Search results for: human activity recognition
1881 Memory Types in Hemodialysis Patients: A Study Based on Hemodialysis Duration, Zahedan, South East of Iran
Authors: B. Sabayan, A. Alidadi, S. Ebrahimi, N. M. Bakhshani
Abstract:
Neuropsychological problems are more common in hemodialysis (HD) patients than in healthy individuals. The aim of this study was to investigate the effect of long term HD on memory types of HD patients. To assess the different type of memory, we used memory parts of the Persian Papers and Pencil Cognitive assessment package (PCAP) and Addenbrooke's Cognitive Examination (ACE-R). Our study included 80 HD patients of whom 39 had less than six months of HD and 41 patients and another group which had a history of HD more than six months. The population had a mean age of 51.60 years old and 27.5% of them were female. The scores of patients who have been hemodialyzed for a long time (median time of HD was up to 4 years) had lower score in anterograde, explicit, visual, recall and recognition memory (5.44±1.07, 9.49±3.472, 22.805±6.6913, 5.59±10.435, 11.02±3.190 score) than the HD patients who underwent HD for a shorter term, where the median time was 3 to 5 months (P<0.01). The regression result shows that, by increasing the HD duration, all memory types are reduced (R2=0.600, P<0.01). The present study demonstrated that HD patients who were under HD for a long time had significantly lower scores in the different types of memory. However, additional researches are needed in this area.
Keywords: Hemodialysis patients, duration of hemodialysis, memory types, Zahedan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13061880 A Novel RLS Based Adaptive Filtering Method for Speech Enhancement
Authors: Pogula Rakesh, T. Kishore Kumar
Abstract:
Speech enhancement is a long standing problem with numerous applications like teleconferencing, VoIP, hearing aids and speech recognition. The motivation behind this research work is to obtain a clean speech signal of higher quality by applying the optimal noise cancellation technique. Real-time adaptive filtering algorithms seem to be the best candidate among all categories of the speech enhancement methods. In this paper, we propose a speech enhancement method based on Recursive Least Squares (RLS) adaptive filter of speech signals. Experiments were performed on noisy data which was prepared by adding AWGN, Babble and Pink noise to clean speech samples at -5dB, 0dB, 5dB and 10dB SNR levels. We then compare the noise cancellation performance of proposed RLS algorithm with existing NLMS algorithm in terms of Mean Squared Error (MSE), Signal to Noise ratio (SNR) and SNR Loss. Based on the performance evaluation, the proposed RLS algorithm was found to be a better optimal noise cancellation technique for speech signals.
Keywords: Adaptive filter, Adaptive Noise Canceller, Mean Squared Error, Noise reduction, NLMS, RLS, SNR, SNR Loss.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31831879 Affective Adaptation Design for Better Gaming Experiences
Authors: Ollie Hall, Salma ElSayed
Abstract:
Affective adaptation is a creative way for game designers to add an extra layer of engagement to their productions. When player’s emotions are an explicit factor in mechanics design, endless possibilities for imaginative gameplay emerge. Whilst gaining popularity, existing affective game research mostly runs controlled experiments in restrictive settings and rely on one or more specialist devices for measuring player’s emotional state. These conditions albeit effective, are not necessarily realistic. Moreover, the simplified narrative and intrusive wearables may not be suitable for players. This exploratory study investigates delivering an immersive affective experience in the wild with minimal requirements, in an attempt for the average developer to reach the average player. A puzzle game is created with rich narrative and creative mechanics. It employs both explicit and implicit adaptation and only requires a web camera. Participants played the game on their own machines in various settings. Whilst it was rated feasible, very engaging and enjoyable, it remains questionable whether a fully immersive experience was delivered due to the limited sample size.
Keywords: affective games, dynamic adaptation, emotion recognition, game design
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8461878 Low Cost Real Time Robust Identification of Impulsive Signals
Authors: R. Biondi, G. Dys, G. Ferone, T. Renard, M. Zysman
Abstract:
This paper describes an automated implementable system for impulsive signals detection and recognition. The system uses a Digital Signal Processing device for the detection and identification process. Here the system analyses the signals in real time in order to produce a particular response if needed. The system analyses the signals in real time in order to produce a specific output if needed. Detection is achieved through normalizing the inputs and comparing the read signals to a dynamic threshold and thus avoiding detections linked to loud or fluctuating environing noise. Identification is done through neuronal network algorithms. As a setup our system can receive signals to “learn” certain patterns. Through “learning” the system can recognize signals faster, inducing flexibility to new patterns similar to those known. Sound is captured through a simple jack input, and could be changed for an enhanced recording surface such as a wide-area recorder. Furthermore a communication module can be added to the apparatus to send alerts to another interface if needed.
Keywords: Sound Detection, Impulsive Signal, Background Noise, Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23351877 Modified Poly(pyrrole) Film Based Biosensors for Phenol Detection
Authors: S. Korkut, M. S. Kilic, E. Erhan
Abstract:
In order to detect and quantify the phenolic contents of a wastewater with biosensors, two working electrodes based on modified Poly(Pyrrole) films were fabricated. Enzyme horseradish peroxidase was used as biomolecule of the prepared electrodes. Various phenolics were tested at the biosensor. Phenol detection was realized by electrochemical reduction of quinones produced by enzymatic activity. Analytical parameters were calculated and the results were compared with each other.
