Search results for: sequential State estimator.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2367

Search results for: sequential State estimator.

387 Three-Dimensional Simulation of Free Electron Laser with Prebunching and Efficiency Enhancement

Authors: M. Chitsazi, B. Maraghechi, M. H. Rouhani

Abstract:

Three-dimensional simulation of harmonic up generation in free electron laser amplifier operating simultaneously with a cold and relativistic electron beam is presented in steady-state regime where the slippage of the electromagnetic wave with respect to the electron beam is ignored. By using slowly varying envelope approximation and applying the source-dependent expansion to wave equations, electromagnetic fields are represented in terms of the Hermit Gaussian modes which are well suited for the planar wiggler configuration. The electron dynamics is described by the fully threedimensional Lorentz force equation in presence of the realistic planar magnetostatic wiggler and electromagnetic fields. A set of coupled nonlinear first-order differential equations is derived and solved numerically. The fundamental and third harmonic radiation of the beam is considered. In addition to uniform beam, prebunched electron beam has also been studied. For this effect of sinusoidal distribution of entry times for the electron beam on the evolution of radiation is compared with uniform distribution. It is shown that prebunching reduces the saturation length substantially. For efficiency enhancement the wiggler is set to decrease linearly when the radiation of the third harmonic saturates. The optimum starting point of tapering and the slope of radiation in the amplitude of wiggler are found by successive run of the code.

Keywords: Free electron laser, Prebunching, Undulator, Wiggler.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465
386 Assessment of Physicochemical Characteristics and Heavy Metals Concentration in Freshwater from Jega River, Kebbi State, Nigeria

Authors: D. Y. Bawa, M. I. Ribah, I. S. Jega, V. O. Oyedepo

Abstract:

This study was conducted to determine the physicochemical characteristics and heavy metal concentration (Cadmium (Cd), Copper (Cu), Iron (Fe), Lead (Pb) and Zinc (Zn)) in freshwater from Jega river. 30 water samples were collected in two 1-liter sterile plastic containers from three designated sampling points, namely; Station A (before the bridge; upstream), Station B (at the bridge where human activities such as washing of cars, motorbike, clothes, bathing and other household materials are concentrated), Station C (after the bridge; downstream) fortnightly, between March and July 2014. Results indicated that the highest pH mean value of 7.08 ± 1.12 was observed in station C, the highest conductivity with the mean 58.75 ± 7.87 µs/cm was observed at station A, the highest mean value of the water total hardness was observed at station A (54 ± 16.11 mg/L), the highest mean value of nitrate deposit was observed in station A (1.66 ± 1.33 mg/L), the highest mean value of alkalinity was observed at station B (51.33 ± 6.66 mg/L) and the highest mean (39.56 ± 3.24 mg/L) of total dissolved solids was observed at station A. The highest concentration mean value of Fe was observed in station C (65.33 ± 4.50 mg/L), the highest concentrations of Cd was observed in station C (0.99 ± 0.36 mg/L), the mean value of 2.13 ± 1.99 mg/L was the highest concentration of Zn observed in station B, the concentration of Pb was not detected (ND) and the highest concentration of Cu with the mean value of 0.43 ± 0.16 mg/L was observed in station B, while the lowest concentration was observed at station C (0.27 ± 0.26 mg/L). Statistical analysis shows no significant difference (P > 0.05) among the sampling stations for both the physicochemical characteristics and heavy metal concentrations. The results were found to be within the internationally acceptable standard limits.

Keywords: Assessment, freshwater, heavy metal concentration, physicochemical.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1037
385 A Review on Applications of Evolutionary Algorithms to Reservoir Operation for Hydropower Production

Authors: Nkechi Neboh, Josiah Adeyemo, Abimbola Enitan, Oludayo Olugbara

Abstract:

Evolutionary Algorithms (EAs) have been used widely through evolution theory to discover acceptable solutions that corresponds to challenges such as natural resources management. EAs are also used to solve varied problems in the real world. EAs have been rapidly identified for its ease in handling multiple objective problems. Reservoir operations is a vital and researchable area which has been studied in the last few decades due to the limited nature of water resources that is found mostly in the semi-arid regions of the world. The state of some developing economy that depends on electricity for overall development through hydropower production, a renewable form of energy, is appalling due to water scarcity. This paper presents a review of the applications of evolutionary algorithms to reservoir operation for hydropower production. This review includes the discussion on areas such as genetic algorithm, differential evolution, and reservoir operation. It also identified the research gaps discovered in these areas. The results of this study will be an eye opener for researchers and decision makers to think deeply of the adverse effect of water scarcity and drought towards economic development of a nation. Hence, it becomes imperative to identify evolutionary algorithms that can address this issue which can hamper effective hydropower generation.

