Search results for: Resting State Network
2920 Synthesis and Properties of Chitosan-Graft Polyacrylamide/Gelatin Superabsorbent Composites for Wastewater Purification
Authors: H. Ferfera-Harrar, N. Aiouaz, N. Dairi
Abstract:
Superabsorbent polymers received much attention and are used in many fields because of their superior characters to traditional absorbents, e.g., sponge and cotton. So, it is very important but challenging to prepare highly and fast-swelling superabsorbents. A reliable, efficient and low-cost technique for removing heavy metal ions from wastewater is the adsorption using bio-adsorbents obtained from biological materials, such as polysaccharides-based hydrogels superabsorbents. In this study, novel multi-functional superabsorbent composites type semi-interpenetrating polymer networks (Semi-IPNs) were prepared via graft polymerization of acrylamide onto chitosan backbone in presence of gelatin, CTS-g-PAAm/Ge, using potassium persulfate and N,N’-methylene bisacrylamide as initiator and crosslinker, respectively. These hydrogels were also partially hydrolyzed to achieve superabsorbents with ampholytic properties and uppermost swelling capacity. The formation of the grafted network was evidenced by Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Thermogravimetric Analysis (TGA). The porous structures were observed by Scanning Electron Microscope (SEM). From TGA analysis, it was concluded that the incorporation of the Ge in the CTS-g-PAAm network has marginally affected its thermal stability. The effect of gelatin content on the swelling capacities of these superabsorbent composites was examined in various media (distilled water, saline and pH-solutions). The water absorbency was enhanced by adding Ge in the network, where the optimum value was reached at 2 wt. % of Ge. Their hydrolysis has not only greatly optimized their absorption capacity but also improved the swelling kinetic.These materials have also showed reswelling ability. We believe that these super-absorbing materials would be very effective for the adsorption of harmful metal ions from wastewater.Keywords: Chitosan, gelatin, superabsorbent, water absorbency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28772919 Machine Learning Methods for Flood Hazard Mapping
Authors: S. Zappacosta, C. Bove, M. Carmela Marinelli, P. di Lauro, K. Spasenovic, L. Ostano, G. Aiello, M. Pietrosanto
Abstract:
This paper proposes a neural network approach for assessing flood hazard mapping. The core of the model is a machine learning component fed by frequency ratios, namely statistical correlations between flood event occurrences and a selected number of topographic properties. The classification capability was compared with the flood hazard mapping River Basin Plans (Piani Assetto Idrogeologico, acronimed as PAI) designed by the Italian Institute for Environmental Research and Defence, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale), encoding four different increasing flood hazard levels. The study area of Piemonte, an Italian region, has been considered without loss of generality. The frequency ratios may be used as a standalone block to model the flood hazard mapping. Nevertheless, the mixture with a neural network improves the classification power of several percentage points, and may be proposed as a basic tool to model the flood hazard map in a wider scope.
Keywords: flood modeling, hazard map, neural networks, hydrogeological risk, flood risk assessment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7262918 On The Design of Robust Governors of Steam Power Systems Using Polynomial and State-Space Based H∞ Techniques: A Comparative Study
Authors: Rami A. Maher, Ibraheem K. Ibraheem
Abstract:
This work presents a comparison study between the state-space and polynomial methods for the design of the robust governor for load frequency control of steam turbine power systems. The robust governor is synthesized using the two approaches and the comparison is extended to include time and frequency domains performance, controller order, and uncertainty representation, weighting filters, optimality and sub-optimality. The obtained results are represented through tables and curves with reasons of similarities and dissimilarities.