Keywords: Carbon nanotube, Phenol biosensor, Polypyrrole, Poly(glutaraldehyde).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21861876 Hypolipidemic and Antioxidant Effects of Black Tea Extract and Quercetin in Atherosclerotic Rats
Authors: Wahyu Widowati, Hana Ratnawati, Tjandrawati Mozefis, Dwiyati Pujimulyani, Yelliantty Yelliantty
Abstract:
Background: Atherosclerosis is the main cause of cardiovascular disease (CVD) with complex and multifactorial process including atherogenic lipoprotein, oxidized low density lipoprotein (LDL), endothelial dysfunction, plaque stability, vascular inflammation, thrombotic and fibrinolytic disorder, exercises and genetic factor Epidemiological studies have shown tea consumption inversely associated with the development and progression of atherosclerosis. The research objectives: to elucidate hypolipidemic, antioxidant effects, as well as ability to improve coronary artery’s histopathologyof black tea extract (BTE) and quercetin in atherosclerotic rats. Methods: The antioxidant activity was determined by using Superoxide Dismutase activity (SOD) of serum and lipid peroxidation product (Malondialdehyde) of plasma and lipid profile including cholesterol total, LDL, triglyceride (TG), High Density Lipoprotein (HDL) of atherosclerotic rats. Inducing atherosclerotic, rats were given cholesterol and cholic acid in feed during ten weeks until rats indicated atherosclerotic symptom with narrowed artery and foamy cells in the artery’s wall. After rats suffered atherosclerotic, the high cholesterol feed and cholic acid were stopped and rats were given BTE 450; 300; 150 mg/kg body weight (BW) daily, quercetin 15; 10; 5 mg/kg BW daily, compared to rats were given vitamin E 60 mg/kg/BW; simvastatin 2.7 mg/kg BW, probucol 30 mg/kg BW daily for 21 days (first treatment) and 42 days (second treatment), negative control (normal feed), positive control (atherosclerotic rats). Results: BTE and quercetin could lower cholesterol total, triglyceride, LDL MDA and increase HDL, SOD were comparable with simvastatin, probucol both for 21 days and 42 days treatment, as well to improve coronary arteries histopathology. Conclusions: BTE andquercetin have hypolipidemic and antioxidant effects, as well as improve coronary arteries histopathology in atherosclerotic rats.
Keywords: Black tea, quercetin, atherosclerosis, antioxidant, hypolipidemic, cardiovascular disease.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27321875 Artificial Neural Networks Technique for Seismic Hazard Prediction Using Seismic Bumps
Authors: Belkacem Selma, Boumediene Selma, Samira Chouraqui, Hanifi Missoum, Tourkia Guerzou
Abstract:
Natural disasters have occurred and will continue to cause human and material damage. Therefore, the idea of "preventing" natural disasters will never be possible. However, their prediction is possible with the advancement of technology. Even if natural disasters are effectively inevitable, their consequences may be partly controlled. The rapid growth and progress of artificial intelligence (AI) had a major impact on the prediction of natural disasters and risk assessment which are necessary for effective disaster reduction. Earthquake prediction to prevent the loss of human lives and even property damage is an important factor; that, is why it is crucial to develop techniques for predicting this natural disaster. This study aims to analyze the ability of artificial neural networks (ANNs) to predict earthquakes that occur in a given area. The used data describe the problem of high energy (higher than 104 J) seismic bumps forecasting in a coal mine using two long walls as an example. For this purpose, seismic bumps data obtained from mines have been analyzed. The results obtained show that the ANN is able to predict earthquake parameters with high accuracy; the classification accuracy through neural networks is more than 94%, and the models developed are efficient and robust and depend only weakly on the initial database.
Keywords: Earthquake prediction, artificial intelligence, AI, Artificial Neural Network, ANN, seismic bumps.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11871874 Religion and Sustainable Development: A Comparative Study of Buddhist and Christian Farmers’ Contribution to the Environmental Protection in Taiwan
Authors: Jijimon Alakkalam Joseph
Abstract:
The UN 2030 Agenda for Sustainable Development claims to be a comprehensive and integrated plan of action for prosperity for people and the planet, including almost all dimensions of human existence. Nevertheless, the religious dimension of human existence has been kept away from development discussions. Care for the earth is one of the vital aspects of sustainable development. Farmers all over the world contribute much to environmental protection. Most farmers are religious believers and religious ideologies influence their agricultural practices. This nexus between faith and agriculture has forced policymakers to include religion in development discussions. This paper delves deeper into this religion and sustainable development connection. Buddhism and Christianity have contributed much to environmental protection in Taiwan. However, interviews conducted among 40 Taiwanese farmers (10 male and female farmers from Buddhism and Christianity) show that their faith experiences make them relate to the natural environment differently. Most of the Buddhist farmers interviewed admitted that they chose their religious adherence, while most of the Christian farmers inherited their faith. The in-depth analysis of the interview data collected underlines the close relationship between religion and sustainable development. More importantly, concerning their intention to care for the earth, farmers whose religious adherence is ‘chosen’ are self-motivated and more robust compared to those whose religious adherence is ‘inherited’.
