Search results for: Recognition of Prior Learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3037

Search results for: Recognition of Prior Learning

1147 The Construction of Interactive Computer Multimedia Instruction on “Basic Japanese Vocabulary“

Authors: Kongrit Jittangthammagul, Sakesun Yampinij, Thapanee Endoo, Nattapong Kramwong

Abstract:

The study entitled “The Construction of Interactive Computer Multimedia Instruction on Basic Japanese Vocabulary" was aimed: 1) To construct the interactive computer multimedia instruction on Basic Japanese Vocabulary, 2) To find out multimedia-s quality, 3) To examine the student-s satisfaction and 4) To study the learning achievement in Basic Japanese vocabulary. The sampling group used in this study was composed of 40 1st year student in Educational Communications and Technology Department, Faculty of Industrial Education and Technology, King Mongkut-s University of Technology Thonburi, in the academic year 2553 B.E. (2010). According to research results, we found that 1). The quality assessment by 3 mass media experts was at 4.72 on average or at high level. 2) In terms of contents, the evaluation by 3 experts was at 4.81 on average or at high level. 3) In terms of achievement, there was a statistical significance between before and after the treatment at the .05 level. 4) The satisfaction of students towards the interactive computer multimedia Instruction on “Basic Japanese Vocabulary" was 4.35 on average, or at high level.

Keywords: Interactive Computer Multimedia on Basic Japanese Vocabulary, Learning Achievement, Quality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496
1146 Perception of Farmers and Agricultural Professionals on Changes in Productivity and Water Resources in Ethiopia

Authors: D. Mojo, Y. Todo, P. Matous

Abstract:

In this paper, perceptions of actors on changes in crop productivity, quantity and quality of water, and determinants of their perception are analyzed using descriptive statistics and ordered logit model. Data collected from 297 Ethiopian farmers and 103 agricultural professionals from December 2009 to January 2010 are employed. Results show that the majority of the farmers and professionals recognized decline in water resources, reasoning climate changes and soil erosion as some of the causes. However, there is a variation in views on changes in productivity. The household asset, education level, age and geographical positions are found to affect farmers- perception on changes in crop productivity. But, the study underlines that there is no evidence that farmers- economic status, age, or education level affects recognition of degradation of water resources. Thus, more focus shall be given on providing them different coping mechanisms and alternative resource conserving technologies than educating about the problems.

Keywords: Agricultural Sustainability, Ethiopia, Perception, Productivity, Water Resources

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2690
1145 Quantification of the Variables of the Information Model for the Use of School Terminology from 1884 to 2014 in Dalmatia

Authors: V. Vidučić, T. Brešan Ančić, M. Tomelić Ćurlin

Abstract:

Prior to quantifying the variables of the information model for using school terminology in Croatia's region of Dalmatia from 1884 to 2014, the most relevant model variables had to be determined: historical circumstances, standard of living, education system, linguistic situation, and media. The research findings show that there was no significant transfer of the 1884 school terms into 1949 usage; likewise, the 1949 school terms were not widely used in 2014. On the other hand, the research revealed that the meaning of school terms changed over the decades. The quantification of the variables will serve as the groundwork for creating an information model for using school terminology in Dalmatia from 1884 to 2014 and for defining direct growth rates in further research.

Keywords: Education system, historical circumstances, linguistic situation, media, school terminology, standard of living.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611
1144 Transformational Leaders and Challenges in COVID-19 Virtual Work Environments

Authors: Valarie A. Williams

Abstract:

This paper is a nonempirical analysis of existing literature on virtual leadership, transformational leadership, and remote work cultures. This paper will provide insight into how virtual workplaces can utilize transformational leadership styles to overcome challenges that have become a reality due to the COVID-19 Pandemic. Many organizations were forced into remote work to remain viable. It investigates the obstacles of working from home and the challenges leaders face in coaching and development. Employees lack face-to-face interactions and begin to feel isolated. Leaders cannot have in-person meetings and conversations and struggle to engage and encourage employees. In acknowledging the different dynamics of virtual work environments, organizations can make the necessary adjustments to best support employees. This paper reviews prior research studies and applies what is known to assist with current obstacles. This paper addresses how transformational leadership will assist in overcoming challenges within virtual work environments.

