Search results for: computer models
1807 Turbulence Modeling and Wave-Current Interactions
Authors: A.-C. Bennis, F. Dumas, F. Ardhuin, B. Blanke
Abstract:
The mechanics of rip currents are complex, involving interactions between waves, currents, water levels and the bathymetry, that present particular challenges for numerical models. Here, the effects of a grid-spacing dependent horizontal mixing on the wave-current interactions are studied. Near the shore, wave rays diverge from channels towards bar crests because of refraction by topography and currents, in a way that depends on the rip current intensity which is itself modulated by the horizontal mixing. At low resolution with the grid-spacing dependent horizontal mixing, the wave motion is the same for both coupling modes because the wave deviation by the currents is weak. In high resolution case, however, classical results are found with the stabilizing effect of the flow by feedback of waves on currents. Lastly, wave-current interactions and the horizontal mixing strongly affect the intensity of the three-dimensional rip velocity.
Keywords: Numerical modeling, Rip currents, Turbulence modeling, Wave-current interactions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22161806 Conceptual Multidimensional Model
Authors: Manpreet Singh, Parvinder Singh, Suman
Abstract:
The data is available in abundance in any business organization. It includes the records for finance, maintenance, inventory, progress reports etc. As the time progresses, the data keep on accumulating and the challenge is to extract the information from this data bank. Knowledge discovery from these large and complex databases is the key problem of this era. Data mining and machine learning techniques are needed which can scale to the size of the problems and can be customized to the application of business. For the development of accurate and required information for particular problem, business analyst needs to develop multidimensional models which give the reliable information so that they can take right decision for particular problem. If the multidimensional model does not possess the advance features, the accuracy cannot be expected. The present work involves the development of a Multidimensional data model incorporating advance features. The criterion of computation is based on the data precision and to include slowly change time dimension. The final results are displayed in graphical form.Keywords: Multidimensional, data precision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14661805 Automatic Text Summarization
Authors: Mohamed Abdel Fattah, Fuji Ren
Abstract:
This work proposes an approach to address automatic text summarization. This approach is a trainable summarizer, which takes into account several features, including sentence position, positive keyword, negative keyword, sentence centrality, sentence resemblance to the title, sentence inclusion of name entity, sentence inclusion of numerical data, sentence relative length, Bushy path of the sentence and aggregated similarity for each sentence to generate summaries. First we investigate the effect of each sentence feature on the summarization task. Then we use all features score function to train genetic algorithm (GA) and mathematical regression (MR) models to obtain a suitable combination of feature weights. The proposed approach performance is measured at several compression rates on a data corpus composed of 100 English religious articles. The results of the proposed approach are promising.Keywords: Automatic Summarization, Genetic Algorithm, Mathematical Regression, Text Features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23431804 Adaptive Gaussian Mixture Model for Skin Color Segmentation
Authors: Reza Hassanpour, Asadollah Shahbahrami, Stephan Wong
Abstract:
Skin color based tracking techniques often assume a static skin color model obtained either from an offline set of library images or the first few frames of a video stream. These models can show a weak performance in presence of changing lighting or imaging conditions. We propose an adaptive skin color model based on the Gaussian mixture model to handle the changing conditions. Initial estimation of the number and weights of skin color clusters are obtained using a modified form of the general Expectation maximization algorithm, The model adapts to changes in imaging conditions and refines the model parameters dynamically using spatial and temporal constraints. Experimental results show that the method can be used in effectively tracking of hand and face regions.Keywords: Face detection, Segmentation, Tracking, Gaussian Mixture Model, Adaptation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24221803 Line Balancing in the Hard Disk Drive Process Using Simulation Techniques
Authors: Teerapun Saeheaw, Nivit Charoenchai, Wichai Chattinnawat
Abstract:
Simulation model is an easy way to build up models to represent real life scenarios, to identify bottlenecks and to enhance system performance. Using a valid simulation model may give several advantages in creating better manufacturing design in order to improve the system performances. This paper presents result of implementing a simulation model to design hard disk drive manufacturing process by applying line balancing to improve both productivity and quality of hard disk drive process. The line balance efficiency showed 86% decrease in work in process, output was increased by an average of 80%, average time in the system was decreased 86% and waiting time was decreased 90%.Keywords: line balancing, arena, hard disk drive process, simulation, work in process (WIP)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21711802 The Long Run Relationship between Exports and Imports in South Africa: Evidence from Cointegration Analysis
Authors: Sagaren Pillay
Abstract:
This study empirically examines the long run equilibrium relationship between South Africa’s exports and imports using quarterly data from 1985 to 2012. The theoretical framework used for the study is based on Johansen’s Maximum Likelihood cointegration technique which tests for both the existence and number of cointegration vectors that exists. The study finds that both the series are integrated of order one and are cointegrated. A statistically significant cointegrating relationship is found to exist between exports and imports. The study models this unique linear and lagged relationship using a Vector Error Correction Model (VECM). The findings of the study confirm the existence of a long run equilibrium relationship between exports and imports.
