface roughness, turbulence models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2963
152 Novel Use of a Quality Assurance Tool for Integrating Technology to HSE

Authors: Ragi Poyyara, Vivek V., Ashish Khaparde

Abstract:

The product development process (PDP) in the Technology group plays a very important role in the launch of any product. While a manufacturing process encourages the use of certain measures to reduce health, safety and environmental (HSE) risks on the shop floor, the PDP concentrates on the use of Geometric Dimensioning and Tolerancing (GD&T) to develop a flawless design. Furthermore, PDP distributes and coordinates activities between different departments such as marketing, purchasing, and manufacturing. However, it is seldom realized that PDP makes a significant contribution to developing a product that reduces HSE risks by encouraging the Technology group to use effective GD&T. The GD&T is a precise communication tool that uses a set of symbols, rules, and definitions to mathematically define parts to be manufactured. It is a quality assurance method widely used in the oil and gas sector. Traditionally it is used to ensure the interchangeability of a part without affecting its form, fit, and function. Parts that do not meet these requirements are rejected during quality audits. This paper discusses how the Technology group integrates this quality assurance tool into the PDP and how the tool plays a major role in helping the HSE department in its goal towards eliminating HSE incidents. The PDP involves a thorough risk assessment and establishes a method to address those risks during the design stage. An illustration shows how GD&T helped reduce safety risks by ergonomically improving assembling operations. A brief discussion explains how tolerances provided on a part help prevent finger injury. This tool has equipped Technology to produce fixtures, which are used daily in operations as well as manufacturing. By applying GD&T to create good fits, HSE risks are mitigated for operating personnel. Both customers and service providers benefit from reduced safety risks.

Keywords: HSE, PDP, GD&T, risks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834
151 Structural Characteristics of HPDSP Concrete on Beam Column Joints

Authors: Sushil Kumar Swar, Sanjay Kumar Sharma, Hari Krishan Sharma, Sushil Kumar

Abstract:

The seriously damaged structures during earthquakes show the need and importance of design of reinforced concrete structures with high ductility. Reinforced concrete beam-column joints have an important function in all structures. Under seismic excitation, the beam column joint region is subjected to horizontal and vertical shear forces whose magnitude is many times higher than the adjacent beam and column. Strength and ductility of structures depends mainly on proper detailing of the reinforcement in beamcolumn joints and the old structures were found ductility deficient. DSP materials are obtained by using high quantities of super plasticizers and high volumes of micro silica. In the case of High Performance Densified Small Particle Concrete (HPDSPC), since concrete is dense even at the micro-structure level, tensile strain would be much higher than that of the conventional SFRC, SIFCON & SIMCON. This in turn will improve cracking behaviour, ductility and energy absorption capacity of composites in addition to durability. The fine fibers used in our mix are 0.3mm diameter and 10 mm which can be easily placed with high percentage. These fibers easily transfer stresses and act as a composite concrete unit to take up extremely high loads with high compressive strength. HPDSPC placed in the beam column joints helps in safety of human life due to prolonged failure.

Keywords: High Performance Densified Small Particle Concrete (HPDSPC), Steel Fıber Reinforced Concrete (SFRC), Slurry Infiltrated Concrete (SIFCON), Slurry Infiltrated Mat Concrete (SIMCON).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2164
150 Comparison of Polynomial and Radial Basis Kernel Functions based SVR and MLR in Modeling Mass Transfer by Vertical and Inclined Multiple Plunging Jets

Authors: S. Deswal, M. Pal

Abstract:

Presently various computational techniques are used in modeling and analyzing environmental engineering data. In the present study, an intra-comparison of polynomial and radial basis kernel functions based on Support Vector Regression and, in turn, an inter-comparison with Multi Linear Regression has been attempted in modeling mass transfer capacity of vertical (θ = 90O) and inclined (θ multiple plunging jets (varying from 1 to 16 numbers). The data set used in this study consists of four input parameters with a total of eighty eight cases, forty four each for vertical and inclined multiple plunging jets. For testing, tenfold cross validation was used. Correlation coefficient values of 0.971 and 0.981 along with corresponding root mean square error values of 0.0025 and 0.0020 were achieved by using polynomial and radial basis kernel functions based Support Vector Regression respectively. An intra-comparison suggests improved performance by radial basis function in comparison to polynomial kernel based Support Vector Regression. Further, an inter-comparison with Multi Linear Regression (correlation coefficient = 0.973 and root mean square error = 0.0024) reveals that radial basis kernel functions based Support Vector Regression performs better in modeling and estimating mass transfer by multiple plunging jets.