Keywords: Challenges in remote work, transformational leadership, virtual leadership, virtual work environments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 614
1143 Capacitor Placement in Radial Distribution System for Loss Reduction Using Artificial Bee Colony Algorithm

Authors: R. Srinivasa Rao

Abstract:

This paper presents a new method which applies an artificial bee colony algorithm (ABC) for capacitor placement in distribution systems with an objective of improving the voltage profile and reduction of power loss. The ABC algorithm is a new population based meta heuristic approach inspired by intelligent foraging behavior of honeybee swarm. The advantage of ABC algorithm is that it does not require external parameters such as cross over rate and mutation rate as in case of genetic algorithm and differential evolution and it is hard to determine these parameters in prior. The other advantage is that the global search ability in the algorithm is implemented by introducing neighborhood source production mechanism which is a similar to mutation process. To demonstrate the validity of the proposed algorithm, computer simulations are carried out on 69-bus system and compared the results with the other approach available in the literature. The proposed method has outperformed the other methods in terms of the quality of solution and computational efficiency.

Keywords: Distribution system, Capacitor Placement, Loss reduction, Artificial Bee Colony Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2817
1142 Application of Generalized Autoregressive Score Model to Stock Returns

Authors: Katleho Daniel Makatjane, Diteboho Lawrence Xaba, Ntebogang Dinah Moroke

Abstract:

The current study investigates the behaviour of time-varying parameters that are based on the score function of the predictive model density at time t. The mechanism to update the parameters over time is the scaled score of the likelihood function. The results revealed that there is high persistence of time-varying, as the location parameter is higher and the skewness parameter implied the departure of scale parameter from the normality with the unconditional parameter as 1.5. The results also revealed that there is a perseverance of the leptokurtic behaviour in stock returns which implies the returns are heavily tailed. Prior to model estimation, the White Neural Network test exposed that the stock price can be modelled by a GAS model. Finally, we proposed further researches specifically to model the existence of time-varying parameters with a more detailed model that encounters the heavy tail distribution of the series and computes the risk measure associated with the returns.

Keywords: Generalized autoregressive score model, stock returns, time-varying.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1034
1141 Enhancing Spatial Interpolation: A Multi-Layer Inverse Distance Weighting Model for Complex Regression and Classification Tasks in Spatial Data Analysis

Authors: Yakin Hajlaoui, Richard Labib, Jean-Franc¸ois Plante, Michel Gamache

Abstract:

This study presents the Multi-Layer Inverse Distance Weighting Model (ML-IDW), inspired by the mathematical formulation of both multi-layer neural networks (ML-NNs) and Inverse Distance Weighting model (IDW). ML-IDW leverages ML-NNs’ processing capabilities, characterized by compositions of learnable non-linear functions applied to input features, and incorporates IDW’s ability to learn anisotropic spatial dependencies, presenting a promising solution for nonlinear spatial interpolation and learning from complex spatial data. We employ gradient descent and backpropagation to train ML-IDW. The performance of the proposed model is compared against conventional spatial interpolation models such as Kriging and standard IDW on regression and classification tasks using simulated spatial datasets of varying complexity. Our results highlight the efficacy of ML-IDW, particularly in handling complex spatial dataset, exhibiting lower mean square error in regression and higher F1 score in classification.

Keywords: Deep Learning, Multi-Layer Neural Networks, Gradient Descent, Spatial Interpolation, Inverse Distance Weighting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37
1140 Revolutionizing Product Packaging: The Impact of Transparent Graded Lanes on Ketchup and Edible Oil Containers on Consumer Behavior

Authors: Saeid Asghari

Abstract:

The growing interest in sustainability and healthy lifestyles has stimulated the development of solutions that promote mindful consumption and healthier choices. One such solution is the use of transparent graded lanes in product packaging, which enables consumers to visually track their product consumption and encourages portion control. However, the influence of packaging on consumer behavior, trust, and brand loyalty, as well as the effectiveness of messaging on transparent graded lanes, is still not well understood. This research seeks to explore the effects of transparent graded lanes on consumer reactions of the Janbo chain supermarkets in Tehran, Iran, focusing on ketchup and edible oil containers. A representative sample of 720 respondents is selected using quota sampling based on sex, age, and financial status. The study assesses the effect of messaging on the graded lanes in enhancing consumer recall and recognition of the product at the time of purchase, increasing repeated purchases, and fostering long-term relationships with customers. Furthermore, the potential outcomes of using transparent graded lanes, including the promotion of healthy consumption habits and the reduction of food waste, are also considered. The findings and results can inform the development of effective messaging strategies for graded lanes and suggest ways to enhance consumer engagement with product packaging. Moreover, the study's outcomes can contribute to the broader discourse on sustainable consumption and healthy lifestyles, highlighting the potential role of packaging innovations in promoting these values. We used four theories (social cognitive theory, self-perception theory, nudge theory, and marketing and consumer behavior) to examine the effect of these transparent graded lanes on consumer behavior. The conceptual model integrates the use of transparent graded lanes, consumer behavior, trust and loyalty, messaging, and promotion of healthy consumption habits. The study aims to provide insights into how transparent graded lanes can promote mindful consumption, increase consumer recognition and recall of the product, and foster long-term relationships with customers. These innovative packaging designs not only encourage mindful consumption but also promote healthier choices. The communication on the categorized lanes is likewise discovered to be efficient in fostering remembrance and identification of the merchandise during the point of sale and stimulating recurrent acquisition. However, the impact of transparent graded lanes may be limited by factors such as cultural norms, personal values, and financial status. Broadly speaking, the investigation provides valuable insights into the potential benefits and challenges of using transparent graded lanes in product packaging, as well as effective strategies for promoting healthy consumption habits and building long-term relationships with customers.

Keywords: Packaging, customer behavior, purchase, brand loyalty, healthy consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 231
1139 Study of Icons in Enterprise Application Software Context

Authors: Shiva Subhedar, Abhishek Jain, Shivin Mittal

Abstract:

Icons are not merely decorative elements in enterprise applications but very often used because of their many advantages such as compactness, visual appeal, etc. Despite these potential advantages, icons often cause usability problems when they are designed without consideration for their many potential downsides. The aim of the current study was to examine the effect of articulatory distance – the distance between the physical appearance of an interface element and what it actually means. In other words, will the subject find the association of the function and its appearance on the interface natural or is the icon difficult for them to associate with its function. We have calculated response time and quality of identification by varying icon concreteness, the context of usage and subject experience in the enterprise context. The subjects were asked to associate icons (prepared for study purpose) with given function options in context and out of context mode. Response time and their selection were recorded for analysis.

Keywords: Icons, icon concreteness, icon recognition, HCI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1339
1138 Speech Intelligibility Improvement Using Variable Level Decomposition DWT

Authors: Samba Raju, Chiluveru, Manoj Tripathy

Abstract:

Intelligibility is an essential characteristic of a speech signal, which is used to help in the understanding of information in speech signal. Background noise in the environment can deteriorate the intelligibility of a recorded speech. In this paper, we presented a simple variance subtracted - variable level discrete wavelet transform, which improve the intelligibility of speech. The proposed algorithm does not require an explicit estimation of noise, i.e., prior knowledge of the noise; hence, it is easy to implement, and it reduces the computational burden. The proposed algorithm decides a separate decomposition level for each frame based on signal dominant and dominant noise criteria. The performance of the proposed algorithm is evaluated with speech intelligibility measure (STOI), and results obtained are compared with Universal Discrete Wavelet Transform (DWT) thresholding and Minimum Mean Square Error (MMSE) methods. The experimental results revealed that the proposed scheme outperformed competing methods

Keywords: Discrete Wavelet Transform, speech intelligibility, STOI, standard deviation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 693
1137 Performance Analysis and Optimization for Diagonal Sparse Matrix-Vector Multiplication on Machine Learning Unit

Authors: Qiuyu Dai, Haochong Zhang, Xiangrong Liu

Abstract:

Efficient matrix-vector multiplication with diagonal sparse matrices is pivotal in a multitude of computational domains, ranging from scientific simulations to machine learning workloads. When encoded in the conventional Diagonal (DIA) format, these matrices often induce computational overheads due to extensive zero-padding and non-linear memory accesses, which can hamper the computational throughput, and elevate the usage of precious compute and memory resources beyond necessity. The ’DIA-Adaptive’ approach, a methodological enhancement introduced in this paper, confronts these challenges head-on by leveraging the advanced parallel instruction sets embedded within Machine Learning Units (MLUs). This research presents a thorough analysis of the DIA-Adaptive scheme’s efficacy in optimizing Sparse Matrix-Vector Multiplication (SpMV) operations. The scope of the evaluation extends to a variety of hardware architectures, examining the repercussions of distinct thread allocation strategies and cluster configurations across multiple storage formats. A dedicated computational kernel, intrinsic to the DIA-Adaptive approach, has been meticulously developed to synchronize with the nuanced performance characteristics of MLUs. Empirical results, derived from rigorous experimentation, reveal that the DIA-Adaptive methodology not only diminishes the performance bottlenecks associated with the DIA format but also exhibits pronounced enhancements in execution speed and resource utilization. The analysis delineates a marked improvement in parallelism, showcasing the DIA-Adaptive scheme’s ability to adeptly manage the interplay between storage formats, hardware capabilities, and algorithmic design. The findings suggest that this approach could set a precedent for accelerating SpMV tasks, thereby contributing significantly to the broader domain of high-performance computing and data-intensive applications.