Keywords: Buddhism, Christianity, environmental protection, sustainable development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2121873 An Effective Method of Head Lamp and Tail Lamp Recognition for Night Time Vehicle Detection
Authors: Hyun-Koo Kim, Sagong Kuk, MinKwan Kim, Ho-Youl Jung
Abstract:
This paper presents an effective method for detecting vehicles in front of the camera-assisted car during nighttime driving. The proposed method detects vehicles based on detecting vehicle headlights and taillights using techniques of image segmentation and clustering. First, to effectively extract spotlight of interest, a segmentation process based on automatic multi-level threshold method is applied on the road-scene images. Second, to spatial clustering vehicle of detecting lamps, a grouping process based on light tracking and locating vehicle lighting patterns. For simulation, we are implemented through Da-vinci 7437 DSP board with near infrared mono-camera and tested it in the urban and rural roads. Through the test, classification performances are above 97% of true positive rate evaluated on real-time environment. Our method also has good performance in the case of clear, fog and rain weather.
Keywords: Assistance Driving System, Multi-level Threshold Method, Near Infrared Mono Camera, Nighttime Vehicle Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29381872 Courtyard Evolution in Contemporary Sustainable Living
Authors: Yiorgos Hadjichristou
Abstract:
The paper will focus on the strategic development deriving from the evolution of the traditional courtyard spatial organization towards a new, contemporary sustainable way of living. New sustainable approaches that engulf the social issues, the notion of place, the understanding of weather architecture blended together with the bioclimatic behavior will be seen through a series of experimental case studies in the island of Cyprus, inspired and originated from its traditional wisdom, ranging from small scale of living to urban interventions. Weather and nature will be seen as co-architectural authors with architects. Furthermore, the building will be seen not as an object but rather as a vessel of human activities. This will further enhance the notion of merging the material and immaterial, the built and unbuilt, subject-human, and the object-building. This eventually will enable to generate the discussion of the understanding of the building in relation to the place and its inhabitants, where the human topography is more important than the material topography. The specificities of the divided island and the dealing with sites that are in vicinity with the diving Green Line will further trigger explorations dealing with the regeneration issues and the social sustainability offering unprecedented opportunities for innovative sustainable ways of living. Opening up a discourse with premises of weather-nature, materialimmaterial, human-material topographies in relation to the contested sites of the borders will lead us to develop innovative strategies for a profound, both technical and social sustainability, which fruitfully yields to innovative living built environments, responding to the ever changing environmental and social needs. As a starting point, a case study in Kaimakli in Nicosia, a refurbishment with an extension of a traditional house, already engulfs all the traditional/ vernacular wisdom of the bioclimatic architecture. The project focusses on the direct and quite obvious bioclimatic features such as south orientation and cross ventilation. Furthermore, it tries to reinvent the adaptation of these parameters in order to turn the whole house to a contemporary living environment. In order to succeed this, evolutions of traditional architectural elements and spatial conditions are integrated in a way that does not only respond to some certain weather conditions, but they integrate and blend the weather within the built environment. A series of innovations aiming at maximum flexibility is proposed. The house can finally be transformed into a winter enclosure, while for the most part of the year it turns into a ‘camping’ living environment. Parallel to experimental interventions in existing traditional units, we will proceed examining the implementation of the same developed methodology in designing living units and complexes. Malleable courtyard organizations that attempt to blend the traditional wisdom with the contemporary needs for living, the weather and nature with the built environment will be seen tested in both horizontal and vertical developments. Social activities are seen as directly affected and forged by the weather conditions thus generating a new social identity of people where people are directly involved and interacting with the weather. The human actions and interaction with the built, material environment in order to respond to weather will be seen as the result of balancing the social with the technological sustainability, the immaterial, and the material aspects of the living environment.