Keywords: Cointegration lagged, linear, maximum likelihood, vector error correction model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27941801 Signal-to-Noise Ratio Improvement of EMCCD Cameras
Authors: Wen W. Zhang, Qian Chen, Bei B. Zhou, Wei J. He
Abstract:
Over the past years, the EMCCD has had a profound influence on photon starved imaging applications relying on its unique multiplication register based on the impact ionization effect in the silicon. High signal-to-noise ratio (SNR) means high image quality. Thus, SNR improvement is important for the EMCCD. This work analyzes the SNR performance of an EMCCD with gain off and on. In each mode, simplified SNR models are established for different integration times. The SNR curves are divided into readout noise (or CIC) region and shot noise region by integration time. Theoretical SNR values comparing long frame integration and frame adding in each region are presented and discussed to figure out which method is more effective. In order to further improve the SNR performance, pixel binning is introduced into the EMCCD. The results show that pixel binning does obviously improve the SNR performance, but at the expensive of the spatial resolution.Keywords: EMCCD, SNR improvement, pixel binning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28891800 Development of a Paediatric Head Model for the Computational Analysis of Head Impact Interactions
Authors: G. A. Khalid, M. D. Jones, R. Prabhu, A. Mason-Jones, W. Whittington, H. Bakhtiarydavijani, P. S. Theobald
Abstract:
Head injury in childhood is a common cause of death or permanent disability from injury. However, despite its frequency and significance, there is little understanding of how a child’s head responds during injurious loading. Whilst Infant Post Mortem Human Subject (PMHS) experimentation is a logical approach to understand injury biomechanics, it is the authors’ opinion that a lack of subject availability is hindering potential progress. Computer modelling adds great value when considering adult populations; however, its potential remains largely untapped for infant surrogates. The complexities of child growth and development, which result in age dependent changes in anatomy, geometry and physical response characteristics, present new challenges for computational simulation. Further geometric challenges are presented by the intricate infant cranial bones, which are separated by sutures and fontanelles and demonstrate a visible fibre orientation. This study presents an FE model of a newborn infant’s head, developed from high-resolution computer tomography scans, informed by published tissue material properties. To mimic the fibre orientation of immature cranial bone, anisotropic properties were applied to the FE cranial bone model, with elastic moduli representing the bone response both parallel and perpendicular to the fibre orientation. Biofiedility of the computational model was confirmed by global validation against published PMHS data, by replicating experimental impact tests with a series of computational simulations, in terms of head kinematic responses. Numerical results confirm that the FE head model’s mechanical response is in favourable agreement with the PMHS drop test results.