Keywords: Evolutionary algorithms, genetic algorithm, hydropower, multi-objective, reservoir operations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2800
384 A Novel VLSI Architecture of Hybrid Image Compression Model based on Reversible Blockade Transform

Authors: C. Hemasundara Rao, M. Madhavi Latha

Abstract:

Image compression can improve the performance of the digital systems by reducing time and cost in image storage and transmission without significant reduction of the image quality. Furthermore, the discrete cosine transform has emerged as the new state-of-the art standard for image compression. In this paper, a hybrid image compression technique based on reversible blockade transform coding is proposed. The technique, implemented over regions of interest (ROIs), is based on selection of the coefficients that belong to different transforms, depending on the coefficients is proposed. This method allows: (1) codification of multiple kernals at various degrees of interest, (2) arbitrary shaped spectrum,and (3) flexible adjustment of the compression quality of the image and the background. No standard modification for JPEG2000 decoder was required. The method was applied over different types of images. Results show a better performance for the selected regions, when image coding methods were employed for the whole set of images. We believe that this method is an excellent tool for future image compression research, mainly on images where image coding can be of interest, such as the medical imaging modalities and several multimedia applications. Finally VLSI implementation of proposed method is shown. It is also shown that the kernal of Hartley and Cosine transform gives the better performance than any other model.

Keywords: VLSI, Discrete Cosine Transform, JPEG, Hartleytransform, Radon Transform

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
383 Investigation in Physically-Chemical Parameters of in Latvia Harvested Conventional and Organic Triticale Grains

Authors: Solvita Kalnina, Tatjana Rakcejeva, Daiga Kunkulberga, Anda Linina

Abstract:

Triticale is a manmade hybrid of wheat and rye that carries the A and B genome of durum wheat and the R genome of rye. In the scientific literature information about in Latvia harvested organic and conventional triticale grain physically-chemical composition was not found in general. Therefore, the main purpose of the current research was to investigate physically-chemical parameters of in Latvia harvested organic and convectional triticale grains. The research was accomplished on in Year 2012 from State Priekuli Plant Breeding Institute (Latvia) harvested organic and conventional triticale grains: “Dinaro”, “9403-97”, “9405-23” and “9402-3”. In the present research significant differences in chemical composition between organic and conventional triticale grains harvested in Latvia was found. It is necessary to mention that higher 1000 grain weight, bulk density and gluten index was obtained for conventional and organic triticale grain variety “9403-97”. However higher falling number, gluten and protein content was obtained for triticale grain variety “9405-23”.

Keywords: Physically-chemical parameters, technological properties, triticale grains.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2687
382 A Real-Time Monitoring System of the Supply Chain Conditions, Products and Means of Transport

Authors: Dimitrios E. Kontaxis, George Litainas, Dimitrios P. Ptochos, Vaggelis P. Ptochos, Sotirios P. Ptochos, Dimitrios Beletsis, Konstantinos Kritikakis, Milan Sunaric

Abstract:

Real-time monitoring of the supply chain conditions and procedures is a critical element for the optimal coordination and safety of the deliveries, as well as for the minimization of the delivery time and cost. Real time monitoring requires IoT data streams, which are related to the conditions of the products and the means of transport (e.g., location, temperature/humidity conditions, kinematic state, ambient light conditions, etc.). These streams are generated by battery-based IoT tracking devices, equipped with appropriate sensors, and are transmitted to a cloud-based back-end system. Proper handling and processing of the IoT data streams, using predictive and artificial intelligence algorithms, can provide significant and useful results, which can be exploited by the supply chain stakeholders in order to enhance their financial benefits, as well as the efficiency, security, transparency, coordination and sustainability of the supply chain procedures. The technology, the features and the characteristics of a complete, proprietary system, including hardware, firmware and software tools - developed in the context of a co-funded R&D program - are addressed and presented in this paper. 

Keywords: IoT embedded electronics, real-time monitoring, tracking device, sensor platform

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 648
381 Fused Structure and Texture (FST) Features for Improved Pedestrian Detection

Authors: Hussin K. Ragb, Vijayan K. Asari

Abstract:

In this paper, we present a pedestrian detection descriptor called Fused Structure and Texture (FST) features based on the combination of the local phase information with the texture features. Since the phase of the signal conveys more structural information than the magnitude, the phase congruency concept is used to capture the structural features. On the other hand, the Center-Symmetric Local Binary Pattern (CSLBP) approach is used to capture the texture information of the image. The dimension less quantity of the phase congruency and the robustness of the CSLBP operator on the flat images, as well as the blur and illumination changes, lead the proposed descriptor to be more robust and less sensitive to the light variations. The proposed descriptor can be formed by extracting the phase congruency and the CSLBP values of each pixel of the image with respect to its neighborhood. The histogram of the oriented phase and the histogram of the CSLBP values for the local regions in the image are computed and concatenated to construct the FST descriptor. Several experiments were conducted on INRIA and the low resolution DaimlerChrysler datasets to evaluate the detection performance of the pedestrian detection system that is based on the FST descriptor. A linear Support Vector Machine (SVM) is used to train the pedestrian classifier. These experiments showed that the proposed FST descriptor has better detection performance over a set of state of the art feature extraction methodologies.