Keywords: Building as a verb, contemporary living, traditional bioclimatic wisdom, weather architecture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20731871 Production Process for Diesel Fuel Components Polyoxymethylene Dimethyl Ethers from Methanol and Formaldehyde Solution
Authors: Xiangjun Li, Huaiyuan Tian, Wujie Zhang, Dianhua Liu
Abstract:
Polyoxymethylene dimethyl ethers (PODEn) as clean diesel additive can improve the combustion efficiency and quality of diesel fuel and alleviate the problem of atmospheric pollution. Considering synthetic routes, PODE production from methanol and formaldehyde is regarded as the most economical and promising synthetic route. However, methanol used for synthesizing PODE can produce water, which causes the loss of active center of catalyst and hydrolysis of PODEn in the production process. Macroporous strong acidic cation exchange resin catalyst was prepared, which has comparative advantages over other common solid acid catalysts in terms of stability and catalytic efficiency for synthesizing PODE. Catalytic reactions were carried out under 353 K, 1 MPa and 3mL·gcat-1·h-1 in a fixed bed reactor. Methanol conversion and PODE3-6 selectivity reached 49.91% and 23.43%, respectively. Catalyst lifetime evaluation showed that resin catalyst retained its catalytic activity for 20 days without significant changes and catalytic activity of completely deactivated resin catalyst can basically return to previous level by simple acid regeneration. The acid exchange capacities of original and deactivated catalyst were 2.5191 and 0.0979 mmol·g-1, respectively, while regenerated catalyst reached 2.0430 mmol·g-1, indicating that the main reason for resin catalyst deactivation is that Brønsted acid sites of original resin catalyst were temporarily replaced by non-hydrogen ion cations. A separation process consisting of extraction and distillation for PODE3-6 product was designed for separation of water and unreacted formaldehyde from reactive mixture and purification of PODE3-6, respectively. The concentration of PODE3-6 in final product can reach up to 97%. These results indicate that the scale-up production of PODE3-6 from methanol and formaldehyde solution is feasible.
Keywords: Inactivation, polyoxymethylene dimethyl ethers, separation process, sulfonic cation exchange resin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9031870 Harris Extraction and SIFT Matching for Correlation of Two Tablets
Authors: Ali Alzaabi, Georges Alquié, Hussain Tassadaq, Ali Seba
Abstract:
This article presents the developments of efficient algorithms for tablet copies comparison. Image recognition has specialized use in digital systems such as medical imaging, computer vision, defense, communication etc. Comparison between two images that look indistinguishable is a formidable task. Two images taken from different sources might look identical but due to different digitizing properties they are not. Whereas small variation in image information such as cropping, rotation, and slight photometric alteration are unsuitable for based matching techniques. In this paper we introduce different matching algorithms designed to facilitate, for art centers, identifying real painting images from fake ones. Different vision algorithms for local image features are implemented using MATLAB. In this framework a Table Comparison Computer Tool “TCCT" is designed to facilitate our research. The TCCT is a Graphical Unit Interface (GUI) tool used to identify images by its shapes and objects. Parameter of vision system is fully accessible to user through this graphical unit interface. And then for matching, it applies different description technique that can identify exact figures of objects.Keywords: Harris Extraction and SIFT Matching
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17341869 Screening of Antagonistic/Synergistic Effect between Lactic Acid Bacteria (LAB) and Yeast Strains Isolated from Kefir
Authors: Mihriban Korukluoglu, Goksen Arik, Cagla Erdogan, Selen Kocakoglu
Abstract:
Kefir is a traditional fermented refreshing beverage which is known for its valuable and beneficial properties for human health. Mainly yeast species, lactic acid bacteria (LAB) strains and fewer acetic acid bacteria strains live together in a natural matrix named “kefir grain”, which is formed from various proteins and polysaccharides. Different microbial species live together in slimy kefir grain and it has been thought that synergetic effect could take place between microorganisms, which belong to different genera and species. In this research, yeast and LAB were isolated from kefir samples obtained from Uludag University Food Engineering Department. The cell morphology of isolates was screened by microscopic examination. Gram reactions of bacteria isolates were determined by Gram staining method, and as well catalase activity was examined. After observing the microscopic/morphological and physical, enzymatic properties of all isolates, they were divided into the groups as LAB and/or yeast according to their physicochemical responses to the applied examinations. As part of this research, the antagonistic/synergistic efficacy of the identified five LAB and five yeast strains to each other were determined individually by disk diffusion method. The antagonistic or synergistic effect is one of the most important properties in a co-culture system that different microorganisms are living together. The synergistic effect should be promoted, whereas the antagonistic effect is prevented to provide effective culture for fermentation of kefir. The aim of this study was to determine microbial interactions between identified yeast and LAB strains, and whether their effect is antagonistic or synergistic. Thus, if there is a strain which inhibits or retards the growth of other strains found in Kefir microflora, this circumstance shows the presence of antagonistic effect in the medium. Such negative influence should be prevented, whereas the microorganisms which have synergistic effect on each other should be promoted by combining them in kefir grain. Standardisation is the most desired property for industrial production. Each microorganism found in the microbial flora of a kefir grain should be identified individually. The members of the microbial community found in the glue-like kefir grain may be redesigned as a starter culture regarding efficacy of each microorganism to another in kefir processing. The main aim of this research was to shed light on more effective production of kefir grain and to contribute a standardisation of kefir processing in the food industry.
Keywords: Antagonistic effect, kefir, lactic acid bacteria (LAB), synergistic, yeast.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15241868 Developing Rice Disease Analysis System on Mobile via iOS Operating System
Authors: Rujijan Vichivanives, Kittiya Poonsilp, Canasanan Wanavijit
Abstract:
This research aims to create mobile tools to analyze rice disease quickly and easily. The principle of object-oriented software engineering and objective-C language were used for software development methodology and the principle of decision tree technique was used for analysis method. Application users can select the features of rice disease or the color appears on the rice leaves for recognition analysis results on iOS mobile screen. After completing the software development, unit testing and integrating testing method were used to check for program validity. In addition, three plant experts and forty farmers have been assessed for usability and benefit of this system. The overall of users’ satisfaction was found in a good level, 57%. The plant experts give a comment on the addition of various disease symptoms in the database for more precise results of the analysis. For further research, it is suggested that image processing system should be developed as a tool that allows users search and analyze for rice diseases more convenient with great accuracy.