Keywords: Finite element analysis, impact simulation, infant head trauma, material properties, post mortem human subjects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13051799 MarginDistillation: Distillation for Face Recognition Neural Networks with Margin-Based Softmax
Authors: Svitov David, Alyamkin Sergey
Abstract:
The usage of convolutional neural networks (CNNs) in conjunction with the margin-based softmax approach demonstrates the state-of-the-art performance for the face recognition problem. Recently, lightweight neural network models trained with the margin-based softmax have been introduced for the face identification task for edge devices. In this paper, we propose a distillation method for lightweight neural network architectures that outperforms other known methods for the face recognition task on LFW, AgeDB-30 and Megaface datasets. The idea of the proposed method is to use class centers from the teacher network for the student network. Then the student network is trained to get the same angles between the class centers and face embeddings predicted by the teacher network.Keywords: ArcFace, distillation, face recognition, margin-based softmax.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6421798 Single Spectrum End Point Predict of BOF with SVM
Authors: Ling-fei Xu, Qi Zhao, Yan-ru Chen, Mu-chun Zhou, Meng Zhang, Shi-xue Xu
Abstract:
SVM ( Support Vector Machine ) is a new method in the artificial neural network ( ANN ). In the steel making, how to use computer to predict the end point of BOF accuracy is a great problem. A lot of method and theory have been claimed, but most of the results is not satisfied. Now the hot topic in the BOF end point predicting is to use optical way the predict the end point in the BOF. And we found that there exist some regular in the characteristic curve of the flame from the mouse of pudding. And we can use SVM to predict end point of the BOF, just single spectrum intensity should be required as the input parameter. Moreover, its compatibility for the input space is better than the BP network.
Keywords: SVM, predict, BOF, single spectrum intensity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13741797 Representing Collective Unconsciousness Using Neural Networks
Authors: Pierre Abou-Haila, Richard Hall, Mark Dawes
Abstract:
Instead of representing individual cognition only, population cognition is represented using artificial neural networks whilst maintaining individuality. This population network trains continuously, simulating adaptation. An implementation of two coexisting populations is compared to the Lotka-Volterra model of predator-prey interaction. Applications include multi-agent systems such as artificial life or computer games.
Keywords: Collective unconsciousness, neural networks, adaptation, predator-prey simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18351796 Numerical Evaluation of Nusselt Number on the Hot Wall in Square Enclosure Filled with Nanofluid
Authors: A. Ghafouri, A. Falavand Jozaei, M. Salari
Abstract:
In this paper, effects of using Alumina-water nanofluid on the rate of heat transfer have been investigated numerically. Physical model is a square enclosure with insulated top and bottom horizontal walls, while the vertical walls are kept at different constant temperatures. Two appropriate models are used to evaluate the viscosity and thermal conductivity of nanofluid. The governing stream-vorticity equations are solved using a second order central finite difference scheme, coupled to the conservation of mass and energy. The study has been carried out for the Richardson number 0.1 to 10 and the solid volume fraction 0 to 0.04. Results are presented by isotherms lines, average Nusselt number and normalized Nusselt number in different range of φ and Ri for forced, combined and natural convection dominated regime. It is found that higher heat transfer rate is predicted when the effects of nanoparticle is taken into account.
Keywords: Nanofluid, Heat Transfer Enhancement, Square Enclosure, Nusselt number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23411795 Hypergraph Models of Metabolism
Authors: Nicole Pearcy, Jonathan J. Crofts, Nadia Chuzhanova
Abstract:
In this paper, we employ a directed hypergraph model to investigate the extent to which environmental variability influences the set of available biochemical reactions within a living cell. Such an approach avoids the limitations of the usual complex network formalism by allowing for the multilateral relationships (i.e. connections involving more than two nodes) that naturally occur within many biological processes. More specifically, we extend the concept of network reciprocity to complex hyper-networks, thus enabling us to characterise a network in terms of the existence of mutual hyper-connections, which may be considered a proxy for metabolic network complexity. To demonstrate these ideas, we study 115 metabolic hyper-networks of bacteria, each of which can be classified into one of 6 increasingly varied habitats. In particular, we found that reciprocity increases significantly with increased environmental variability, supporting the view that organism adaptability leads to increased complexities in the resultant biochemical networks.