Keywords: Adaptive method, DIA, diagonal sparse matrices, MLU, sparse matrix-vector multiplication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 235
1136 Blast Induced Ground Shock Effects on Pile Foundations

Authors: L. B. Jayasinghe, D. P. Thambiratnam, N. Perera, J. H. A. R. Jayasooriya

Abstract:

Due to increased number of terrorist attacks in recent years, loads induced by explosions need to be incorporated in building designs. For safer performance of a structure, its foundation should have sufficient strength and stability. Therefore, prior to any reconstruction or rehabilitation of a building subjected to blast, it is important to examine adverse effects on the foundation caused by blast induced ground shocks. This paper evaluates the effects of a buried explosion on a pile foundation. It treats the dynamic response of the pile in saturated sand, using explicit dynamic nonlinear finite element software LS-DYNA. The blast induced wave propagation in the soil and the horizontal deformation of pile are presented and the results are discussed. Further, a parametric study is carried out to evaluate the effect of varying the explosive shape on the pile response. This information can be used to evaluate the vulnerability of piled foundations to credible blast events as well as develop guidance for their design.

Keywords: Underground explosion, numerical simulation, pilefoundation, saturated soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3651
1135 Comparison of Different k-NN Models for Speed Prediction in an Urban Traffic Network

Authors: Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

A database that records average traffic speeds measured at five-minute intervals for all the links in the traffic network of a metropolitan city. While learning from this data the models that can predict future traffic speed would be beneficial for the applications such as the car navigation system, building predictive models for every link becomes a nontrivial job if the number of links in a given network is huge. An advantage of adopting k-nearest neighbor (k-NN) as predictive models is that it does not require any explicit model building. Instead, k-NN takes a long time to make a prediction because it needs to search for the k-nearest neighbors in the database at prediction time. In this paper, we investigate how much we can speed up k-NN in making traffic speed predictions by reducing the amount of data to be searched for without a significant sacrifice of prediction accuracy. The rationale behind this is that we had a better look at only the recent data because the traffic patterns not only repeat daily or weekly but also change over time. In our experiments, we build several different k-NN models employing different sets of features which are the current and past traffic speeds of the target link and the neighbor links in its up/down-stream. The performances of these models are compared by measuring the average prediction accuracy and the average time taken to make a prediction using various amounts of data.

Keywords: Big data, k-NN, machine learning, traffic speed prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376
1134 A Review and Comparative Analysis on Cluster Ensemble Methods

Authors: S. Sarumathi, P. Ranjetha, C. Saraswathy, M. Vaishnavi, S. Geetha

Abstract:

Clustering is an unsupervised learning technique for aggregating data objects into meaningful classes so that intra cluster similarity is maximized and inter cluster similarity is minimized in data mining. However, no single clustering algorithm proves to be the most effective in producing the best result. As a result, a new challenging technique known as the cluster ensemble approach has blossomed in order to determine the solution to this problem. For the cluster analysis issue, this new technique is a successful approach. The cluster ensemble's main goal is to combine similar clustering solutions in a way that achieves the precision while also improving the quality of individual data clustering. Because of the massive and rapid creation of new approaches in the field of data mining, the ongoing interest in inventing novel algorithms necessitates a thorough examination of current techniques and future innovation. This paper presents a comparative analysis of various cluster ensemble approaches, including their methodologies, formal working process, and standard accuracy and error rates. As a result, the society of clustering practitioners will benefit from this exploratory and clear research, which will aid in determining the most appropriate solution to the problem at hand.