Keywords: Rice disease, analysis system, mobile application, iOS operating system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12941867 Predicting Protein-Protein Interactions from Protein Sequences Using Phylogenetic Profiles
Authors: Omer Nebil Yaveroglu, Tolga Can
Abstract:
In this study, a high accuracy protein-protein interaction prediction method is developed. The importance of the proposed method is that it only uses sequence information of proteins while predicting interaction. The method extracts phylogenetic profiles of proteins by using their sequence information. Combining the phylogenetic profiles of two proteins by checking existence of homologs in different species and fitting this combined profile into a statistical model, it is possible to make predictions about the interaction status of two proteins. For this purpose, we apply a collection of pattern recognition techniques on the dataset of combined phylogenetic profiles of protein pairs. Support Vector Machines, Feature Extraction using ReliefF, Naive Bayes Classification, K-Nearest Neighborhood Classification, Decision Trees, and Random Forest Classification are the methods we applied for finding the classification method that best predicts the interaction status of protein pairs. Random Forest Classification outperformed all other methods with a prediction accuracy of 76.93%Keywords: Protein Interaction Prediction, Phylogenetic Profile, SVM , ReliefF, Decision Trees, Random Forest Classification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16131866 The Effects of Local Factors on the Concentrations and Flora of Viable Fungi in School Buildings
Authors: H. Salonen, E. Castagnoli, C. Vornanen-Winqvist, R. Mikkola, C. Duchaine, L. Morawska, J. Kurnitski
Abstract:
A wide range of health effects among occupants are associated with the exposure to bioaerosols from fungal sources. Although the accurate role of these aerosols in causing the symptoms and diseases is poorly understood, the important effect of bioaerosol exposure on human health is well recognized. Thus, there is a need to determine all of the contributing factors related to the concentration of fungi in indoor air. In this study, we reviewed and summarized the different factors affecting the concentrations of viable fungi in school buildings. The literature research was conducted using Pubmed and Google Scholar. In addition, we searched the lists of references of selected articles. According to the literature, the main factors influencing the concentration of viable fungi in the school buildings are moisture damage in building structures, the season (temperature and humidity conditions), the type and rate of ventilation, the number and activities of occupants and diurnal variations. This study offers valuable information that can be used in the interpretation of the fungal analysis and to decrease microbial exposure by reducing known sources and/or contributing factors. However, more studies of different local factors contributing to the human microbial exposure in school buildings—as well as other type of buildings and different indoor environments—are needed.
Keywords: Fungi, concentration, indoor, school, contributing factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10361865 Shifted Window Based Self-Attention via Swin Transformer for Zero-Shot Learning
Authors: Yasaswi Palagummi, Sareh Rowlands
Abstract:
Generalised Zero-Shot Learning, often known as GZSL, is an advanced variant of zero-shot learning in which the samples in the unseen category may be either seen or unseen. GZSL methods typically have a bias towards the seen classes because they learn a model to perform recognition for both the seen and unseen classes using data samples from the seen classes. This frequently leads to the misclassification of data from the unseen classes into the seen classes, making the task of GZSL more challenging. In this work, we propose an approach leveraging the Shifted Window based Self-Attention in the Swin Transformer (Swin-GZSL) to work in the inductive GZSL problem setting. We run experiments on three popular benchmark datasets: CUB, SUN, and AWA2, which are specifically used for ZSL and its other variants. The results show that our model based on Swin Transformer has achieved state-of-the-art harmonic mean for two datasets - AWA2 and SUN and near-state-of-the-art for the other dataset - CUB. More importantly, this technique has a linear computational complexity, which reduces training time significantly. We have also observed less bias than most of the existing GZSL models.