Keywords: Pedestrian detection, phase congruency, local phase, LBP features, CSLBP features, FST descriptor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
380 Evaluating Machine Learning Techniques for Activity Classification in Smart Home Environments

Authors: Talal Alshammari, Nasser Alshammari, Mohamed Sedky, Chris Howard

Abstract:

With the widespread adoption of the Internet-connected devices, and with the prevalence of the Internet of Things (IoT) applications, there is an increased interest in machine learning techniques that can provide useful and interesting services in the smart home domain. The areas that machine learning techniques can help advance are varied and ever-evolving. Classifying smart home inhabitants’ Activities of Daily Living (ADLs), is one prominent example. The ability of machine learning technique to find meaningful spatio-temporal relations of high-dimensional data is an important requirement as well. This paper presents a comparative evaluation of state-of-the-art machine learning techniques to classify ADLs in the smart home domain. Forty-two synthetic datasets and two real-world datasets with multiple inhabitants are used to evaluate and compare the performance of the identified machine learning techniques. Our results show significant performance differences between the evaluated techniques. Such as AdaBoost, Cortical Learning Algorithm (CLA), Decision Trees, Hidden Markov Model (HMM), Multi-layer Perceptron (MLP), Structured Perceptron and Support Vector Machines (SVM). Overall, neural network based techniques have shown superiority over the other tested techniques.

Keywords: Activities of daily living, classification, internet of things, machine learning, smart home.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779
379 Availability, Accessibility and Utilization of Information and Communication Technology in Teaching and Learning Islamic Studies in Colleges of Education, North-Eastern, Nigeria

Authors: Bello Ali

Abstract:

The use of Information and Communication Technology (ICT) in tertiary institutions by lecturers and students has become a necessity for the enhancement of quality teaching and learning. This study examined availability, accessibility and utilization of ICT in Teaching-Learning Islamic Studies in Colleges of Education, North-East, Nigeria. The study adopted multi-stage sampling technique, in which, five out of the eleven Colleges of Education (both Federal and State owned) were purposively selected for the study. Primary data was drawn from the respondents by the use of questionnaire, interviews and observations. The results of the study, generally, indicate that the availability and accessibility to ICT facilities in Colleges of Education in North-East, Nigeria, especially in teaching/learning delivery of Islamic studies were relatively inadequate and rare to lecturers and students. The study further reveals that the respondents’ level of utilization of ICT is low and only few computer packages and internet services were involved in the ICT utilization, which is yet to reach the real expected situation of the globalization and advancement in the application of ICT if compared to other parts of the world, as far as the teaching and learning of Islamic studies is concerned. Observations and conclusion were drawn from the findings and finally, recommendations on how to improve on ICT availability, accessibility and utilization in teaching/ learning were suggested.

Keywords: Accessibility, availability, college of education, ICT, Islamic Studies, learning, North-Eastern, teaching, utilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1140
378 Prediction of Temperature Distribution during Drilling Process Using Artificial Neural Network

Authors: Ali Reza Tahavvor, Saeed Hosseini, Nazli Jowkar, Afshin Karimzadeh Fard

Abstract:

Experimental & numeral study of temperature distribution during milling process, is important in milling quality and tools life aspects. In the present study the milling cross-section temperature is determined by using Artificial Neural Networks (ANN) according to the temperature of certain points of the work piece and the point specifications and the milling rotational speed of the blade. In the present work, at first three-dimensional model of the work piece is provided and then by using the Computational Heat Transfer (CHT) simulations, temperature in different nods of the work piece are specified in steady-state conditions. Results obtained from CHT are used for training and testing the ANN approach. Using reverse engineering and setting the desired x, y, z and the milling rotational speed of the blade as input data to the network, the milling surface temperature determined by neural network is presented as output data. The desired points temperature for different milling blade rotational speed are obtained experimentally and by extrapolation method for the milling surface temperature is obtained and a comparison is performed among the soft programming ANN, CHT results and experimental data and it is observed that ANN soft programming code can be used more efficiently to determine the temperature in a milling process.

Keywords: Milling process, rotational speed, Artificial Neural Networks, temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2336
377 Computational Modeling in Strategic Marketing

Authors: Petr Cernohorsky, Jan Voracek

Abstract:

Well-developed strategic marketing planning is the essential prerequisite for establishment of the right and unique competitive advantage. Typical market, however, is a heterogeneous and decentralized structure with natural involvement of individual or group subjectivity and irrationality. These features cannot be fully expressed with one-shot rigorous formal models based on, e.g. mathematics, statistics or empirical formulas. We present an innovative solution, extending the domain of agent based computational economics towards the concept of hybrid modeling in service provider and consumer market such as telecommunications. The behavior of the market is described by two classes of agents - consumer and service provider agents - whose internal dynamics are fundamentally different. Customers are rather free multi-state structures, adjusting behavior and preferences quickly in accordance with time and changing environment. Producers, on the contrary, are traditionally structured companies with comparable internal processes and specific managerial policies. Their business momentum is higher and immediate reaction possibilities limited. This limitation underlines importance of proper strategic planning as the main process advising managers in time whether to continue with more or less the same business or whether to consider the need for future structural changes that would ensure retention of existing customers or acquisition of new ones.