Keywords: Clustering, cluster ensemble methods, consensus function, data mining, unsupervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 821
1133 Adaptation Learning Speed Control for a High- Performance Induction Motor using Neural Networks

Authors: M. Zerikat, S. Chekroun

Abstract:

This paper proposes an effective adaptation learning algorithm based on artificial neural networks for speed control of an induction motor assumed to operate in a high-performance drives environment. The structure scheme consists of a neural network controller and an algorithm for changing the NN weights in order that the motor speed can accurately track of the reference command. This paper also makes uses a very realistic and practical scheme to estimate and adaptively learn the noise content in the speed load torque characteristic of the motor. The availability of the proposed controller is verified by through a laboratory implementation and under computation simulations with Matlab-software. The process is also tested for the tracking property using different types of reference signals. The performance and robustness of the proposed control scheme have evaluated under a variety of operating conditions of the induction motor drives. The obtained results demonstrate the effectiveness of the proposed control scheme system performances, both in steady state error in speed and dynamic conditions, was found to be excellent and those is not overshoot.

Keywords: Electric drive, Induction motor, speed control, Adaptive control, neural network, High Performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027
1132 Occupants- Behavior and Spatial Implications of Riverfront Residential in Yogyakarta, Indonesia

Authors: Hastuti Saptorini

Abstract:

The urbanization phenomenon in Yogyakarta Special Province, Indonesia, encouraged people move to the city for getting jobs in the informal sectors. They live in some temporary houses in the three main riverbanks: Gadjahwong, Code, and Winongo. Triggered by its independent status they use it as the space for accommodating domestic, social and economy activities because of the non standardized room size of their houses, where are recognized as the environmental hazards. This recognition makes the ambivalent perception when was related to the twelfth point of the philosophy of community development concept: the empowering individuals and communities. Its spatial implication have actually described the territory and the place making phenomena. By analyzing some data collected the author-s fundamental research funded by The General Directorate of Higher Education of Indonesia, this paper will discuss how do the spatial implications of the occupants- behavior and the numerous perceptions of those phenomena.

Keywords: occupants' behavior, socio-economic-cultural activities, spatial implication

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1667
1131 Laboratory Experimentation for Supporting Collaborative Working in Engineering Education over the Internet

Authors: S. Odeh, E. Abdelghani

Abstract:

Collaborative working environments for distance education can be considered as a more generic form of contemporary remote labs. At present, the majority of existing real laboratories are not constructed to allow the involved participants to collaborate in real time. To make this revolutionary learning environment possible we must allow the different users to carry out an experiment simultaneously. In recent times, multi-user environments are successfully applied in many applications such as air traffic control systems, team-oriented military systems, chat-text tools, multi-player games etc. Thus, understanding the ideas and techniques behind these systems could be of great importance in the contribution of ideas to our e-learning environment for collaborative working. In this investigation, collaborative working environments from theoretical and practical perspectives are considered in order to build an effective collaborative real laboratory, which allows two students or more to conduct remote experiments at the same time as a team. In order to achieve this goal, we have implemented distributed system architecture, enabling students to obtain an automated help by either a human tutor or a rule-based e-tutor.

Keywords: Collaboration environment, e-tutor, multi-user environments, socio-technical system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1483
1130 Music-Inspired Harmony Search Algorithm for Fixed Outline Non-Slicing VLSI Floorplanning

Authors: K. Sivasubramanian, K. B. Jayanthi

Abstract:

Floorplanning plays a vital role in the physical design process of Very Large Scale Integrated (VLSI) chips. It is an essential design step to estimate the chip area prior to the optimized placement of digital blocks and their interconnections. Since VLSI floorplanning is an NP-hard problem, many optimization techniques were adopted in the literature. In this work, a music-inspired Harmony Search (HS) algorithm is used for the fixed die outline constrained floorplanning, with the aim of reducing the total chip area. HS draws inspiration from the musical improvisation process of searching for a perfect state of harmony. Initially, B*-tree is used to generate the primary floorplan for the given rectangular hard modules and then HS algorithm is applied to obtain an optimal solution for the efficient floorplan. The experimental results of the HS algorithm are obtained for the MCNC benchmark circuits.

Keywords: Floor planning, harmony search, non-slicing floorplan, very large scale integrated circuits.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957
1129 Bayesian Network Model for Students- Laboratory Work Performance Assessment: An Empirical Investigation of the Optimal Construction Approach

Authors: Ifeyinwa E. Achumba, Djamel Azzi, Rinat Khusainov

Abstract:

There are three approaches to complete Bayesian Network (BN) model construction: total expert-centred, total datacentred, and semi data-centred. These three approaches constitute the basis of the empirical investigation undertaken and reported in this paper. The objective is to determine, amongst these three approaches, which is the optimal approach for the construction of a BN-based model for the performance assessment of students- laboratory work in a virtual electronic laboratory environment. BN models were constructed using all three approaches, with respect to the focus domain, and compared using a set of optimality criteria. In addition, the impact of the size and source of the training, on the performance of total data-centred and semi data-centred models was investigated. The results of the investigation provide additional insight for BN model constructors and contribute to literature providing supportive evidence for the conceptual feasibility and efficiency of structure and parameter learning from data. In addition, the results highlight other interesting themes.