Keywords: Complexity, hypergraphs, reciprocity, metabolism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24631794 Performance Evaluation of ROI Extraction Models from Stationary Images
Authors: K.V. Sridhar, Varun Gunnala, K.S.R Krishna Prasad
Abstract:
In this paper three basic approaches and different methods under each of them for extracting region of interest (ROI) from stationary images are explored. The results obtained for each of the proposed methods are shown, and it is demonstrated where each method outperforms the other. Two main problems in ROI extraction: the channel selection problem and the saliency reversal problem are discussed and how best these two are addressed by various methods is also seen. The basic approaches are 1) Saliency based approach 2) Wavelet based approach 3) Clustering based approach. The saliency approach performs well on images containing objects of high saturation and brightness. The wavelet based approach performs well on natural scene images that contain regions of distinct textures. The mean shift clustering approach partitions the image into regions according to the density distribution of pixel intensities. The experimental results of various methodologies show that each technique performs at different acceptable levels for various types of images.Keywords: clustering, ROI, saliency, wavelets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14151793 Dissolution Leaching Kinetics of Ulexite in Disodium Hydrogen Phosphate Solutions
Authors: Betül Özgenç Kaya, Soner Kuslu, Sabri Çolak, Turan Çalban
Abstract:
Ulexite (Na2O.2CaO.5B2O3.16H2O) is boron mineral that is found in large quantities in the Turkey and world. In this study, the dissolution of this mineral in the disodium hydrogen phosphate solutions has been studied. Temperature, concentration, stirring speed, solid liquid ratio and particle size were selected as parameters. The experimental results were successfully correlated by linear regression using Statistica program. Dissolution curves were evaluated shrinking core models for solid-fluid systems. It was observed that increase in the reaction temperature and decrease in the solid/liquid ratio causes an increase the dissolution rate of ulexite. The activation energy was found to be 63.4 kJ/mol. The leaching of ulexite was controlled by chemical reaction.
Keywords: Disodium hydrogen phosphate, Leaching kinetics, Ulexite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21621792 A Context-Centric Chatbot for Cryptocurrency Using the Bidirectional Encoder Representations from Transformers Neural Networks
Authors: Qitao Xie, Qingquan Zhang, Xiaofei Zhang, Di Tian, Ruixuan Wen, Ting Zhu, Ping Yi, Xin Li
Abstract:
Inspired by the recent movement of digital currency, we are building a question answering system concerning the subject of cryptocurrency using Bidirectional Encoder Representations from Transformers (BERT). The motivation behind this work is to properly assist digital currency investors by directing them to the corresponding knowledge bases that can offer them help and increase the querying speed. BERT, one of newest language models in natural language processing, was investigated to improve the quality of generated responses. We studied different combinations of hyperparameters of the BERT model to obtain the best fit responses. Further, we created an intelligent chatbot for cryptocurrency using BERT. A chatbot using BERT shows great potential for the further advancement of a cryptocurrency market tool. We show that the BERT neural networks generalize well to other tasks by applying it successfully to cryptocurrency.Keywords: BERT, chatbot, cryptocurrency, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10001791 MONARC: A Case Study on Simulation Analysis for LHC Activities
Authors: Ciprian Dobre
Abstract:
The scale, complexity and worldwide geographical spread of the LHC computing and data analysis problems are unprecedented in scientific research. The complexity of processing and accessing this data is increased substantially by the size and global span of the major experiments, combined with the limited wide area network bandwidth available. We present the latest generation of the MONARC (MOdels of Networked Analysis at Regional Centers) simulation framework, as a design and modeling tool for large scale distributed systems applied to HEP experiments. We present simulation experiments designed to evaluate the capabilities of the current real-world distributed infrastructure to support existing physics analysis processes and the means by which the experiments bands together to meet the technical challenges posed by the storage, access and computing requirements of LHC data analysis within the CMS experiment.Keywords: Modeling and simulation, evaluation, large scale distributed systems, LHC experiments, CMS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18171790 Investigation of Wave Atom Sub-Bands via Breast Cancer Classification
Authors: Nebi Gedik, Ayten Atasoy
Abstract:
This paper investigates successful sub-bands of wave atom transform via classification of mammograms, when the coefficients of sub-bands are used as features. A computer-aided diagnosis system is constructed by using wave atom transform, support vector machine and k-nearest neighbor classifiers. Two-class classification is studied in detail using two data sets, separately. The successful sub-bands are determined according to the accuracy rates, coefficient numbers, and sensitivity rates.