Keywords: Agent-based computational economics, hybrid modeling, strategic marketing, system dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644
376 Alkali Silica Reaction Mitigation and Prevention Measures for Arkansas Local Aggregates

Authors: Amin Kamal Akhnoukh, Lois Zaki Kamel, Magued Mourad Barsoum

Abstract:

The objective of this research is to mitigate and prevent the alkali silica reactivity (ASR) in highway construction projects. ASR is a deleterious reaction initiated when the silica content of the aggregate reacts with alkali hydroxides in cement in the presence of relatively high moisture content. The ASR results in the formation of an expansive white colored gel-like material which forms the destructive tensile stresses inside hardened concrete. In this research, different types of local aggregates available in the State of Arkansas were mixed and mortar bars were poured according to the ASTM specifications. Mortar bars expansion was measured versus time and aggregates with potential ASR problems were detected. Different types of supplementary cementitious materials (SCMs) were used in remixing mortar bars with highly reactive aggregates. Length changes for remixed bars proved that different types of SCMs can be successfully used in reducing the expansive effect of ASR. SCMs percentage by weight is highly dependent on the SCM type. The result of this study will help avoiding future losses due to ASR cracking in construction project and reduce the maintenance, repair, and replacement budgets required for highways network.

Keywords: Alkali Silica Reaction, Aggregates, Moisture, Cracks, Mortar Bar Test supplementary cementitious materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2036
375 Vision-Based Collision Avoidance for Unmanned Aerial Vehicles by Recurrent Neural Networks

Authors: Yao-Hong Tsai

Abstract:

Due to the sensor technology, video surveillance has become the main way for security control in every big city in the world. Surveillance is usually used by governments for intelligence gathering, the prevention of crime, the protection of a process, person, group or object, or the investigation of crime. Many surveillance systems based on computer vision technology have been developed in recent years. Moving target tracking is the most common task for Unmanned Aerial Vehicle (UAV) to find and track objects of interest in mobile aerial surveillance for civilian applications. The paper is focused on vision-based collision avoidance for UAVs by recurrent neural networks. First, images from cameras on UAV were fused based on deep convolutional neural network. Then, a recurrent neural network was constructed to obtain high-level image features for object tracking and extracting low-level image features for noise reducing. The system distributed the calculation of the whole system to local and cloud platform to efficiently perform object detection, tracking and collision avoidance based on multiple UAVs. The experiments on several challenging datasets showed that the proposed algorithm outperforms the state-of-the-art methods.

Keywords: Unmanned aerial vehicle, object tracking, deep learning, collision avoidance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 960
374 Comparison of Router Intelligent and Cooperative Host Intelligent Algorithms in a Continuous Model of Fixed Telecommunication Networks

Authors: Dávid Csercsik, Sándor Imre

Abstract:

The performance of state of the art worldwide telecommunication networks strongly depends on the efficiency of the applied routing mechanism. Game theoretical approaches to this problem offer new solutions. In this paper a new continuous network routing model is defined to describe data transfer in fixed telecommunication networks of multiple hosts. The nodes of the network correspond to routers whose latency is assumed to be traffic dependent. We propose that the whole traffic of the network can be decomposed to a finite number of tasks, which belong to various hosts. To describe the different latency-sensitivity, utility functions are defined for each task. The model is used to compare router and host intelligent types of routing methods, corresponding to various data transfer protocols. We analyze host intelligent routing as a transferable utility cooperative game with externalities. The main aim of the paper is to provide a framework in which the efficiency of various routing algorithms can be compared and the transferable utility game arising in the cooperative case can be analyzed.

Keywords: Routing, Telecommunication networks, Performance evaluation, Cooperative game theory, Partition function form games

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854
373 The Study of the Interaction between Catanionic Surface Micelle SDS-CTAB and Insulin at Air/Water Interface

Authors: B. Tah, P. Pal, M. Mahato, R. Sarkar, G. B. Talapatra

Abstract:

Herein, we report the different types of surface morphology due to the interaction between the pure protein Insulin (INS) and catanionic surfactant mixture of Sodium Dodecyl Sulfate (SDS) and Cetyl Trimethyl Ammonium Bromide (CTAB) at air/water interface obtained by the Langmuir-Blodgett (LB) technique. We characterized the aggregations by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) in LB films. We found that the INS adsorption increased in presence of catanionic surfactant at air/water interface. The presence of small amount of surfactant induces two-stage growth kinetics due to the pure protein absorption and protein-catanionic surface micelle interaction. The protein remains in native state in presence of small amount of surfactant mixture. Smaller amount of surfactant mixture with INS is producing surface micelle type structure. This may be considered for drug delivery system. On the other hand, INS becomes unfolded and fibrillated in presence of higher amount of surfactant mixture. In both the cases, the protein was successfully immobilized on a glass substrate by the LB technique. These results may find applications in the fundamental science of the physical chemistry of surfactant systems, as well as in the preparation of drug-delivery system.