Keywords: Bayesian networks, model construction, parameterlearning, structure learning, performance index, model comparison.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727
1128 A Multi-Feature Deep Learning Algorithm for Urban Traffic Classification with Limited Labeled Data

Authors: Rohan Putatunda, Aryya Gangopadhyay

Abstract:

Acoustic sensors, if embedded in smart street lights, can help in capturing the activities (car honking, sirens, events, traffic, etc.) in cities. Needless to say, the acoustic data from such scenarios are complex due to multiple audio streams originating from different events, and when decomposed to independent signals, the amount of retrieved data volume is small in quantity which is inadequate to train deep neural networks. So, in this paper, we address the two challenges: a) separating the mixed signals, and b) developing an efficient acoustic classifier under data paucity. So, to address these challenges, we propose an architecture with supervised deep learning, where the initial captured mixed acoustics data are analyzed with Fast Fourier Transformation (FFT), followed by filtering the noise from the signal, and then decomposed to independent signals by fast independent component analysis (Fast ICA). To address the challenge of data paucity, we propose a multi feature-based deep neural network with high performance that is reflected in our experiments when compared to the conventional convolutional neural network (CNN) and multi-layer perceptron (MLP).

Keywords: FFT, ICA, vehicle classification, multi-feature DNN, CNN, MLP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 432
1127 Statistical Wavelet Features, PCA, and SVM Based Approach for EEG Signals Classification

Authors: R. K. Chaurasiya, N. D. Londhe, S. Ghosh

Abstract:

The study of the electrical signals produced by neural activities of human brain is called Electroencephalography. In this paper, we propose an automatic and efficient EEG signal classification approach. The proposed approach is used to classify the EEG signal into two classes: epileptic seizure or not. In the proposed approach, we start with extracting the features by applying Discrete Wavelet Transform (DWT) in order to decompose the EEG signals into sub-bands. These features, extracted from details and approximation coefficients of DWT sub-bands, are used as input to Principal Component Analysis (PCA). The classification is based on reducing the feature dimension using PCA and deriving the supportvectors using Support Vector Machine (SVM). The experimental are performed on real and standard dataset. A very high level of classification accuracy is obtained in the result of classification.

Keywords: Discrete Wavelet Transform, Electroencephalogram, Pattern Recognition, Principal Component Analysis, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3113
1126 Effect of Blanching on the Quality of Microwave Vacuum Dried Dill (Anethum graveolens L.)

Authors: Evita Straumite, Zanda Kruma, Ruta Galoburda, Kaiva Saulite

Abstract:

Dill (Anethum graveolens L.) is a popular herb used in many regions, including Baltic countries. Dill is widely used for flavoring foods and beverages due to its pleasant spicy aroma. The aim of this work was to determine the best blanching method for processing of dill prior to microwave vacuum drying based on sensory properties, color and volatile compounds in dried product. Two blanching mediums were used – water and steam, and for part of samples microwave pretreatment was additionally used. Evaluation of dried dill volatile aroma compounds, color changes and sensory attributes was performed. Results showed that blanching significantly influences the quality of dried dill. After evaluation of volatile aroma compounds, color and sensory properties of microwave vacuum dried dill, as the best method for dill pretreatment was established blanching at 90 °C for 30 s.

Keywords: dried dill, sensory panel, sensory properties, aroma compounds, color

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2178
1125 Paper-Based Colorimetric Sensor Utilizing Peroxidase-Mimicking Magnetic Nanoparticles Conjugated with Aptamers

Authors: Min-Ah Woo, Min-Cheol Lim, Hyun-Joo Chang, Sung-Wook Choi

Abstract:

We developed a paper-based colorimetric sensor utilizing magnetic nanoparticles conjugated with aptamers (MNP-Apts) against E. coli O157:H7. The MNP-Apts were applied to a test sample solution containing the target cells, and the solution was simply dropped onto PVDF (polyvinylidene difluoride) membrane. The membrane moves the sample radially to form the sample spots of different compounds as concentric rings, thus the MNP-Apts on the membrane enabled specific recognition of the target cells through a color ring generation by MNP-promoted colorimetric reaction of TMB (3,3',5,5'-tetramethylbenzidine) and H2O2. This method could be applied to rapidly and visually detect various bacterial pathogens in less than 1 h without cell culturing.