Keywords: Generalised Zero-shot Learning, Inductive Learning, Shifted-Window Attention, Swin Transformer, Vision Transformer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2221864 Automation of the Maritime UAV Command, Control, Navigation Operations, Simulated in Real-Time Using Kinect Sensor: A Feasibility Study
Authors: Regius Asiimwe, Amir Anvar
Abstract:
This paper describes the process used in the automation of the Maritime UAV commands using the Kinect sensor. The AR Drone is a Quadrocopter manufactured by Parrot [1] to be controlled using the Apple operating systems such as iPhones and Ipads. However, this project uses the Microsoft Kinect SDK and Microsoft Visual Studio C# (C sharp) software, which are compatible with Windows Operating System for the automation of the navigation and control of the AR drone. The navigation and control software for the Quadrocopter runs on a windows 7 computer. The project is divided into two sections; the Quadrocopter control system and the Kinect sensor control system. The Kinect sensor is connected to the computer using a USB cable from which commands can be sent to and from the Kinect sensors. The AR drone has Wi-Fi capabilities from which it can be connected to the computer to enable transfer of commands to and from the Quadrocopter. The project was implemented in C#, a programming language that is commonly used in the automation systems. The language was chosen because there are more libraries already established in C# for both the AR drone and the Kinect sensor. The study will contribute toward research in automation of systems using the Quadrocopter and the Kinect sensor for navigation involving a human operator in the loop. The prototype created has numerous applications among which include the inspection of vessels such as ship, airplanes and areas that are not accessible by human operators.Keywords: UAV, AR drone, Kinect Sensors, Automation, Real time, C sharp, Microsoft Kinect SDK.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29311863 The Opinions of Nursing Students Regarding Humanized Care through Volunteer Activities at Boromrajonani College of Nursing, Chonburi
Authors: P. Phenpun, S. Wareewan
Abstract:
This qualitative study aimed to describe the opinions in relation to humanized care emerging from the volunteer activities of nursing students at Boromarajonani College of Nursing, Chonburi, Thailand. One hundred and twenty-seven second-year nursing students participated in this study. The volunteer activity model was composed of preparation, implementation, and evaluation through a learning log, in which students were encouraged to write their daily activities after completing practical training at the healthcare center. The preparation content included three main categories: service minded, analytical thinking, and client participation. The preparation process took over three days that accumulates up to 20 hours only. The implementation process was held over 10 days, but with a total of 70 hours only, with participants taking part in volunteer work activities at a healthcare center. A learning log was used for evaluation and data were analyzed using content analysis. The findings were as follows. With service minded, there were two subcategories that emerged from volunteer activities, which were service minded towards patients and within themselves. There were three categories under service minded towards patients, which were rapport, compassion, and empathy service behaviors, and there were four categories under service minded within themselves, which were self-esteem, self-value, management potential, and preparedness in providing good healthcare services. In line with analytical thinking, there were two components of analytical thinking, which were analytical skill for their works and analytical thinking for themselves. There were four subcategories under analytical thinking for their works, which were evidence based thinking, real situational thinking, cause analysis thinking, and systematic thinking, respectively. There were four subcategories under analytical thinking for themselves, which were comparative between themselves, towards their clients that leads to the changing of their service behaviors, open-minded thinking, modernized thinking, and verifying both verbal and non-verbal cues. Lastly, there were three categories under participation, which were mutual rapport relationship; reconsidering client’s needs services and providing useful health care information.
Keywords: Humanized care service, volunteer activity, nursing student, and learning log.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15711862 Application of Systems Engineering Tools and Methods to Improve Healthcare Delivery Inside the Emergency Department of a Mid-Size Hospital
Authors: Mohamed Elshal, Hazim El-Mounayri, Omar El-Mounayri
Abstract:
Emergency department (ED) is considered as a complex system of interacting entities: patients, human resources, software and hardware systems, interfaces, and other systems. This paper represents a research for implementing a detailed Systems Engineering (SE) approach in a mid-size hospital in central Indiana. This methodology will be applied by “The Initiative for Product Lifecycle Innovation (IPLI)” institution at Indiana University to study and solve the crowding problem with the aim of increasing throughput of patients and enhance their treatment experience; therefore, the nature of crowding problem needs to be investigated with all other problems that leads to it. The presented SE methods are workflow analysis and systems modeling where SE tools such as Microsoft Visio are used to construct a group of system-level diagrams that demonstrate: patient’s workflow, documentation and communication flow, data systems, human resources workflow and requirements, leadership involved, and integration between ER different systems. Finally, the ultimate goal will be managing the process through implementation of an executable model using commercialized software tools, which will identify bottlenecks, improve documentation flow, and help make the process faster.Keywords: Systems modeling, ED operation, workflow modeling, systems analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10421861 The Relationship between Representational Conflicts, Generalization, and Encoding Requirements in an Instance Memory Network
Authors: Mathew Wakefield, Matthew Mitchell, Lisa Wise, Christopher McCarthy
Abstract:
This paper aims to provide an interpretation of artificial neural networks (ANNs) and explore some of its implications. The interpretation views ANNs as a memory which encodes instances of experience. An experiment explores the behavior of encoding and retrieval of instances from memory. A localised representation ANN is created that allows control over encoding and retrieved memory sample size and is experimented with using the MNIST digits dataset. The relationship between input familiarity, conflict within retrieved samples, and error rates is described and demonstrated to be an effective driver for memory encoding. Results indicate that selective encoding and retrieval samples that allow detection of memory conflicts produce optimal performance, and that error rates are normally distributed with input familiarity and conflict. By using input familiarity and sample consistency to guide memory encoding, the number of encoding trials on the dataset were reduced to 18.33% of the training data while maintaining good recognition performance on the test data.