Keywords: Air/water interface, Catanionic micelle, Insulin, Langmuir-Blodgett film

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2492
372 Using Satellite Images Datasets for Road Intersection Detection in Route Planning

Authors: Fatma El-zahraa El-taher, Ayman Taha, Jane Courtney, Susan Mckeever

Abstract:

Understanding road networks plays an important role in navigation applications such as self-driving vehicles and route planning for individual journeys. Intersections of roads are essential components of road networks. Understanding the features of an intersection, from a simple T-junction to larger multi-road junctions is critical to decisions such as crossing roads or selecting safest routes. The identification and profiling of intersections from satellite images is a challenging task. While deep learning approaches offer state-of-the-art in image classification and detection, the availability of training datasets is a bottleneck in this approach. In this paper, a labelled satellite image dataset for the intersection recognition  problem is presented. It consists of 14,692 satellite images of Washington DC, USA. To support other users of the dataset, an automated download and labelling script is provided for dataset replication. The challenges of construction and fine-grained feature labelling of a satellite image dataset are examined, including the issue of how to address features that are spread across multiple images. Finally, the accuracy of detection of intersections in satellite images is evaluated.

Keywords: Satellite images, remote sensing images, data acquisition, autonomous vehicles, robot navigation, route planning, road intersections.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 776
371 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model

Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin

Abstract:

Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.

Keywords: Anomaly detection, autoencoder, data centers, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 753
370 Pectoral Muscles Suppression in Digital Mammograms Using Hybridization of Soft Computing Methods

Authors: I. Laurence Aroquiaraj, K. Thangavel

Abstract:

Breast region segmentation is an essential prerequisite in computerized analysis of mammograms. It aims at separating the breast tissue from the background of the mammogram and it includes two independent segmentations. The first segments the background region which usually contains annotations, labels and frames from the whole breast region, while the second removes the pectoral muscle portion (present in Medio Lateral Oblique (MLO) views) from the rest of the breast tissue. In this paper we propose hybridization of Connected Component Labeling (CCL), Fuzzy, and Straight line methods. Our proposed methods worked good for separating pectoral region. After removal pectoral muscle from the mammogram, further processing is confined to the breast region alone. To demonstrate the validity of our segmentation algorithm, it is extensively tested using over 322 mammographic images from the Mammographic Image Analysis Society (MIAS) database. The segmentation results were evaluated using a Mean Absolute Error (MAE), Hausdroff Distance (HD), Probabilistic Rand Index (PRI), Local Consistency Error (LCE) and Tanimoto Coefficient (TC). The hybridization of fuzzy with straight line method is given more than 96% of the curve segmentations to be adequate or better. In addition a comparison with similar approaches from the state of the art has been given, obtaining slightly improved results. Experimental results demonstrate the effectiveness of the proposed approach.

Keywords: X-ray Mammography, CCL, Fuzzy, Straight line.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758
369 Strategic Mine Planning: A SWOT Analysis Applied to KOV Open Pit Mine in the Democratic Republic of Congo

Authors: Patrick May Mukonki

Abstract:

KOV pit (Kamoto Oliveira Virgule) is located 10 km from Kolwezi town, one of the mineral rich town in the Lualaba province of the Democratic Republic of Congo. The KOV pit is currently operating under the Katanga Mining Limited (KML), a Glencore-Gecamines (a State Owned Company) join venture. Recently, the mine optimization process provided a life of mine of approximately 10 years withnice pushbacks using the Datamine NPV Scheduler software. In previous KOV pit studies, we recently outlined the impact of the accuracy of the geological information on a long-term mine plan for a big copper mine such as KOV pit. The approach taken, discussed three main scenarios and outlined some weaknesses on the geological information side, and now, in this paper that we are going to develop here, we are going to highlight, as an overview, those weaknesses, strengths and opportunities, in a global SWOT analysis. The approach we are taking here is essentially descriptive in terms of steps taken to optimize KOV pit and, at every step, we categorized the challenges we faced to have a better tradeoff between what we called strengths and what we called weaknesses. The same logic is applied in terms of the opportunities and threats. The SWOT analysis conducted in this paper demonstrates that, despite a general poor ore body definition, and very rude ground water conditions, there is room for improvement for such high grade ore body.