Keywords: Robust control, load frequency control, steam turbine, H∞-norm, system uncertainty, load disturbance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20622917 Enhancing Multi-Frame Images Using Self-Delaying Dynamic Networks
Authors: Lewis E. Hibell, Honghai Liu, David J. Brown
Abstract:
This paper presents the use of a newly created network structure known as a Self-Delaying Dynamic Network (SDN) to create a high resolution image from a set of time stepped input frames. These SDNs are non-recurrent temporal neural networks which can process time sampled data. SDNs can store input data for a lifecycle and feature dynamic logic based connections between layers. Several low resolution images and one high resolution image of a scene were presented to the SDN during training by a Genetic Algorithm. The SDN was trained to process the input frames in order to recreate the high resolution image. The trained SDN was then used to enhance a number of unseen noisy image sets. The quality of high resolution images produced by the SDN is compared to that of high resolution images generated using Bi-Cubic interpolation. The SDN produced images are superior in several ways to the images produced using Bi-Cubic interpolation.Keywords: Image Enhancement, Neural Networks, Multi-Frame.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11942916 Inferential Reasoning for Heterogeneous Multi-Agent Mission
Authors: Sagir M. Yusuf, Chris Baber
Abstract:
We describe issues bedeviling the coordination of heterogeneous (different sensors carrying agents) multi-agent missions such as belief conflict, situation reasoning, etc. We applied Bayesian and agents' presumptions inferential reasoning to solve the outlined issues with the heterogeneous multi-agent belief variation and situational-base reasoning. Bayesian Belief Network (BBN) was used in modeling the agents' belief conflict due to sensor variations. Simulation experiments were designed, and cases from agents’ missions were used in training the BBN using gradient descent and expectation-maximization algorithms. The output network is a well-trained BBN for making inferences for both agents and human experts. We claim that the Bayesian learning algorithm prediction capacity improves by the number of training data and argue that it enhances multi-agents robustness and solve agents’ sensor conflicts.Keywords: Distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6412915 Segmentation and Recognition of Handwritten Numeric Chains
Authors: Salim Ouchtati, Bedda Mouldi, Abderrazak Lachouri
Abstract:
In this paper we present an off line system for the recognition of the handwritten numeric chains. Our work is divided in two big parts. The first part is the realization of a recognition system of the isolated handwritten digits. In this case the study is based mainly on the evaluation of neural network performances, trained with the gradient back propagation algorithm. The used parameters to form the input vector of the neural network are extracted on the binary images of the digits by several methods: the distribution sequence, the Barr features and the centred moments of the different projections and profiles. The second part is the extension of our system for the reading of the handwritten numeric chains constituted of a variable number of digits. The vertical projection is used to segment the numeric chain at isolated digits and every digit (or segment) will be presented separately to the entry of the system achieved in the first part (recognition system of the isolated handwritten digits). The result of the recognition of the numeric chain will be displayed at the exit of the global system.Keywords: Optical Characters Recognition, Neural networks, Barr features, Image processing, Pattern Recognition, Featuresextraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14332914 Explorations in the Role of Emotion in Moral Judgment
Authors: Arthur Yan
Abstract:
Recent theorizations on the cognitive process of moral judgment have focused on the role of intuitions and emotions, marking a departure from previous emphasis on conscious, step-by-step reasoning. My study investigated how being in a disgusted mood state affects moral judgment. Participants were induced to enter a disgusted mood state through listening to disgusting sounds and reading disgusting descriptions. Results shows that they, when compared to control who have not been induced to feel disgust, are more likely to endorse actions that are emotionally aversive but maximizes utilitarian return The result is analyzed using the 'emotion-as-information' approach to decision making. The result is consistent with the view that emotions play an important role in determining moral judgment.Keywords: Disgust, mood induction, moral judgment, emotion-as-information.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23022913 Physico-Chemical Characteristics of Cement Manufactured with Artificial Pozzolan (Waste Brick)
Authors: A. Naceri, M. Chikouche Hamina, P. Grosseau
Abstract:
The effect of artificial pozzolan (waste brick) on the physico-chemical properties of cement manufactured was investigated. The waste brick is generated by the manufacture of bricks. It was used in the proportions of 0%, 5%, 10%, 15% and 20% by mass of cement to study its effect on the physico-chemical properties of cement incorporating artificial pozzolan. The physicochemical properties of cement at anhydrous state and the hydrated state (chemical composition, specific weight, fineness, consistency of the cement paste and setting times) were studied. The experimental results obtained show that the quantity of pozzolanic admixture (waste brick) of cement manufactured is the principal parameter who influences on the variation of the physico-chemical properties of the cement tested.Keywords: Artificial pozzolan, waste brick, cement, physicochemicalcharacteristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17522912 Optimal Design of the Power Generation Network in California: Moving towards 100% Renewable Electricity by 2045
Authors: Wennan Long, Yuhao Nie, Yunan Li, Adam Brandt
Abstract:
To fight against climate change, California government issued the Senate Bill No. 100 (SB-100) in 2018 September, which aims at achieving a target of 100% renewable electricity by the end of 2045. A capacity expansion problem is solved in this case study using a binary quadratic programming model. The optimal locations and capacities of the potential renewable power plants (i.e., solar, wind, biomass, geothermal and hydropower), the phase-out schedule of existing fossil-based (nature gas) power plants and the transmission of electricity across the entire network are determined with the minimal total annualized cost measured by net present value (NPV). The results show that the renewable electricity contribution could increase to 85.9% by 2030 and reach 100% by 2035. Fossil-based power plants will be totally phased out around 2035 and solar and wind will finally become the most dominant renewable energy resource in California electricity mix.
Keywords: 100% renewable electricity, California, capacity expansion, binary quadratic programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7312911 Video Super-Resolution Using Classification ANN
Authors: Ming-Hui Cheng, Jyh-Horng Jeng
Abstract:
In this study, a classification-based video super-resolution method using artificial neural network (ANN) is proposed to enhance low-resolution (LR) to high-resolution (HR) frames. The proposed method consists of four main steps: classification, motion-trace volume collection, temporal adjustment, and ANN prediction. A classifier is designed based on the edge properties of a pixel in the LR frame to identify the spatial information. To exploit the spatio-temporal information, a motion-trace volume is collected using motion estimation, which can eliminate unfathomable object motion in the LR frames. In addition, temporal lateral process is employed for volume adjustment to reduce unnecessary temporal features. Finally, ANN is applied to each class to learn the complicated spatio-temporal relationship between LR and HR frames. Simulation results show that the proposed method successfully improves both peak signal-to-noise ratio and perceptual quality.
Keywords: Super-resolution, classification, spatio-temporal information, artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18052910 Evolutionary Training of Hybrid Systems of Recurrent Neural Networks and Hidden Markov Models
Authors: Rohitash Chandra, Christian W. Omlin
Abstract:
We present a hybrid architecture of recurrent neural networks (RNNs) inspired by hidden Markov models (HMMs). We train the hybrid architecture using genetic algorithms to learn and represent dynamical systems. We train the hybrid architecture on a set of deterministic finite-state automata strings and observe the generalization performance of the hybrid architecture when presented with a new set of strings which were not present in the training data set. In this way, we show that the hybrid system of HMM and RNN can learn and represent deterministic finite-state automata. We ran experiments with different sets of population sizes in the genetic algorithm; we also ran experiments to find out which weight initializations were best for training the hybrid architecture. The results show that the hybrid architecture of recurrent neural networks inspired by hidden Markov models can train and represent dynamical systems. The best training and generalization performance is achieved when the hybrid architecture is initialized with random real weight values of range -15 to 15.Keywords: Deterministic finite-state automata, genetic algorithm, hidden Markov models, hybrid systems and recurrent neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18902909 Food Security in India: A Case Study of Kandi Region of Punjab
Authors: Savita Ahlawat, Dhian Kaur
Abstract:
Banishing hunger from the face of earth has been frequently expressed in various international, national and regional level conferences since 1974. Providing food security has become important issue across the world particularly in developing countries. In a developing country like India, where growth rate of population is more than that of the food grains production, food security is a question of great concern. According to the International Food Policy Research Institute's Global Hunger Index, 2011, India ranks 67 of the 81 countries of the world with the worst food security status. After Green Revolution, India became a food surplus country. Its production has increased from 74.23 million tonnes in 1966-67 to 257.44 million tonnes in 2011-12. But after achieving selfsufficiency in food during last three decades, the country is now facing new challenges due to increasing population, climate change, stagnation in farm productivity. Therefore, the main objective of the present paper is to examine the food security situation at national level in the country and further to explain the paradox of food insecurity in a food surplus state of India i.e in Punjab at micro level. In order to achieve the said objectives, secondary data collected from the Ministry of Agriculture and the Agriculture department of Punjab State was analyzed. The result of the study showed that despite having surplus food production the country is still facing food insecurity problem at micro level. Within the Kandi belt of Punjab state, the area adjacent to plains is food secure while the area along the hills falls in food insecure zone. The present paper is divided into following three sections (i) Introduction, (ii) Analysis of food security situation at national level as well as micro level (Kandi belt of Punjab State) (iii) Concluding ObservationsKeywords: Availability, consumption, food security, poverty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 67632908 Crystalline Model Approach for Studying the Nuclear Properties of Light Nuclei
Abstract:
A study of the structure of the nucleus with the analogy by solid-state physics has been developed. We have used binding energy to calculate R (a parameter that is proportional to the radius of the nucleus) for deuteron, alpha, and 8Be. The calculated parameter r calculated from solid state physics produces a probe for calculation the nuclear radii. 8Be has special attention as it is radioactive nucleus and the latest nucleus to be calculated from crystalline model approach. The distribution of nucleons inside the nucleus is taken to be tetrahedral for 16O. The model has failed to expect the radius of 9Be which is an impression about the modification should be done on the model at near future. A comparison between our calculations and those from literature has been made, and a good agreement has been obtained.
Keywords: The structure of the nucleus, binding energy, crystalline model approach, nuclear radii, tetrahedral for 16O.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5032907 A Delay-Tolerant Distributed Query Processing Architecture for Mobile Environment
Authors: T.P. Andamuthu, Dr. P. Balasubramanie
Abstract:
The intermittent connectivity modifies the “always on" network assumption made by all the distributed query processing systems. In modern- day systems, the absence of network connectivity is considered as a fault. Since the last upload, it might not be feasible to transmit all the data accumulated right away over the available connection. It is possible that vital information may be delayed excessively when the less important information takes place of the vital information. Owing to the restricted and uneven bandwidth, it is vital that the mobile nodes make the most advantageous use of the connectivity when it arrives. Hence, in order to select the data that needs to be transmitted first, some sort of data prioritization is essential. A continuous query processing system for intermittently connected mobile networks that comprises of a delaytolerant continuous query processor distributed across the mobile hosts has been proposed in this paper. In addition, a mechanism for prioritizing query results has been designed that guarantees enhanced accuracy and reduced delay. It is illustrated that our architecture reduces the client power consumption, increases query efficiency by the extensive simulation results.Keywords: Broadcast, Location, Mobile host, Mobility, Query.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14502906 Denoising by Spatial Domain Averaging for Wireless Local Area Network Terminal Localization
Authors: Diego Felix, Eugene Hyun, Michael McGuire, Mihai Sima
Abstract:
Terminal localization for indoor Wireless Local Area Networks (WLANs) is critical for the deployment of location-aware computing inside of buildings. A major challenge is obtaining high localization accuracy in presence of fluctuations of the received signal strength (RSS) measurements caused by multipath fading. This paper focuses on reducing the effect of the distance-varying noise by spatial filtering of the measured RSS. Two different survey point geometries are tested with the noise reduction technique: survey points arranged in sets of clusters and survey points uniformly distributed over the network area. The results show that the location accuracy improves by 16% when the filter is used and by 18% when the filter is applied to a clustered survey set as opposed to a straight-line survey set. The estimated locations are within 2 m of the true location, which indicates that clustering the survey points provides better localization accuracy due to superior noise removal.Keywords: Position measurement, Wireless LAN, Radio navigation, Filtering