Keywords: Artificial Neural Networks, ANNs, representation, memory, conflict monitoring, confidence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5071860 TheAnalyzer: Clustering-Based System for Improving Business Productivity by Analyzing User Profiles to Enhance Human-Computer Interaction
Authors: D. S. A. Nanayakkara, K. J. P. G. Perera
Abstract:
E-commerce platforms have revolutionized the shopping experience, offering convenient ways for consumers to make purchases. To improve interactions with customers and optimize marketing strategies, it is essential for businesses to understand user behavior, preferences, and needs on these platforms. This paper focuses on recommending businesses to customize interactions with users based on their behavioral patterns, leveraging data-driven analysis and machine learning techniques. Businesses can improve engagement and boost the adoption of e-commerce platforms by aligning behavioral patterns with user goals of usability and satisfaction. We propose TheAnalyzer, a clustering-based system designed to enhance business productivity by analyzing user-profiles and improving human-computer interaction. TheAnalyzer seamlessly integrates with business applications, collecting relevant data points based on users' natural interactions without additional burdens such as questionnaires or surveys. It defines five key user analytics as features for its dataset, which are easily captured through users' interactions with e-commerce platforms. This research presents a study demonstrating the successful distinction of users into specific groups based on the five key analytics considered by TheAnalyzer. With the assistance of domain experts, customized business rules can be attached to each group, enabling TheAnalyzer to influence business applications and provide an enhanced personalized user experience. The outcomes are evaluated quantitatively and qualitatively, demonstrating that utilizing TheAnalyzer’s capabilities can optimize business outcomes, enhance customer satisfaction, and drive sustainable growth. The findings of this research contribute to the advancement of personalized interactions in e-commerce platforms. By leveraging user behavioral patterns and analyzing both new and existing users, businesses can effectively tailor their interactions to improve customer satisfaction, loyalty and ultimately drive sales.
Keywords: Data clustering, data standardization, dimensionality reduction, human-computer interaction, user profiling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2291859 The Risk Assessment of Nano-particles and Investigation of Their Environmental Impact
Authors: Nader Nabhani, Amir Tofighi
Abstract:
Nanotechnology is the science of creating, using and manipulating objects which have at least one dimension in range of 0.1 to 100 nanometers. In other words, nanotechnology is reconstructing a substance using its individual atoms and arranging them in a way that is desirable for our purpose. The main reason that nanotechnology has been attracting attentions is the unique properties that objects show when they are formed at nano-scale. These differing characteristics that nano-scale materials show compared to their nature-existing form is both useful in creating high quality products and dangerous when being in contact with body or spread in environment. In order to control and lower the risk of such nano-scale particles, the main following three topics should be considered: 1) First of all, these materials would cause long term diseases that may show their effects on body years after being penetrated in human organs and since this science has become recently developed in industrial scale not enough information is available about their hazards on body. 2) The second is that these particles can easily spread out in environment and remain in air, soil or water for very long time, besides their high ability to penetrate body skin and causing new kinds of diseases. 3) The third one is that to protect body and environment against the danger of these particles, the protective barriers must be finer than these small objects and such defenses are hard to accomplish. This paper will review, discuss and assess the risks that human and environment face as this new science develops at a high rate.Keywords: Nanotechnology, risk assessment, environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19841858 Artificial Intelligence Techniques Applications for Power Disturbances Classification
Authors: K.Manimala, Dr.K.Selvi, R.Ahila
Abstract:
Artificial Intelligence (AI) methods are increasingly being used for problem solving. This paper concerns using AI-type learning machines for power quality problem, which is a problem of general interest to power system to provide quality power to all appliances. Electrical power of good quality is essential for proper operation of electronic equipments such as computers and PLCs. Malfunction of such equipment may lead to loss of production or disruption of critical services resulting in huge financial and other losses. It is therefore necessary that critical loads be supplied with electricity of acceptable quality. Recognition of the presence of any disturbance and classifying any existing disturbance into a particular type is the first step in combating the problem. In this work two classes of AI methods for Power quality data mining are studied: Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs). We show that SVMs are superior to ANNs in two critical respects: SVMs train and run an order of magnitude faster; and SVMs give higher classification accuracy.
Keywords: back propagation network, power quality, probabilistic neural network, radial basis function support vector machine
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15571857 Empirical Process Monitoring Via Chemometric Analysis of Partially Unbalanced Data
Authors: Hyun-Woo Cho
Abstract:
Real-time or in-line process monitoring frameworks are designed to give early warnings for a fault along with meaningful identification of its assignable causes. In artificial intelligence and machine learning fields of pattern recognition various promising approaches have been proposed such as kernel-based nonlinear machine learning techniques. This work presents a kernel-based empirical monitoring scheme for batch type production processes with small sample size problem of partially unbalanced data. Measurement data of normal operations are easy to collect whilst special events or faults data are difficult to collect. In such situations, noise filtering techniques can be helpful in enhancing process monitoring performance. Furthermore, preprocessing of raw process data is used to get rid of unwanted variation of data. The performance of the monitoring scheme was demonstrated using three-dimensional batch data. The results showed that the monitoring performance was improved significantly in terms of detection success rate of process fault.