Keywords: Mine planning, mine optimization, mine scheduling, SWOT analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594
368 Levels of Some Antinutritional Factors in Tempeh Produced From Some Legumes and Jojobas Seeds

Authors: Ferial M. Abu-Salem, Rasha K. Mohamed, Ahmed Y. Gibriel, Nagwa M. H. Rasmy

Abstract:

Three legumes i.e. soybean, kidney bean and mung bean, and jojoba seed as an oil seed were processed into tempeh, a fermented food. Changes in phytic acid, total phenols and trypsin inhibitor were monitored during the pretreatments (soaking, soaking– dehulling, washing and cooking) and fermentation with Rhizopus oligosporus. Soaking was found to reduce total phenol and trypsin inhibitor levels in soybean, kidney bean and mung bean. However, phytic acid was reduced by soaking in kidney bean and mung bean. Cooking was the most effective in reducing the activity of trypsin inhibitor. During fermentation, a slight increase in the level of trypsin inhibitor was noticed in soybean. Phytic acid and total phenols were decreased during fermentation in soybean, kidney bean but mung bean faild to form tempeh because the antifungal activity of herein a protein in mung bean, which exerts both chitinase activity and antifungal activity against a variety of fungal species. On the other hand, solid- state fermentation of jojoba seeds was not effective in reducing their content from cyanogenic glycosides (simmondsin).

Keywords: Antinutritional factors, cyanogenic glycosides (Simmondsin), tempeh.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3565
367 Study of Landslide Behavior with Topographic Monitoring and Numerical Modeling

Authors: ZerarkaHizia, Akchiche Mustapha, Prunier Florent

Abstract:

Landslide of Ain El Hammam (AEH) has been an old slip since 1969; it was reactivated after an intense rainfall period in 2008 where it presents a complex shape and affects broad areas. The schist of AEH is more or less altered; the alteration is facilitated by the fracturing of the rock in its upper part, the presence of flowing water as well as physical and chemical mechanisms of desegregation in joint of altered schist. The factors following these instabilities are mostly related to the geological formation, the hydro-climatic conditions and the topography of the region. The city of AEH is located on the top of a steep slope at 50 km from the city of TiziOuzou (Algeria). AEH’s topographic monitoring of unstable slope allows analyzing the structure and the different deformation mechanism and the gradual change in the geometry, the direction of change of slip. It also allows us to delimit the area affected by the movement. This work aims to study the behavior of AEH landslide with topographic monitoring and to validate the results with numerical modeling of the slip site, when the hydraulic factors are identified as the most important factors for the reactivation of this landslide. With the help of the numerical code PLAXIS 2D and PlaxFlow, the precipitations and the steady state flow are modeled. To identify the mechanism of deformation and to predict the spread of the AEH landslide numerically, we used the equivalent deviatory strain, and these results were visualized by MATLAB software.

Keywords: Equivalent deviatory strain, landslide, numerical modeling, topographic monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 879
366 Social Influences on Americans' Mask-Wearing Behavior during COVID-19

Authors: Ruoya Huang, Ruoxian Huang, Edgar Huang

Abstract:

Based on a convenience sample of 2,092 participants from across all 50 states of the United States, a survey was conducted to explore Americans’ mask-wearing behaviors during COVID-19 according to their political convictions, religious beliefs, and ethnic cultures from late July to early September, 2020. The purpose of the study is to provide evidential support for government policymaking so as to drive up more effective public policies by taking into consideration the variance in these social factors. It was found that the respondents’ party affiliation or preference, religious belief, and ethnicity, in addition to their health condition, gender, level of concern of contracting COVID-19, all affected their mask-wearing habits both in March, the initial coronavirus outbreak stage, and in August, when mask-wearing had been made mandatory by state governments. The study concludes that pandemic awareness campaigns must be run among all citizens, especially among African Americans, Muslims, and Republicans, who have the lowest rates of wearing masks, in order to protect themselves and others. It is recommended that complementary cognitive bias awareness programs should be implemented in non-Black and non-Muslim communities to eliminate social concerns that deter them from wearing masks.

Keywords: COVID-19 pandemic, ethnicity, mask-wearing, policymaking implications, political affiliations, religious beliefs, United States.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 530
365 Aggregation Scheduling Algorithms in Wireless Sensor Networks

Authors: Min Kyung An

Abstract:

In Wireless Sensor Networks which consist of tiny wireless sensor nodes with limited battery power, one of the most fundamental applications is data aggregation which collects nearby environmental conditions and aggregates the data to a designated destination, called a sink node. Important issues concerning the data aggregation are time efficiency and energy consumption due to its limited energy, and therefore, the related problem, named Minimum Latency Aggregation Scheduling (MLAS), has been the focus of many researchers. Its objective is to compute the minimum latency schedule, that is, to compute a schedule with the minimum number of timeslots, such that the sink node can receive the aggregated data from all the other nodes without any collision or interference. For the problem, the two interference models, the graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR), have been adopted with different power models, uniform-power and non-uniform power (with power control or without power control), and different antenna models, omni-directional antenna and directional antenna models. In this survey article, as the problem has proven to be NP-hard, we present and compare several state-of-the-art approximation algorithms in various models on the basis of latency as its performance measure.