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15212905 Discrimination of Alcoholic Subjects using Second Order Autoregressive Modelling of Brain Signals Evoked during Visual Stimulus Perception
Authors: Ramaswamy Palaniappan
Abstract:
In this paper, a second order autoregressive (AR) model is proposed to discriminate alcoholics using single trial gamma band Visual Evoked Potential (VEP) signals using 3 different classifiers: Simplified Fuzzy ARTMAP (SFA) neural network (NN), Multilayer-perceptron-backpropagation (MLP-BP) NN and Linear Discriminant (LD). Electroencephalogram (EEG) signals were recorded from alcoholic and control subjects during the presentation of visuals from Snodgrass and Vanderwart picture set. Single trial VEP signals were extracted from EEG signals using Elliptic filtering in the gamma band spectral range. A second order AR model was used as gamma band VEP exhibits pseudo-periodic behaviour and second order AR is optimal to represent this behaviour. This circumvents the requirement of having to use some criteria to choose the correct order. The averaged discrimination errors of 2.6%, 2.8% and 11.9% were given by LD, MLP-BP and SFA classifiers. The high LD discrimination results show the validity of the proposed method to discriminate between alcoholic subjects.Keywords: Linear Discriminant, Neural Network, VisualEvoked Potential.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16122904 Echo State Networks for Arabic Phoneme Recognition
Authors: Nadia Hmad, Tony Allen
Abstract:
This paper presents an ESN-based Arabic phoneme recognition system trained with supervised, forced and combined supervised/forced supervised learning algorithms. Mel-Frequency Cepstrum Coefficients (MFCCs) and Linear Predictive Code (LPC) techniques are used and compared as the input feature extraction technique. The system is evaluated using 6 speakers from the King Abdulaziz Arabic Phonetics Database (KAPD) for Saudi Arabia dialectic and 34 speakers from the Center for Spoken Language Understanding (CSLU2002) database of speakers with different dialectics from 12 Arabic countries. Results for the KAPD and CSLU2002 Arabic databases show phoneme recognition performances of 72.31% and 38.20% respectively.
Keywords: Arabic phonemes recognition, echo state networks (ESNs), neural networks (NNs), supervised learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24092903 Fuzzy based Security Threshold Determining for the Statistical En-Route Filtering in Sensor Networks
Authors: Hae Young Lee, Tae Ho Cho
Abstract:
In many sensor network applications, sensor nodes are deployed in open environments, and hence are vulnerable to physical attacks, potentially compromising the node's cryptographic keys. False sensing report can be injected through compromised nodes, which can lead to not only false alarms but also the depletion of limited energy resource in battery powered networks. Ye et al. proposed a statistical en-route filtering scheme (SEF) to detect such false reports during the forwarding process. In this scheme, the choice of a security threshold value is important since it trades off detection power and overhead. In this paper, we propose a fuzzy logic for determining a security threshold value in the SEF based sensor networks. The fuzzy logic determines a security threshold by considering the number of partitions in a global key pool, the number of compromised partitions, and the energy level of nodes. The fuzzy based threshold value can conserve energy, while it provides sufficient detection power.
Keywords: Fuzzy logic, security, sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15812902 A Method for Controlling of Hand Prosthesis Based on Neural Network
Authors: Fereidoun Nowshiravan Rahatabad, Mohammad Ali Nekoui, Mohammad Reza Hashemi Golpaygani, AliFallah, Mehdi Kazemzadeh Narbat
Abstract:
The people are differed by their capabilities, skills and mental agilities. The evolution of human from childhood when they are completely dependent up to adultness the time they gradually set the dependency free is too complicated, by considering they have all started from almost one point but some become cleverer and some less. The main control command of a cybernetic hand should be posted by remaining healthy organs of disabled Person. These commands can be from several channels, which their recording and detecting are different and need complicated study. In this research, we suppose that, this stage has been done or in the other words, the command has been already sent and detected. So the main goal is to control a long hand, upper elbow hand missing, by an interest angle define by disabled. It means that, the system input is the position desired by disables and the output is the elbow-joint angle variation. Therefore the goal is a suitable control design based on neural network theory in order to meet the given mapping.
