Search results for: prediction of iron ore reduction.
2601 A Prediction Method for Large-Size Event Occurrences in the Sandpile Model
Authors: S. Channgam, A. Sae-Tang, T. Termsaithong
Abstract:
In this research, the occurrences of large size events in various system sizes of the Bak-Tang-Wiesenfeld sandpile model are considered. The system sizes (square lattice) of model considered here are 25×25, 50×50, 75×75 and 100×100. The cross-correlation between the ratio of sites containing 3 grain time series and the large size event time series for these 4 system sizes are also analyzed. Moreover, a prediction method of the large-size event for the 50×50 system size is also introduced. Lastly, it can be shown that this prediction method provides a slightly higher efficiency than random predictions.
Keywords: Bak-Tang-Wiesenfeld sandpile model, avalanches, cross-correlation, prediction method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11742600 Churn Prediction for Telecommunication Industry Using Artificial Neural Networks
Authors: Ulas Vural, M. Ergun Okay, E. Mesut Yildiz
Abstract:
Telecommunication service providers demand accurate and precise prediction of customer churn probabilities to increase the effectiveness of their customer relation services. The large amount of customer data owned by the service providers is suitable for analysis by machine learning methods. In this study, expenditure data of customers are analyzed by using an artificial neural network (ANN). The ANN model is applied to the data of customers with different billing duration. The proposed model successfully predicts the churn probabilities at 83% accuracy for only three months expenditure data and the prediction accuracy increases up to 89% when the nine month data is used. The experiments also show that the accuracy of ANN model increases on an extended feature set with information of the changes on the bill amounts.Keywords: Customer relationship management, churn prediction, telecom industry, deep learning, Artificial Neural Networks, ANN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7602599 Certain Data Dimension Reduction Techniques for application with ANN based MCS for Study of High Energy Shower
Authors: Gitanjali Devi, Kandarpa Kumar Sarma, Pranayee Datta, Anjana Kakoti Mahanta
Abstract:
Cosmic showers, from their places of origin in space, after entering earth generate secondary particles called Extensive Air Shower (EAS). Detection and analysis of EAS and similar High Energy Particle Showers involve a plethora of experimental setups with certain constraints for which soft-computational tools like Artificial Neural Network (ANN)s can be adopted. The optimality of ANN classifiers can be enhanced further by the use of Multiple Classifier System (MCS) and certain data - dimension reduction techniques. This work describes the performance of certain data dimension reduction techniques like Principal Component Analysis (PCA), Independent Component Analysis (ICA) and Self Organizing Map (SOM) approximators for application with an MCS formed using Multi Layer Perceptron (MLP), Recurrent Neural Network (RNN) and Probabilistic Neural Network (PNN). The data inputs are obtained from an array of detectors placed in a circular arrangement resembling a practical detector grid which have a higher dimension and greater correlation among themselves. The PCA, ICA and SOM blocks reduce the correlation and generate a form suitable for real time practical applications for prediction of primary energy and location of EAS from density values captured using detectors in a circular grid.Keywords: EAS, Shower, Core, ANN, Location.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16082598 Novel Hybrid Method for Gene Selection and Cancer Prediction
Authors: Liping Jing, Michael K. Ng, Tieyong Zeng
Abstract:
Microarray data profiles gene expression on a whole genome scale, therefore, it provides a good way to study associations between gene expression and occurrence or progression of cancer. More and more researchers realized that microarray data is helpful to predict cancer sample. However, the high dimension of gene expressions is much larger than the sample size, which makes this task very difficult. Therefore, how to identify the significant genes causing cancer becomes emergency and also a hot and hard research topic. Many feature selection algorithms have been proposed in the past focusing on improving cancer predictive accuracy at the expense of ignoring the correlations between the features. In this work, a novel framework (named by SGS) is presented for stable gene selection and efficient cancer prediction . The proposed framework first performs clustering algorithm to find the gene groups where genes in each group have higher correlation coefficient, and then selects the significant genes in each group with Bayesian Lasso and important gene groups with group Lasso, and finally builds prediction model based on the shrinkage gene space with efficient classification algorithm (such as, SVM, 1NN, Regression and etc.). Experiment results on real world data show that the proposed framework often outperforms the existing feature selection and prediction methods, say SAM, IG and Lasso-type prediction model.Keywords: Gene Selection, Cancer Prediction, Lasso, Clustering, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20442597 Effective Context Lossless Image Coding Approach Based on Adaptive Prediction
Authors: Grzegorz Ulacha, Ryszard Stasiński
Abstract:
In the paper an effective context based lossless coding technique is presented. Three principal and few auxiliary contexts are defined. The predictor adaptation technique is an improved CoBALP algorithm, denoted CoBALP+. Cumulated predictor error combining 8 bias estimators is calculated. It is shown experimentally that indeed, the new technique is time-effective while it outperforms the well known methods having reasonable time complexity, and is inferior only to extremely computationally complex ones.Keywords: Adaptive prediction, context coding, image losslesscoding, prediction error bias correction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13502596 High Temperature Deformation Behavior of Cr-containing Superplastic Iron Aluminide
Authors: Seok Hong Min, Woo Young Jung, Tae Kwon Ha
Abstract:
Superplastic deformation and high temperature load relaxation behavior of coarse-grained iron aluminides with the composition of Fe-28 at.% Al have been investigated. A series of load relaxation and tensile tests were conducted at temperatures ranging from 600 to 850oC. The flow curves obtained from load relaxation tests were found to have a sigmoidal shape and to exhibit stress vs. strain rate data in a very wide strain rate range from 10-7/s to 10-2/s. Tensile tests have been conducted at various initial strain rates ranging from 3×10-5/s to 1×10-2/s. Maximum elongation of ~500 % was obtained at the initial strain rate of 3×10-5/s and the maximum strain rate sensitivity was found to be 0.68 at 850oC in binary Fe-28Al alloy. Microstructure observation through the optical microscopy (OM) and the electron back-scattered diffraction (EBSD) technique has been carried out on the deformed specimens and it has revealed the evidences for grain boundary migration and grain refinement to occur during superplastic deformation, suggesting the dynamic recrystallization mechanism. The addition of Cr by the amount of 5 at.% appeared to deteriorate the superplasticity of the binary iron aluminide. By applying the internal variable theory of structural superplasticity, the addition of Cr has been revealed to lower the contribution of the frictional resistance to dislocation glide during high temperature deformation of the Fe3Al alloy.Keywords: Iron aluminide (Fe3Al), large grain size, structural superplasticity, dynamic recrystallization, chromium (Cr).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17882595 Automated Process Quality Monitoring with Prediction of Fault Condition Using Measurement Data
Authors: Hyun-Woo Cho
Abstract:
Detection of incipient abnormal events is important to improve safety and reliability of machine operations and reduce losses caused by failures. Improper set-ups or aligning of parts often leads to severe problems in many machines. The construction of prediction models for predicting faulty conditions is quite essential in making decisions on when to perform machine maintenance. This paper presents a multivariate calibration monitoring approach based on the statistical analysis of machine measurement data. The calibration model is used to predict two faulty conditions from historical reference data. This approach utilizes genetic algorithms (GA) based variable selection, and we evaluate the predictive performance of several prediction methods using real data. The results shows that the calibration model based on supervised probabilistic principal component analysis (SPPCA) yielded best performance in this work. By adopting a proper variable selection scheme in calibration models, the prediction performance can be improved by excluding non-informative variables from their model building steps.Keywords: Prediction, operation monitoring, on-line data, nonlinear statistical methods, empirical model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16582594 Neural Networks for Short Term Wind Speed Prediction
Authors: K. Sreelakshmi, P. Ramakanthkumar
Abstract:
Predicting short term wind speed is essential in order to prevent systems in-action from the effects of strong winds. It also helps in using wind energy as an alternative source of energy, mainly for Electrical power generation. Wind speed prediction has applications in Military and civilian fields for air traffic control, rocket launch, ship navigation etc. The wind speed in near future depends on the values of other meteorological variables, such as atmospheric pressure, moisture content, humidity, rainfall etc. The values of these parameters are obtained from a nearest weather station and are used to train various forms of neural networks. The trained model of neural networks is validated using a similar set of data. The model is then used to predict the wind speed, using the same meteorological information. This paper reports an Artificial Neural Network model for short term wind speed prediction, which uses back propagation algorithm.Keywords: Short term wind speed prediction, Neural networks, Back propagation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30652593 Wheat Yield Prediction through Agro Meteorological Indices for Ardebil District
Authors: Fariba Esfandiary, Ghafoor Aghaie, Ali Dolati Mehr
Abstract:
Wheat prediction was carried out using different meteorological variables together with agro meteorological indices in Ardebil district for the years 2004-2005 & 2005–2006. On the basis of correlation coefficients, standard error of estimate as well as relative deviation of predicted yield from actual yield using different statistical models, the best subset of agro meteorological indices were selected including daily minimum temperature (Tmin), accumulated difference of maximum & minimum temperatures (TD), growing degree days (GDD), accumulated water vapor pressure deficit (VPD), sunshine hours (SH) & potential evapotranspiration (PET). Yield prediction was done two months in advance before harvesting time which was coincide with commencement of reproductive stage of wheat (5th of June). It revealed that in the final statistical models, 83% of wheat yield variability was accounted for variation in above agro meteorological indices.