Keywords: Data aggregation, convergecast, gathering, approximation, interference, omni-directional, directional.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 800
364 Expanding Business Strategy to Native American Communities Using Experiential Learning

Authors: A. J. Otjen

Abstract:

Native American communities are struggling with unemployment and depressed economies. A major cause is a lack of business knowledge, education, and cultural desire. And yet, in the history of the American West, Native Americans were considered the best traders and negotiators for everything from furs to weapons to buffalo. To improve these economies, there has been an effort to reintroduce that heritage to todays and tomorrows generation of tribal members, such Crow, Cheyenne, and Blackfeet. Professors at the College of Business Montana State University-Billings (MSUB) teach tribal students in Montana to create business plans. These plans have won national small business plan competitions. The teaching and advising method used at MSUB is uniquely successful as theses business students are now five time national champions. This article reviews the environment and the method of learning to achieve a winning small business plan with Native American students. It discusses the five plans that became national champions. And it discusses the problems and solutions discovered in the process of achieving results. Students who participated in this endeavor have graduated and become CPAs, MBAs, and gainfully employed in their chosen professions. They have also worked to improve the economies of their native lands and homes. By educating members of these communities with business strategy and plan development, they are better able to impact their own economies.

Keywords: Entrepreneurship, Native Americans economies, small businesses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1620
363 An Evaluation of Solubility of Wax and Asphaltene in Crude Oil for Improved Flow Properties Using a Copolymer Solubilized in Organic Solvent with an Aromatic Hydrocarbon

Authors: S. M. Anisuzzaman, Sariah Abang, Awang Bono, D. Krishnaiah, N. M. Ismail, G. B. Sandrison

Abstract:

Wax and asphaltene are high molecular weighted compounds that contribute to the stability of crude oil at a dispersed state. Transportation of crude oil along pipelines from the oil rig to the refineries causes fluctuation of temperature which will lead to the coagulation of wax and flocculation of asphaltenes. This paper focuses on the prevention of wax and asphaltene precipitate deposition on the inner surface of the pipelines by using a wax inhibitor and an asphaltene dispersant. The novelty of this prevention method is the combination of three substances; a wax inhibitor dissolved in a wax inhibitor solvent and an asphaltene solvent, namely, ethylene-vinyl acetate (EVA) copolymer dissolved in methylcyclohexane (MCH) and toluene (TOL) to inhibit the precipitation and deposition of wax and asphaltene. The objective of this paper was to optimize the percentage composition of each component in this inhibitor which can maximize the viscosity reduction of crude oil. The optimization was divided into two stages which are the laboratory experimental stage in which the viscosity of crude oil samples containing inhibitor of different component compositions is tested at decreasing temperatures and the data optimization stage using response surface methodology (RSM) to design an optimizing model. The results of experiment proved that the combination of 50% EVA + 25% MCH + 25% TOL gave a maximum viscosity reduction of 67% while the RSM model proved that the combination of 57% EVA + 20.5% MCH + 22.5% TOL gave a maximum viscosity reduction of up to 61%.

Keywords: Asphaltene, ethylene-vinyl acetate, methylcyclohexane, toluene, wax.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1453
362 Defining a Semantic Web-based Framework for Enabling Automatic Reasoning on CIM-based Management Platforms

Authors: Fernando Alonso, Rafael Fernandez, Sonia Frutos, Javier Soriano

Abstract:

CIM is the standard formalism for modeling management information developed by the Distributed Management Task Force (DMTF) in the context of its WBEM proposal, designed to provide a conceptual view of the managed environment. In this paper, we propose the inclusion of formal knowledge representation techniques, based on Description Logics (DLs) and the Web Ontology Language (OWL), in CIM-based conceptual modeling, and then we examine the benefits of such a decision. The proposal is specified as a CIM metamodel level mapping to a highly expressive subset of DLs capable of capturing all the semantics of the models. The paper shows how the proposed mapping provides CIM diagrams with precise semantics and can be used for automatic reasoning about the management information models, as a design aid, by means of newgeneration CASE tools, thanks to the use of state-of-the-art automatic reasoning systems that support the proposed logic and use algorithms that are sound and complete with respect to the semantics. Such a CASE tool framework has been developed by the authors and its architecture is also introduced. The proposed formalization is not only useful at design time, but also at run time through the use of rational autonomous agents, in response to a need recently recognized by the DMTF.

Keywords: CIM, Knowledge-based Information Models, OntologyLanguages, OWL, Description Logics, Integrated Network Management, Intelligent Agents, Automatic Reasoning Techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1560
361 Evaluation of Aquifer Protective Capacity and Soil Corrosivity Using Geoelectrical Method

Authors: M. T. Tsepav, Y. Adamu, M. A. Umar

Abstract:

A geoelectric survey was carried out in some parts of Angwan Gwari, an outskirt of Lapai Local Government Area on Niger State which belongs to the Nigerian Basement Complex, with the aim of evaluating the soil corrosivity, aquifer transmissivity and protective capacity of the area from which aquifer characterisation was made. The G41 Resistivity Meter was employed to obtain fifteen Schlumberger Vertical Electrical Sounding data along profiles in a square grid network. The data were processed using interpex 1-D sounding inversion software, which gives vertical electrical sounding curves with layered model comprising of the apparent resistivities, overburden thicknesses, and depth. This information was used to evaluate longitudinal conductance and transmissivities of the layers. The results show generally low resistivities across the survey area and an average longitudinal conductance variation from 0.0237Siemens in VES 6 to 0.1261Siemens in VES 15 with almost the entire area giving values less than 1.0 Siemens. The average transmissivity values range from 96.45 Ω.m2 in VES 4 to 299070 Ω.m2 in VES 1. All but VES 4 and VES14 had an average overburden greater than 400 Ω.m2, these results suggest that the aquifers are highly permeable to fluid movement within, leading to the possibility of enhanced migration and circulation of contaminants in the groundwater system and that the area is generally corrosive.