Keywords: Control - system design, Upper limb prosthesis, neuralnetwork.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15272901 Information Security in E-Learning through Identification of Humans
Authors: Hassan Haleh, Zohreh Nasiri, Parisa Farahpour
Abstract:
During recent years, the traditional learning approaches have undergone fundamental changes due to the emergence of new technologies such as multimedia, hypermedia and telecommunication. E-learning is a modern world phenomenon that has come into existence in the information age and in a knowledgebased society. E-learning has developed significantly within a short period of time. Thus it is of a great significant to secure information, allow a confident access and prevent unauthorized accesses. Making use of individuals- physiologic or behavioral (biometric) properties is a confident method to make the information secure. Among the biometrics, fingerprint is more acceptable and most countries use it as an efficient methods of identification. This article provides a new method to compare the fingerprint comparison by pattern recognition and image processing techniques. To verify fingerprint, the shortest distance method is used together with perceptronic multilayer neural network functioning based on minutiae. This method is highly accurate in the extraction of minutiae and it accelerates comparisons due to elimination of false minutiae and is more reliable compared with methods that merely use directional images.Keywords: Fingerprint, minutiae, extraction of properties, multilayer neural network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16492900 Developing New Algorithm and Its Application on Optimal Control of Pumps in Water Distribution Network
Authors: R. Rajabpour, N. Talebbeydokhti, M. H. Ahmadi
Abstract:
In recent years, new techniques for solving complex problems in engineering are proposed. One of these techniques is JPSO algorithm. With innovative changes in the nature of the jump algorithm JPSO, it is possible to construct a graph-based solution with a new algorithm called G-JPSO. In this paper, a new algorithm to solve the optimal control problem Fletcher-Powell and optimal control of pumps in water distribution network was evaluated. Optimal control of pumps comprise of optimum timetable operation (status on and off) for each of the pumps at the desired time interval. Maximum number of status on and off for each pumps imposed to the objective function as another constraint. To determine the optimal operation of pumps, a model-based optimization-simulation algorithm was developed based on G-JPSO and JPSO algorithms. The proposed algorithm results were compared well with the ant colony algorithm, genetic and JPSO results. This shows the robustness of proposed algorithm in finding near optimum solutions with reasonable computational cost.Keywords: G-JPSO, operation, optimization, pumping station, water distribution networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16382899 A Double Differential Chaos Shift Keying Scheme for Ultra-Wideband Chaotic Communication Technology Applied in Low-Rate Wireless Personal Area Network
Authors: Ghobad Gorji, Hasan Golabi
Abstract:
The goal of this paper is to describe the design of an ultra-wideband (UWB) system that is optimized for the low-rate wireless personal area network application. To this aim, we propose a system based on direct chaotic communication (DCC) technology. Based on this system, a 2-GHz wide chaotic signal is produced into the UWB spectrum lower band, i.e., 3.1–5.1 GHz. For this system, two simple modulation schemes, namely chaotic on-off keying (COOK) and differential chaos shift keying (DCSK) are evaluated first. We propose a modulation scheme, namely Double DCSK, to improve the performance of UWB DCC. Different characteristics of these systems, with Monte Carlo simulations based on the Additive White Gaussian Noise (AWGN) and the IEEE 802.15.4a standard channel models, are compared.