Keywords: Breast cancer, wave atom transform, SVM, k-NN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10831789 Strengthening of RC Beams with Large Openings in Shear by CFRP Laminates: 2D Nonlinear FE Analysis
Authors: S.C. Chin, N. Shafiq, M.F. Nuruddin
Abstract:
To date, theoretical studies concerning the Carbon Fiber Reinforced Polymer (CFRP) strengthening of RC beams with openings have been rather limited. In addition, various numerical analyses presented so far have effectively simulated the behaviour of solid beam strengthened by FRP material. In this paper, a two dimensional nonlinear finite element analysis is presented to validate against the laboratory test results of six RC beams. All beams had the same rectangular cross-section geometry and were loaded under four point bending. The crack pattern results of the finite element model show good agreement with the crack pattern of the experimental beams. The load midspan deflection curves of the finite element models exhibited a stiffer result compared to the experimental beams. The possible reason may be due to the perfect bond assumption used between the concrete and steel reinforcement.Keywords: CFRP, large opening, RC beam, strengthening
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18251788 A Novel FFT-Based Frequency Offset Estimator for OFDM Systems
Authors: Mahdi Masoumi, Mehrdad Ardebilipoor, Seyed Aidin Bassam
Abstract:
This paper proposes a novel frequency offset (FO) estimator for orthogonal frequency division multiplexing. Simplicity is most significant feature of this algorithm and can be repeated to achieve acceptable accuracy. Also fractional and integer part of FO is estimated jointly with use of the same algorithm. To do so, instead of using conventional algorithms that usually use correlation function, we use DFT of received signal. Therefore, complexity will be reduced and we can do synchronization procedure by the same hardware that is used to demodulate OFDM symbol. Finally, computer simulation shows that the accuracy of this method is better than other conventional methods.
Keywords: DFT, Estimator, Frequency Offset, IEEE802.11a, OFDM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15081787 Forecasting Issues in Energy Markets within a Reg-ARIMA Framework
Authors: Ilaria Lucrezia Amerise
Abstract:
Electricity markets throughout the world have undergone substantial changes. Accurate, reliable, clear and comprehensible modeling and forecasting of different variables (loads and prices in the first instance) have achieved increasing importance. In this paper, we describe the actual state of the art focusing on reg-SARMA methods, which have proven to be flexible enough to accommodate the electricity price/load behavior satisfactory. More specifically, we will discuss: 1) The dichotomy between point and interval forecasts; 2) The difficult choice between stochastic (e.g. climatic variation) and non-deterministic predictors (e.g. calendar variables); 3) The confrontation between modelling a single aggregate time series or creating separated and potentially different models of sub-series. The noteworthy point that we would like to make it emerge is that prices and loads require different approaches that appear irreconcilable even though must be made reconcilable for the interests and activities of energy companies.Keywords: Forecasting problem, interval forecasts, time series, electricity prices, reg-plus-SARMA methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8231786 Integration of Asian Stock Markets
Authors: Noor A. Auzairy, Rubi Ahmad, Catherine S.F. Ho, Ros Z. Z. Sapian
Abstract:
This paper is to explore the relationship and the level of stock market integration of the Asian countries, primarily concentrating on Malaysia, Thailand, Indonesia, and South Korea, with the world from January 1997 to December 2009. The degree of short-run and long-run stock market integration of those Asian countries are analyzed in order to determine the significance of series of regional and world financial crises, liberalization policies and other financial reforms in influencing the level of stock market integration. To test for cointegration, this paper applies coefficient correlation, univariate regression analyses, cointegration tests, and vector autoregressive models (VAR) by using the four Asian stock markets main indices and the MSCI World index. The empirical findings from this work reveal that there is no long-run stock market integration for the four countries and the world market. However, there is short run integration.Keywords: Asia, integration, relationship, stock market.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24871785 Quantification of Methane Emissions from Solid Waste in Oman Using IPCC Default Methodology
Authors: Wajeeha A. Qazi, Mohammed-Hasham Azam, Umais A. Mehmood, Ghithaa A. Al-Mufragi, Noor-Alhuda Alrawahi, Mohammed F. M. Abushammala
Abstract:
Municipal Solid Waste (MSW) disposed in landfill sites decompose under anaerobic conditions and produce gases which mainly contain carbon dioxide (CO2) and methane (CH4). Methane has the potential of causing global warming 25 times more than CO2, and can potentially affect human life and environment. Thus, this research aims to determine MSW generation and the annual CH4 emissions from the generated waste in Oman over the years 1971-2030. The estimation of total waste generation was performed using existing models, while the CH4 emissions estimation was performed using the intergovernmental panel on climate change (IPCC) default method. It is found that total MSW generation in Oman might be reached 3,089 Gg in the year 2030, which approximately produced 85 Gg of CH4 emissions in the year 2030.