Keywords: Geoelectric survey, corrosivity, protective capacity, transmissivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2244
360 Analysis of One-Way and Two-Way FSI Approaches to Characterise the Flow Regime and the Mechanical Behaviour during Closing Manoeuvring Operation of a Butterfly Valve

Authors: M. Ezkurra, J. A. Esnaola, M. Martinez-Agirre, U. Etxeberria, U. Lertxundi, L. Colomo, M. Begiristain, I. Zurutuza

Abstract:

Butterfly valves are widely used industrial piping components as on-off and flow controlling devices. The main challenge in the design process of this type of valves is the correct dimensioning to ensure proper mechanical performance as well as to minimise flow losses that affect the efficiency of the system. Butterfly valves are typically dimensioned in a closed position based on mechanical approaches considering uniform hydrostatic pressure, whereas the flow losses are analysed by means of CFD simulations. The main limitation of these approaches is that they do not consider either the influence of the dynamics of the manoeuvring stage or coupled phenomena. Recent works have included the influence of the flow on the mechanical behaviour for different opening angles by means of one-way FSI approach. However, these works consider steady-state flow for the selected angles, not capturing the effect of the transient flow evolution during the manoeuvring stage. Two-way FSI modelling approach could allow overcoming such limitations providing more accurate results. Nevertheless, the use of this technique is limited due to the increase in the computational cost. In the present work, the applicability of FSI one-way and two-way approaches is evaluated for the analysis of butterfly valves, showing that not considering fluid-structure coupling involves not capturing the most critical situation for the valve disc.

Keywords: Butterfly valves, fluid-structure interaction, one-way approach, two-way approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600
359 Touristification of Industrial Waterfronts: The Rocks and Darling Harbour

Authors: Ece Kaya

Abstract:

Industrial heritage reflects the traces of an industrial past that have contributed to the economic development of a country. This heritage should be included within the scope of preservation to remind of and to connect the city and its inhabitants to the past. Through adaptive conservation, industrial heritage can be reintroduced into contemporary urban life, with suitable functions and unique identities sustained. The conservation of industrial heritage should protect the material fabric of such heritage and maintain its cultural significance. Emphasising the historical and cultural significance of industrial areas, this research argues that industrial heritage is primarily impacted by political and economic thinking rather than by informed heritage and conservation issues. Waterfront redevelopment projects create similar landscapes around the world, transforming industrial identities and cultural significances. In the case of The Rocks and Darling Harbour, the goal of redevelopment was the creation of employment opportunities, and the provision of places to work, live and shop, through tourism promoted by the NSW State Government. The two case study areas were pivotal to the European industrial development of Sydney. Sydney Cove was one of the largest commercial wharves used to handle cargo in Australia. This paper argues, together with many historians, planners and heritage experts, that these areas have not received the due diligence deserved in regards to their significance to the industrial history of Sydney and modern Australia.

Keywords: Industrial heritage, post-industrial city, transformation of waterfronts, tourism, consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1346
358 Automatic Segmentation of Dermoscopy Images Using Histogram Thresholding on Optimal Color Channels

Authors: Rahil Garnavi, Mohammad Aldeen, M. Emre Celebi, Alauddin Bhuiyan, Constantinos Dolianitis, George Varigos

Abstract:

Automatic segmentation of skin lesions is the first step towards development of a computer-aided diagnosis of melanoma. Although numerous segmentation methods have been developed, few studies have focused on determining the most discriminative and effective color space for melanoma application. This paper proposes a novel automatic segmentation algorithm using color space analysis and clustering-based histogram thresholding, which is able to determine the optimal color channel for segmentation of skin lesions. To demonstrate the validity of the algorithm, it is tested on a set of 30 high resolution dermoscopy images and a comprehensive evaluation of the results is provided, where borders manually drawn by four dermatologists, are compared to automated borders detected by the proposed algorithm. The evaluation is carried out by applying three previously used metrics of accuracy, sensitivity, and specificity and a new metric of similarity. Through ROC analysis and ranking the metrics, it is shown that the best results are obtained with the X and XoYoR color channels which results in an accuracy of approximately 97%. The proposed method is also compared with two state-ofthe- art skin lesion segmentation methods, which demonstrates the effectiveness and superiority of the proposed segmentation method.

Keywords: Border detection, Color space analysis, Dermoscopy, Histogram thresholding, Melanoma, Segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2088