Keywords: Ultra-wideband, UWB, Direct Chaotic Communication, DCC, IEEE 802.15.4a, COOK, DCSK.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2092898 Discussing Embedded versus Central Machine Learning in Wireless Sensor Networks
Authors: Anne-Lena Kampen, Øivind Kure
Abstract:
Machine learning (ML) can be implemented in Wireless Sensor Networks (WSNs) as a central solution or distributed solution where the ML is embedded in the nodes. Embedding improves privacy and may reduce prediction delay. In addition, the number of transmissions is reduced. However, quality factors such as prediction accuracy, fault detection efficiency and coordinated control of the overall system suffer. Here, we discuss and highlight the trade-offs that should be considered when choosing between embedding and centralized ML, especially for multihop networks. In addition, we present estimations that demonstrate the energy trade-offs between embedded and centralized ML. Although the total network energy consumption is lower with central prediction, it makes the network more prone for partitioning due to the high forwarding load on the one-hop nodes. Moreover, the continuous improvements in the number of operations per joule for embedded devices will move the energy balance toward embedded prediction.
Keywords: Central ML, embedded machine learning, energy consumption, local ML, Wireless Sensor Networks, WSN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8282897 Developing an Advanced Algorithm Capable of Classifying News, Articles and Other Textual Documents Using Text Mining Techniques
Authors: R. B. Knudsen, O. T. Rasmussen, R. A. Alphinas
Abstract:
The reason for conducting this research is to develop an algorithm that is capable of classifying news articles from the automobile industry, according to the competitive actions that they entail, with the use of Text Mining (TM) methods. It is needed to test how to properly preprocess the data for this research by preparing pipelines which fits each algorithm the best. The pipelines are tested along with nine different classification algorithms in the realm of regression, support vector machines, and neural networks. Preliminary testing for identifying the optimal pipelines and algorithms resulted in the selection of two algorithms with two different pipelines. The two algorithms are Logistic Regression (LR) and Artificial Neural Network (ANN). These algorithms are optimized further, where several parameters of each algorithm are tested. The best result is achieved with the ANN. The final model yields an accuracy of 0.79, a precision of 0.80, a recall of 0.78, and an F1 score of 0.76. By removing three of the classes that created noise, the final algorithm is capable of reaching an accuracy of 94%.
Keywords: Artificial neural network, competitive dynamics, logistic regression, text classification, text mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5352896 Multivariable Control of Smart Timoshenko Beam Structures Using POF Technique
Authors: T.C. Manjunath, B. Bandyopadhyay
Abstract:
Active Vibration Control (AVC) is an important problem in structures. One of the ways to tackle this problem is to make the structure smart, adaptive and self-controlling. The objective of active vibration control is to reduce the vibration of a system by automatic modification of the system-s structural response. This paper features the modeling and design of a Periodic Output Feedback (POF) control technique for the active vibration control of a flexible Timoshenko cantilever beam for a multivariable case with 2 inputs and 2 outputs by retaining the first 2 dominant vibratory modes using the smart structure concept. The entire structure is modeled in state space form using the concept of piezoelectric theory, Timoshenko beam theory, Finite Element Method (FEM) and the state space techniques. Simulations are performed in MATLAB. The effect of placing the sensor / actuator at 2 finite element locations along the length of the beam is observed. The open loop responses, closed loop responses and the tip displacements with and without the controller are obtained and the performance of the smart system is evaluated for active vibration control.Keywords: Smart structure, Timoshenko theory, Euler-Bernoulli theory, Periodic output feedback control, Finite Element Method, State space model, Vibration control, Multivariable system, Linear Matrix Inequality
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23192895 Measurement of UHF Signal Strength Propagating from Road Surface with Vehicle Obstruction
Authors: C. Thongsopa, P. Sukphongchirakul, A. Intarapanich, P. Jarataku
Abstract:
Radio wave propagation on the road surface is a major problem on wireless sensor network for traffic monitoring. In this paper, we compare receiving signal strength on two scenarios 1) an empty road and 2) a road with a vehicle. We investigate the effect of antenna polarization and antenna height to the receiving signal strength. The transmitting antenna is installed on the road surface. The receiving signal is measured 360 degrees around the transmitting antenna with the radius of 2.5 meters. Measurement results show the receiving signal fluctuation around the transmitting antenna in both scenarios. Receiving signal with vertical polarization antenna results in higher signal strength than horizontal polarization antenna. The optimum antenna elevation is 1 meter for both horizon and vertical polarizations with the vehicle on the road. In the empty road, the receiving signal level is unvarying with the elevation when the elevation is greater than 1.5 meters.Keywords: Wave propagation, wireless sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17552894 Multi-Objective Analysis of Cost and Social Benefits in Rural Road Networks
Authors: J. K. Shrestha, A. Benta, R. B. Lopes, N. Lopes
Abstract:
This paper presents a multi-objective model for addressing two main objectives in designing rural roads networks: minimization of user operation costs and maximization of population covered. As limited budgets often exist, a reasonable trade-off must be obtained in order to account for both cost and social benefits in this type of networks. For a real-world rural road network, the model is solved, where all non-dominated solutions were obtained. Afterwards, an analysis is made on the (possibly) most interesting solutions (the ones providing better trade-offs). This analysis, coupled with the knowledge of the real world scenario (typically provided by decision makers) provides a suitable method for the evaluation of road networks in rural areas of developing countries.