Keywords: Methane, emissions, landfills, solid waste.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21431784 Evaluating the Feasibility of Magnetic Induction to Cross an Air-Water Boundary
Authors: Mark Watson, J.-F. Bousquet, Adam Forget
Abstract:
A magnetic induction based underwater communication link is evaluated using an analytical model and a custom Finite-Difference Time-Domain (FDTD) simulation tool. The analytical model is based on the Sommerfeld integral, and a full-wave simulation tool evaluates Maxwell’s equations using the FDTD method in cylindrical coordinates. The analytical model and FDTD simulation tool are then compared and used to predict the system performance for various transmitter depths and optimum frequencies of operation. To this end, the system bandwidth, signal to noise ratio, and the magnitude of the induced voltage are used to estimate the expected channel capacity. The models show that in seawater, a relatively low-power and small coils may be capable of obtaining a throughput of 40 to 300 kbps, for the case where a transmitter is at depths of 1 to 3 m and a receiver is at a height of 1 m.Keywords: Magnetic Induction, FDTD, Underwater Communication, Sommerfeld.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5811783 Chaos Theory and Application in Foreign Exchange Rates vs. IRR (Iranian Rial)
Authors: M. A. Torkamani, S. Mahmoodzadeh, S. Pourroostaei, C. Lucas
Abstract:
Daily production of information and importance of the sequence of produced data in forecasting future performance of market causes analysis of data behavior to become a problem of analyzing time series. But time series that are very complicated, usually are random and as a result their changes considered being unpredictable. While these series might be products of a deterministic dynamical and nonlinear process (chaotic) and as a result be predictable. Point of Chaotic theory view, complicated systems have only chaotically face and as a result they seem to be unregulated and random, but it is possible that they abide by a specified math formula. In this article, with regard to test of strange attractor and biggest Lyapunov exponent probability of chaos on several foreign exchange rates vs. IRR (Iranian Rial) has been investigated. Results show that data in this market have complex chaotic behavior with big degree of freedom.