Keywords: Mass transfer, multiple plunging jets, polynomial and radial basis kernel functions, Support Vector Regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433
149 Government of Ghana’s Budget: Its Functions, Coverage, Classification, and Integration with Chart of Accounts

Authors: Mohammed Sani Abdulai

Abstract:

Government budgets are the primary instruments for formulating and implementing a country’s fiscal policy objectives, development priorities, and the overall socio-economic aspirations of its people. Thus, in this paper, the author examined the Government of Ghana’s budgets with respect to their functions, coverage, classifications, and integration with the country’s chart of accounts. The author did so by amalgamating the research findings of extant literature with (a) the operational and procedural guidelines underpinning the formulation and execution of the government’s budgets; (b) the recommendations made by various development partners and thinktanks on reforming the country’s budgeting processes and procedures; and (c) the lessons Ghana could learn from the budget reform efforts of other countries. By way of research findings, the paper showed that the Government of Ghana’s budgets in terms of function are both eclectic and multidimensional. On coverage, the paper showed that the country’s budgets duly cover the revenues and expenditures of the general government (i.e., both the central and sub-national governments). Finally, on classifications, the paper noted with delight the Government of Ghana’s effort in providing classificatory codes to both its national development agenda and such international development goals as the AU’s Agenda 2063 and the UN’s Sustainable Development Goals. However, the paper found some significant lapses that require a complete overhaul and structuring on the integrations of its budget classifications with its chart of accounts. Thus, the paper concluded with a detailed examination of the challenges confronting the country’s current chart of accounts and recommendations for addressing them.

Keywords: Budget, budgetary transactions, budgetary governance, Chart of Accounts, classification, composition, coverage, Public Financial Management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 515
148 Scatterer Density in Edge and Coherence Enhancing Nonlinear Anisotropic Diffusion for Medical Ultrasound Speckle Reduction

Authors: Ahmed Badawi, J. Michael Johnson, Mohamed Mahfouz

Abstract:

This paper proposes new enhancement models to the methods of nonlinear anisotropic diffusion to greatly reduce speckle and preserve image features in medical ultrasound images. By incorporating local physical characteristics of the image, in this case scatterer density, in addition to the gradient, into existing tensorbased image diffusion methods, we were able to greatly improve the performance of the existing filtering methods, namely edge enhancing (EE) and coherence enhancing (CE) diffusion. The new enhancement methods were tested using various ultrasound images, including phantom and some clinical images, to determine the amount of speckle reduction, edge, and coherence enhancements. Scatterer density weighted nonlinear anisotropic diffusion (SDWNAD) for ultrasound images consistently outperformed its traditional tensor-based counterparts that use gradient only to weight the diffusivity function. SDWNAD is shown to greatly reduce speckle noise while preserving image features as edges, orientation coherence, and scatterer density. SDWNAD superior performances over nonlinear coherent diffusion (NCD), speckle reducing anisotropic diffusion (SRAD), adaptive weighted median filter (AWMF), wavelet shrinkage (WS), and wavelet shrinkage with contrast enhancement (WSCE), make these methods ideal preprocessing steps for automatic segmentation in ultrasound imaging.

Keywords: Nonlinear anisotropic diffusion, ultrasound imaging, speckle reduction, scatterer density estimation, edge based enhancement, coherence enhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906
147 Discovery of Quantified Hierarchical Production Rules from Large Set of Discovered Rules

Authors: Tamanna Siddiqui, M. Afshar Alam

Abstract:

Automated discovery of Rule is, due to its applicability, one of the most fundamental and important method in KDD. It has been an active research area in the recent past. Hierarchical representation allows us to easily manage the complexity of knowledge, to view the knowledge at different levels of details, and to focus our attention on the interesting aspects only. One of such efficient and easy to understand systems is Hierarchical Production rule (HPRs) system. A HPR, a standard production rule augmented with generality and specificity information, is of the following form: Decision If < condition> Generality Specificity . HPRs systems are capable of handling taxonomical structures inherent in the knowledge about the real world. This paper focuses on the issue of mining Quantified rules with crisp hierarchical structure using Genetic Programming (GP) approach to knowledge discovery. The post-processing scheme presented in this work uses Quantified production rules as initial individuals of GP and discovers hierarchical structure. In proposed approach rules are quantified by using Dempster Shafer theory. Suitable genetic operators are proposed for the suggested encoding. Based on the Subsumption Matrix(SM), an appropriate fitness function is suggested. Finally, Quantified Hierarchical Production Rules (HPRs) are generated from the discovered hierarchy, using Dempster Shafer theory. Experimental results are presented to demonstrate the performance of the proposed algorithm.