Keywords: Multi-objective, user operation cost, population covered, rural road network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18352893 Fuzzy Rules Generation and Extraction from Support Vector Machine Based on Kernel Function Firing Signals
Authors: Prasan Pitiranggon, Nunthika Benjathepanun, Somsri Banditvilai, Veera Boonjing
Abstract:
Our study proposes an alternative method in building Fuzzy Rule-Based System (FRB) from Support Vector Machine (SVM). The first set of fuzzy IF-THEN rules is obtained through an equivalence of the SVM decision network and the zero-ordered Sugeno FRB type of the Adaptive Network Fuzzy Inference System (ANFIS). The second set of rules is generated by combining the first set based on strength of firing signals of support vectors using Gaussian kernel. The final set of rules is then obtained from the second set through input scatter partitioning. A distinctive advantage of our method is the guarantee that the number of final fuzzy IFTHEN rules is not more than the number of support vectors in the trained SVM. The final FRB system obtained is capable of performing classification with results comparable to its SVM counterpart, but it has an advantage over the black-boxed SVM in that it may reveal human comprehensible patterns.Keywords: Fuzzy Rule Base, Rule Extraction, Rule Generation, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19022892 Controller Synthesis of Switched Positive Systems with Bounded Time-Varying Delays
Authors: Xinhui Wang, Xiuyong Ding
Abstract:
This paper addresses the controller synthesis problem of discrete-time switched positive systems with bounded time-varying delays. Based on the switched copositive Lyapunov function approach, some necessary and sufficient conditions for the existence of state-feedback controller are presented as a set of linear programming and linear matrix inequality problems, hence easy to be verified. Another advantage is that the state-feedback law is independent on time-varying delays and initial conditions. A numerical example is provided to illustrate the effectiveness and feasibility of the developed controller.
Keywords: Switched copositive Lyapunov functions, positive linear systems, switched systems, time-varying delays, stabilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14392891 Neural Network Based Icing Identification and Fault Tolerant Control of a 340 Aircraft
Authors: F. Caliskan
Abstract:
This paper presents a Neural Network (NN) identification of icing parameters in an A340 aircraft and a reconfiguration technique to keep the A/C performance close to the performance prior to icing. Five aircraft parameters are assumed to be considerably affected by icing. The off-line training for identifying the clear and iced dynamics is based on the Levenberg-Marquard Backpropagation algorithm. The icing parameters are located in the system matrix. The physical locations of the icing are assumed at the right and left wings. The reconfiguration is based on the technique known as the control mixer approach or pseudo inverse technique. This technique generates the new control input vector such that the A/C dynamics is not much affected by icing. In the simulations, the longitudinal and lateral dynamics of an Airbus A340 aircraft model are considered, and the stability derivatives affected by icing are identified. The simulation results show the successful NN identification of the icing parameters and the reconfigured flight dynamics having the similar performance before the icing. In other words, the destabilizing icing affect is compensated.Keywords: Aircraft Icing, Stability Derivatives, Neural NetworkIdentification, Reconfiguration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701