Keywords: Chaos, Exchange Rate, Nonlinear Models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24841782 Modeling Peer-to-Peer Networks with Interest-Based Clusters
Authors: Bertalan Forstner, Dr. Hassan Charaf
Abstract:
In the world of Peer-to-Peer (P2P) networking different protocols have been developed to make the resource sharing or information retrieval more efficient. The SemPeer protocol is a new layer on Gnutella that transforms the connections of the nodes based on semantic information to make information retrieval more efficient. However, this transformation causes high clustering in the network that decreases the number of nodes reached, therefore the probability of finding a document is also decreased. In this paper we describe a mathematical model for the Gnutella and SemPeer protocols that captures clustering-related issues, followed by a proposition to modify the SemPeer protocol to achieve moderate clustering. This modification is a sort of link management for the individual nodes that allows the SemPeer protocol to be more efficient, because the probability of a successful query in the P2P network is reasonably increased. For the validation of the models, we evaluated a series of simulations that supported our results.Keywords: Peer-to-Peer, model, performance, networkmanagement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13111781 Confirming the Identity of the Individual Using Remote Assessment in E-learning
Authors: Olaf Hallan Graven, Lachlan MacKinnon
Abstract:
One major issue that is regularly cited as a block to the widespread use of online assessments in eLearning, is that of the authentication of the student and the level of confidence that an assessor can have that the assessment was actually completed by that student. Currently, this issue is either ignored, in which case confidence in the assessment and any ensuing qualification is damaged, or else assessments are conducted at central, controlled locations at specified times, losing the benefits of the distributed nature of the learning programme. Particularly as we move towards constructivist models of learning, with intentions towards achieving heutagogic learning environments, the benefits of a properly managed online assessment system are clear. Here we discuss some of the approaches that could be adopted to address these issues, looking at the use of existing security and biometric techniques, combined with some novel behavioural elements. These approaches offer the opportunity to validate the student on accessing an assessment, on submission, and also during the actual production of the assessment. These techniques are currently under development in the DECADE project, and future work will evaluate and report their use..Keywords: E-learning, remote identification, assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14431780 Challenges and Opportunities of Cloud-Based E-Learning Systems
Authors: Kashif Laeeq, Zubair A. Shaikh
Abstract:
The paradigm of education is drastically changing from conventional to e-learning model. Due to ease of learning with various other benefits, several educational institutions are adopting the e-learning models. Some institutions are still willing to transform their educational system on to e-learning, but due to limited resources, they are still compromising on the old traditional system. The cloud computing could be one of the best solutions to overcome this problem by providing hardware, software, and infrastructure resources with cost efficient manner. The adoption of cloud computing in education will bring revolution in this paradigm. This paper introduces various positive features of e-learning and presents a way how cloud computing technology can be provisioned e-learning model. This paper also investigates the numerous challenges and opportunities that would be observed in cloud computing adoption in e-learning domain. The concept and knowledge present in this paper may create a new direction of research in the domain of cloud-based e-learning.
Keywords: Cloud-based e-learning, e-learning, cloud computing application, smart learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12401779 A Dynamic Equation for Downscaling Surface Air Temperature
Authors: Ch. Surawut, D. Sukawat
Abstract:
In order to utilize results from global climate models, dynamical and statistical downscaling techniques have been developed. For dynamical downscaling, usually a limited area numerical model is used, with associated high computational cost. This research proposes dynamic equation for specific space-time regional climate downscaling from the Educational Global Climate Model (EdGCM) for Southeast Asia. The equation is for surface air temperature. This equation provides downscaling values of surface air temperature at any specific location and time without running a regional climate model. In the proposed equations, surface air temperature is approximated from ground temperature, sensible heat flux and 2m wind speed. Results from the application of the equation show that the errors from the proposed equations are less than the errors for direct interpolation from EdGCM.Keywords: Dynamic Equation, Downscaling, Inverse distance weight interpolation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24671778 Investigation on Fluid Flow Characteristics of the Orifice in Nuclear Power Plant
Authors: Nam-Seok Kim, Sang-Kyu Lee, Byung-Soo Shin, O-Hyun Keum
Abstract:
The present paper represents a methodology for investigating flow characteristics near orifice plate by using a commercial computational fluid dynamics code. The flow characteristics near orifice plate which is located in the auxiliary feedwater system were modeled via three different levels of grid and four different types of Reynolds Averaged Navier-Stokes (RANS) equations with proper near-wall treatment. The results from CFD code were compared with experimental data in terms of differential pressure through the orifice plate. In this preliminary study, the Realizable k-ε and the Reynolds stress models with enhanced wall treatment were suitable to analyze flow characteristics near orifice plate, and the results had a good agreement with experimental data.Keywords: Auxiliary Feedwater, Computational Fluid Dynamics, Orifice, Nuclear Power Plant
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2497