Keywords: Process Monitoring, kernel methods, multivariate filtering, data-driven techniques, quality improvement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17461856 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features
Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan
Abstract:
Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.Keywords: Pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12831855 Model of Community Management for Sustainable Utilization
Authors: Luedech Girdwichai, Witthaya Mekhum
Abstract:
This research intended to develop the model of community management for sustainable utilization by investigating on 2 groups of population, the family heads and the community management team. The population of the former group consisted of family heads from 511 families in 12 areas to complete the questionnaires which were returned at 479 sets. The latter group consisted of the community management team of 12 areas with 1 representative from each area to give the interview. The questionnaires for the family heads consisted of 2 main parts; general information such as occupations, etc. in the form of checklist. The second part dealt with the data on self reliance community development based on 4P Framework, i.e., People (human resource) development, Place (area) development, Product (economic and income source) development, and Plan (community plan) development in the form of rating scales. Data in the 1st part were calculated to find frequency and percentage while those in the 2nd part were analyzed to find arithmetic mean and SD. Data from the 2nd group of population or the community management team were derived from focus group to find factors influencing successful management together with the in depth interview which were analyzed by descriptive statistics. The results showed that 479 family heads reported that the aspect on the implementation of community plan to self reliance community activities based on Sufficient Economy Philosophy and the 4P was at the average of 3.28 or moderate level. When considering in details, it was found that the 1st aspect was on the area development with the mean of 3.71 or high level followed by human resource development with the mean of 3.44 or moderate level, then, economic and source of income development with the mean of 3.09 or moderate level. The last aspect was community plan development with the mean of 2.89. The results from the small group discussion revealed some factors and guidelines for successful community management as follows: 1) on the People (human resource) development aspect, there was a project to support and develop community leaders. 2) On the aspect of Place (area) development, there was a development on conservative tourism areas. 3) On the aspect of Product (economic and source of income) development, the community leaders promoted the setting of occupational group, saving group, and product processing group. 4) On the aspect of Plan (community plan) development, there was a prioritization through public hearing.
Keywords: Model of community management, sustainable utilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15011854 HDS: Alumina- Boria Supported Catalysts
Authors: Peyman Moradi, Matin Parvari
Abstract:
Hydrodesulfurization (HDS) of dibenzothiophene (DBT) in a high pressure batch reactor was done at 320 °C on CoMoS/Al2O3-B2O3 (4, 10, and 16 wt. % of Boria) using nhexadecane as solvent, dimethyldisulfide (DMDS) in tetradecane as sulfur agent, and stirring at 1000 rpm. The effects of boria were investigated by using X-ray diffraction (XRD), Temperature programmed desorption (TPD) of ammonia, and Brunauer-Emmet- Teller (BET) experiments. The results showed that the catalyst prepared with low boria content (4 wt. %) had HDS activity (in pseudo first order kinetic constant basis) value ~1.45 times higher to that of CoMoS/Al2O3 catalyst.Keywords: Alumina-boria mixed oxides, dibenzothiophene, hydrodesulfurization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18601853 Study of Human Upper Arm Girth during Elbow Isokinetic Contractions Based on a Smart Circumferential Measuring System
Authors: Xi Wang, Xiaoming Tao, Raymond C. H. So
Abstract:
As one of the convenient and noninvasive sensing approaches, the automatic limb girth measurement has been applied to detect intention behind human motion from muscle deformation. The sensing validity has been elaborated by preliminary researches but still need more fundamental studies, especially on kinetic contraction modes. Based on the novel fabric strain sensors, a soft and smart limb girth measurement system was developed by the authors’ group, which can measure the limb girth in-motion. Experiments were carried out on elbow isometric flexion and elbow isokinetic flexion (biceps’ isokinetic contractions) of 90°/s, 60°/s, and 120°/s for 10 subjects (2 canoeists and 8 ordinary people). After removal of natural circumferential increments due to elbow position, the joint torque is found not uniformly sensitive to the limb circumferential strains, but declining as elbow joint angle rises, regardless of the angular speed. Moreover, the maximum joint torque was found as an exponential function of the joint’s angular speed. This research highly contributes to the application of the automatic limb girth measuring during kinetic contractions, and it is useful to predict the contraction level of voluntary skeletal muscles.Keywords: Fabric strain sensor, muscle deformation, isokinetic contraction, joint torque, limb girth strain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21221852 Semiconductor Supported Gold Nanoparticles for Photodegradation of Rhodamine B
Authors: Ahmad Alshammari, Abdulaziz Bagabas
Abstract:
Rhodamine B (RB) is a toxic dye used extensively in textile industry, which must be remediated before its drainage to environment. In the present study, supported gold nanoparticles on commercially available titania and zincite were successfully prepared and then their activity on the photodegradation of RB under UV A light irradiation were evaluated. The synthesized photocatalysts were characterized by ICP, BET, XRD, and TEM. Kinetic results showed that Au/TiO2 was an inferior photocatalyst to Au/ZnO. This observation could be attributed to the strong reflection of UV irradiation by gold nanoparticles over TiO2 support.
Keywords: Supported AuNPs, Semiconductor photocatalyst, Photodegradation, Rhodamine B.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2281