Keywords: Knowledge discovery in database, quantification, dempster shafer theory, genetic programming, hierarchy, subsumption matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527
146 An Improved Total Variation Regularization Method for Denoising Magnetocardiography

Authors: Yanping Liao, Congcong He, Ruigang Zhao

Abstract:

The application of magnetocardiography signals to detect cardiac electrical function is a new technology developed in recent years. The magnetocardiography signal is detected with Superconducting Quantum Interference Devices (SQUID) and has considerable advantages over electrocardiography (ECG). It is difficult to extract Magnetocardiography (MCG) signal which is buried in the noise, which is a critical issue to be resolved in cardiac monitoring system and MCG applications. In order to remove the severe background noise, the Total Variation (TV) regularization method is proposed to denoise MCG signal. The approach transforms the denoising problem into a minimization optimization problem and the Majorization-minimization algorithm is applied to iteratively solve the minimization problem. However, traditional TV regularization method tends to cause step effect and lacks constraint adaptability. In this paper, an improved TV regularization method for denoising MCG signal is proposed to improve the denoising precision. The improvement of this method is mainly divided into three parts. First, high-order TV is applied to reduce the step effect, and the corresponding second derivative matrix is used to substitute the first order. Then, the positions of the non-zero elements in the second order derivative matrix are determined based on the peak positions that are detected by the detection window. Finally, adaptive constraint parameters are defined to eliminate noises and preserve signal peak characteristics. Theoretical analysis and experimental results show that this algorithm can effectively improve the output signal-to-noise ratio and has superior performance.

Keywords: Constraint parameters, derivative matrix, magnetocardiography, regular term, total variation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 698
145 Development of Sports Nation on the Way of Health Management

Authors: Beatrix Faragó, Zsolt Szakály, Ágnes Kovácsné Tóth, Csaba Konczos, Norbert Kovács, Zsófia Pápai, Tamás Kertész

Abstract:

The future of the nation is the embodiment of a healthy society. A key segment of government policy is the development of health and a health-oriented environment. As a result, sport as an activator of health is an important area for development. In Hungary, sport is a strategic sector with the aim of developing a sports nation. The function of sport in the global society is multifaceted, which is manifested in both social and economic terms. The economic importance of sport is gaining ground in the world, with implications for Central and Eastern Europe. Smaller states, such as Hungary, cannot ignore the economic effects of exploiting the effects of sport. The relationship between physical activity and health is driven by the health economy towards the nation's economic factor. In our research, we analyzed sport as a national strategy sector and its impact on age groups. By presenting the current state of health behavior, we get an idea of the directions where development opportunities require even more intervention. The foundation of the health of a nation is the young age group, whose shaping of health will shape the future generation. Our research was attended by university students from the Faculty of Health and Sports Sciences who will be experts in the field of health in the future. The other group is the elderly, who are a growing social group due to demographic change and are a key segment of the labor market and consumer society. Our study presents the health behavior of the two age groups, their differences, and similarities. The survey also identifies gaps in the development of a health management strategy that national strategies should take into account.

Keywords: Competitiveness, health behavior, health economy, health management, sports nation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1016
144 The Formation of Mutual Understanding in Conversation: An Embodied Approach

Authors: Haruo Okabayashi

Abstract:

The mutual understanding in conversation is very important for human relations. This study investigates the mental function of the formation of mutual understanding between two people in conversation using the embodied approach. Forty people participated in this study. They are divided into pairs randomly. Four conversation situations between two (make/listen to fun or pleasant talk, make/listen to regrettable talk) are set for four minutes each, and the finger plethysmogram (200 Hz) of each participant is measured. As a result, the attractors of the participants who reported “I did not understand my partner” show the collapsed shape, which means the fluctuation of their rhythm is too small to match their partner’s rhythm, and their cross correlation is low. The autonomic balance of both persons tends to resonate during conversation, and both LLEs tend to resonate, too. In human history, in order for human beings as weak mammals to live, they may have been with others; that is, they have brought about resonating characteristics, which is called self-organization. However, the resonant feature sometimes collapses, depending on the lifestyle that the person was formed by himself after birth. It is difficult for people who do not have a lifestyle of mutual gaze to resonate their biological signal waves with others’. These people have features such as anxiety, fatigue, and confusion tendency. Mutual understanding is thought to be formed as a result of cooperation between the features of self-organization of the persons who are talking and the lifestyle indicated by mutual gaze. Such an entanglement phenomenon is called a nonlinear relation. By this research, it is found that the formation of mutual understanding is expressed by the rhythm of a biological signal showing a nonlinear relationship.