Keywords: Aptamer, colorimetric sensor, E. coli O157:H7, magnetic nanoparticle, polyvinylidene difluoride.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1345
1124 Designing Information Systems in Education as Prerequisite for Successful Management Results

Authors: Vladimir Simovic, Matija Varga, Tonco Marusic

Abstract:

This research paper shows matrix technology models and examples of information systems in education (in the Republic of Croatia and in the Germany) in support of business, education (when learning and teaching) and e-learning. Here we researched and described the aims and objectives of the main process in education and technology, with main matrix classes of data. In this paper, we have example of matrix technology with detailed description of processes related to specific data classes in the processes of education and an example module that is support for the process: ‘Filling in the directory and the diary of work’ and ‘evaluation’. Also, on the lower level of the processes, we researched and described all activities which take place within the lower process in education. We researched and described the characteristics and functioning of modules: ‘Fill the directory and the diary of work’ and ‘evaluation’. For the analysis of the affinity between the aforementioned processes and/or sub-process we used our application model created in Visual Basic, which was based on the algorithm for analyzing the affinity between the observed processes and/or sub-processes.

Keywords: Designing, education management, information systems, matrix technology, process affinity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1096
1123 A New Automatic System of Cell Colony Counting

Authors: U. Bottigli, M.Carpinelli, P.L. Fiori, B. Golosio, A. Marras, G. L. Masala, P. Oliva

Abstract:

The counting process of cell colonies is always a long and laborious process that is dependent on the judgment and ability of the operator. The judgment of the operator in counting can vary in relation to fatigue. Moreover, since this activity is time consuming it can limit the usable number of dishes for each experiment. For these purposes, it is necessary that an automatic system of cell colony counting is used. This article introduces a new automatic system of counting based on the elaboration of the digital images of cellular colonies grown on petri dishes. This system is mainly based on the algorithms of region-growing for the recognition of the regions of interest (ROI) in the image and a Sanger neural net for the characterization of such regions. The better final classification is supplied from a Feed-Forward Neural Net (FF-NN) and confronted with the K-Nearest Neighbour (K-NN) and a Linear Discriminative Function (LDF). The preliminary results are shown.

Keywords: Automatic cell counting, neural network, region growing, Sanger net.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461
1122 The Opinions of Nursing Students Regarding Humanized Care through Volunteer Activities at Boromrajonani College of Nursing, Chonburi

Authors: P. Phenpun, S. Wareewan

Abstract:

This qualitative study aimed to describe the opinions in relation to humanized care emerging from the volunteer activities of nursing students at Boromarajonani College of Nursing, Chonburi, Thailand. One hundred and twenty-seven second-year nursing students participated in this study. The volunteer activity model was composed of preparation, implementation, and evaluation through a learning log, in which students were encouraged to write their daily activities after completing practical training at the healthcare center. The preparation content included three main categories: service minded, analytical thinking, and client participation. The preparation process took over three days that accumulates up to 20 hours only. The implementation process was held over 10 days, but with a total of 70 hours only, with participants taking part in volunteer work activities at a healthcare center. A learning log was used for evaluation and data were analyzed using content analysis. The findings were as follows. With service minded, there were two subcategories that emerged from volunteer activities, which were service minded towards patients and within themselves. There were three categories under service minded towards patients, which were rapport, compassion, and empathy service behaviors, and there were four categories under service minded within themselves, which were self-esteem, self-value, management potential, and preparedness in providing good healthcare services. In line with analytical thinking, there were two components of analytical thinking, which were analytical skill for their works and analytical thinking for themselves. There were four subcategories under analytical thinking for their works, which were evidence based thinking, real situational thinking, cause analysis thinking, and systematic thinking, respectively. There were four subcategories under analytical thinking for themselves, which were comparative between themselves, towards their clients that leads to the changing of their service behaviors, open-minded thinking, modernized thinking, and verifying both verbal and non-verbal cues. Lastly, there were three categories under participation, which were mutual rapport relationship; reconsidering client’s needs services and providing useful health care information.

Keywords: Humanized care service, volunteer activity, nursing student, and learning log.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571
1121 Experimental Investigation and Hardness Analysis of Chromoly Steel Multipass Welds Using GMAW

Authors: Ramesh S., Sasiraaju A. S., Sidhaarth K., Sudhan Rajkumar N., Manivel Muralidaran V.