Keywords: Embodied approach, finger plethysmogram, mutual understanding, nonlinear phenomenon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1298
143 Development of Electrospun Membranes with Defined Polyethylene Collagen and Oxide Architectures Reinforced with Medium and High Intensity Statins

Authors: S. Jaramillo, Y. Montoya, W. Agudelo, J. Bustamante

Abstract:

Cardiovascular diseases (CVD) are related to affectations of the heart and blood vessels, within these are pathologies such as coronary or peripheral heart disease, caused by the narrowing of the vessel wall (atherosclerosis), which is related to the accumulation of Low-Density Lipoproteins (LDL) in the arterial walls that leads to a progressive reduction of the lumen of the vessel and alterations in blood perfusion. Currently, the main therapeutic strategy for this type of alteration is drug treatment with statins, which inhibit the enzyme 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase), responsible for modulating the rate of cholesterol production and other isoprenoids in the mevalonate pathway. This enzyme induces the expression of LDL receptors in the liver, increasing their number on the surface of liver cells, reducing the plasma concentration of cholesterol. On the other hand, when the blood vessel presents stenosis, a surgical procedure with vascular implants is indicated, which are used to restore circulation in the arterial or venous bed. Among the materials used for the development of vascular implants are Dacron® and Teflon®, which perform the function of re-waterproofing the circulatory circuit, but due to their low biocompatibility, they do not have the ability to promote remodeling and tissue regeneration processes. Based on this, the present research proposes the development of a hydrolyzed collagen and polyethylene oxide electrospun membrane reinforced with medium and high-intensity statins, so that in future research it can favor tissue remodeling processes from its microarchitecture.

Keywords: atherosclerosis, medium and high-intensity statins, microarchitecture, electrospun membrane

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 646
142 A Novel Neighborhood Defined Feature Selection on Phase Congruency Images for Recognition of Faces with Extreme Variations

Authors: Satyanadh Gundimada, Vijayan K Asari

Abstract:

A novel feature selection strategy to improve the recognition accuracy on the faces that are affected due to nonuniform illumination, partial occlusions and varying expressions is proposed in this paper. This technique is applicable especially in scenarios where the possibility of obtaining a reliable intra-class probability distribution is minimal due to fewer numbers of training samples. Phase congruency features in an image are defined as the points where the Fourier components of that image are maximally inphase. These features are invariant to brightness and contrast of the image under consideration. This property allows to achieve the goal of lighting invariant face recognition. Phase congruency maps of the training samples are generated and a novel modular feature selection strategy is implemented. Smaller sub regions from a predefined neighborhood within the phase congruency images of the training samples are merged to obtain a large set of features. These features are arranged in the order of increasing distance between the sub regions involved in merging. The assumption behind the proposed implementation of the region merging and arrangement strategy is that, local dependencies among the pixels are more important than global dependencies. The obtained feature sets are then arranged in the decreasing order of discriminating capability using a criterion function, which is the ratio of the between class variance to the within class variance of the sample set, in the PCA domain. The results indicate high improvement in the classification performance compared to baseline algorithms.

Keywords: Discriminant analysis, intra-class probability distribution, principal component analysis, phase congruency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850
141 An Autonomous Collaborative Forecasting System Implementation – The First Step towards Successful CPFR System

Authors: Chi-Fang Huang, Yun-Shiow Chen, Yun-Kung Chung

Abstract:

In the past decade, artificial neural networks (ANNs) have been regarded as an instrument for problem-solving and decision-making; indeed, they have already done with a substantial efficiency and effectiveness improvement in industries and businesses. In this paper, the Back-Propagation neural Networks (BPNs) will be modulated to demonstrate the performance of the collaborative forecasting (CF) function of a Collaborative Planning, Forecasting and Replenishment (CPFR®) system. CPFR functions the balance between the sufficient product supply and the necessary customer demand in a Supply and Demand Chain (SDC). Several classical standard BPN will be grouped, collaborated and exploited for the easy implementation of the proposed modular ANN framework based on the topology of a SDC. Each individual BPN is applied as a modular tool to perform the task of forecasting SKUs (Stock-Keeping Units) levels that are managed and supervised at a POS (point of sale), a wholesaler, and a manufacturer in an SDC. The proposed modular BPN-based CF system will be exemplified and experimentally verified using lots of datasets of the simulated SDC. The experimental results showed that a complex CF problem can be divided into a group of simpler sub-problems based on the single independent trading partners distributed over SDC, and its SKU forecasting accuracy was satisfied when the system forecasted values compared to the original simulated SDC data. The primary task of implementing an autonomous CF involves the study of supervised ANN learning methodology which aims at making “knowledgeable" decision for the best SKU sales plan and stocks management.

Keywords: CPFR, artificial neural networks, global logistics, supply and demand chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1993