Abstract:

This work presents the result of investigations aimed at determining the hardness of the welded Chromoly (A 4130) steel plate of 2” thickness. Multi pass welding for the thick sections was carried out and analyzed for the Chromoly alloy steel plates. The study of hardness at the weld metal reveals that there is the presence of different micro structure products which yields diverse properties. The welding carried out using GMAW with ER70s-2 electrode. Single V groove design was selected for the butt joint configuration. The presence of hydrogen has been suppressed by selecting low hydrogen electrode. Preheating of the plate prior to welding reduces the cooling rate which also affects the weld metal microstructure. The shielding gas composition used in this analysis is 80% Ar-20% CO2. The experimental analysis gives the detailed study of the hardness of the material.

Keywords: Chromoly, Gas Metal Arc Weld (GMAW), Hardness, Multi pass weld, Shielding gas composition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2999
1120 Anticoagulatory Role of an Ergot Mesylate: Hydergine

Authors: Fareeha A., Irfan Z Qureshi

Abstract:

Thrombosis can be life threatening, necessitating therefore its instant treatment. Hydergine, a nootropic agent is used as a cognition enhancer in stroke patients but relatively little is known about its anti-thrombolytic effect. To investigate this aspect, in vivo and ex vivo experiments were designed and conducted. Three groups of rats were injected 1.5mg, 3.0mg and 4.5mg hydergine intraperitonealy with and without prior exposure to fresh plasma. Positive and negative controls were run in parallel. Animals were sacrificed after 1.5hrs and BT, CT, PT, INR, APTT, plasma calcium levels were estimated. For ex vivo analyses, each 1ml blood aspirated was exposed to 0.1mg, 0.2mg, 0.3mg dose of hydergine with parallel controls. Parameters analyzed were as above. Statistical analysis was through one-way ANOVA. Dunken-s and Tukey-s tests provided intra-group variance. BT, CT, PT, INR and APTT increased while calcium levels dropped significantly (P<0.05). Ex vivo, CT, PT and APTT were elevated while plasma calcium levels lowered significantly (P<0.05). Our study suggests that hydergine may act as a thrombolytic agent but warrants further studies to elucidate this role of ergot mesylates.

Keywords: Hydergine, Coagulation assays, plasma calcium, ergot mesylates, thrombosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2025
1119 The Impact of Physics Taught with Simulators and Texts in Brazilian High School: A Study in the Adult and Youth Education

Authors: Leandro Marcos Alves Vaz

Abstract:

The teaching of physics in Brazilian public schools emphasizes strongly the theoretical aspects of this science, showing its philosophical and mathematical basis, but neglecting its experimental character. Perhaps the lack of science laboratories explains this practice. In this work, we present a method of teaching physics using the computer. As alternatives to real experiments, we have the trials through simulators, many of which are free software available on the internet. In order to develop a study on the use of simulators in teaching, knowing the impossibility of simulations on all topics in a given subject, we combined these programs with phenomenological and/or experimental texts in order to mitigate this limitation. This study proposes the use of simulators and the debate using phenomenological/experimental texts on electrostatic theme in groups of the 3rd year of EJA (Adult and Youth Education) in order to verify the advantages of this methodology. Some benefits of the hybridization of the traditional method with the tools used were: Greater motivation of the students in learning, development of experimental notions, proactive socialization to learning, greater easiness to understand some concepts and the creation of collaborative activities that can reduce timidity of part of the students.

Keywords: Physics teaching, simulators, youth and adult education, experimentation, electrostatic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1190
1118 COTT – A Testability Framework for Object-Oriented Software Testing

Authors: A. Goel, S.C. Gupta, S.K.Wasan

Abstract:

Testable software has two inherent properties – observability and controllability. Observability facilitates observation of internal behavior of software to required degree of detail. Controllability allows creation of difficult-to-achieve states prior to execution of various tests. In this paper, we describe COTT, a Controllability and Observability Testing Tool, to create testable object-oriented software. COTT provides a framework that helps the user to instrument object-oriented software to build the required controllability and observability. During testing, the tool facilitates creation of difficult-to-achieve states required for testing of difficultto- test conditions and observation of internal details of execution at unit, integration and system levels. The execution observations are logged in a test log file, which are used for post analysis and to generate test coverage reports.

Keywords: Controllability, Observability, Test Coverage and Testing Tool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621