Keywords: Wheat yields prediction, agro meteorological indices, statistical models
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21452592 Development of the Structure of the Knowledgebase for Countermeasures in the Knowledge Acquisition Process for Trouble Prediction in Healthcare Processes
Authors: Shogo Kato, Daisuke Okamoto, Satoko Tsuru, Yoshinori Iizuka, Ryoko Shimono
Abstract:
Healthcare safety has been perceived important. It is essential to prevent troubles in healthcare processes for healthcare safety. Trouble prevention is based on trouble prediction using accumulated knowledge on processes, troubles, and countermeasures. However, information on troubles has not been accumulated in hospitals in the appropriate structure, and it has not been utilized effectively to prevent troubles. In the previous study, however a detailed knowledge acquisition process for trouble prediction was proposed, the knowledgebase for countermeasures was not involved. In this paper, we aim to propose the structure of the knowledgebase for countermeasures, in the knowledge acquisition process for trouble prediction in healthcare process. We first design the structure of countermeasures and propose the knowledge representation form on countermeasures. Then, we evaluate the validity of the proposal, by applying it into an actual hospital.Keywords: Trouble prevention, knowledge structure, structured knowledge, reusable knowledge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16722591 Comparison of Alternative Models to Predict Lean Meat Percentage of Lamb Carcasses
Authors: Vasco A. P. Cadavez, Fernando C. Monteiro
Abstract:
The objective of this study was to develop and compare alternative prediction equations of lean meat proportion (LMP) of lamb carcasses. Forty (40) male lambs, 22 of Churra Galega Bragançana Portuguese local breed and 18 of Suffolk breed were used. Lambs were slaughtered, and carcasses weighed approximately 30 min later in order to obtain hot carcass weight (HCW). After cooling at 4º C for 24-h a set of seventeen carcass measurements was recorded. The left side of carcasses was dissected into muscle, subcutaneous fat, inter-muscular fat, bone, and remainder (major blood vessels, ligaments, tendons, and thick connective tissue sheets associated with muscles), and the LMP was evaluated as the dissected muscle percentage. Prediction equations of LMP were developed, and fitting quality was evaluated through the coefficient of determination of estimation (R2 e) and standard error of estimate (SEE). Models validation was performed by k-fold crossvalidation and the coefficient of determination of prediction (R2 p) and standard error of prediction (SEP) were computed. The BT2 measurement was the best single predictor and accounted for 37.8% of the LMP variation with a SEP of 2.30%. The prediction of LMP of lamb carcasses can be based simple models, using as predictors the HCW and one fat thickness measurement.
Keywords: Bootstrap, Carcass, Lambs, Lean meat
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16212590 A New Classification of Risk-Reduction Options to Improve the Risk-Reduction Readiness of the Railway Industry
Authors: Eberechi Weli, Michael Todinov
Abstract:
The gap between the selection of risk-reduction options in the railway industry and the task of their effective implementation results in compromised safety and substantial losses. An effective risk management must necessarily integrate the evaluation phases with the implementation phase. This paper proposes an essential categorisation of risk reduction measures that best addresses a standard railway industry portfolio. By categorising the risk reduction options into design, operational, procedural and technical options, it is guaranteed that the efforts of the implementation facilitators (people, processes and supporting systems) are systematically harmonised. The classification is based on an integration of fundamental principles of risk reduction in the railway industry with the systems engineering approach.
This paper argues that the use of a similar classification approach is an attribute of organisations possessing a superior level of risk-reduction readiness. The integration of the proposed rational classification structure provides a solid ground for effective risk reduction.
Keywords: Cost effectiveness, organisational readiness, risk reduction, railway, system engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18022589 Performance and Emission Prediction in a Biodiesel Engine Fuelled with Honge Methyl Ester Using RBF Neural Networks
Authors: Shivakumar, G. S. Vijay, P. Srinivas Pai, B. R. Shrinivasa Rao
Abstract:
In the present study, RBF neural networks were used for predicting the performance and emission parameters of a biodiesel engine. Engine experiments were carried out in a 4 stroke diesel engine using blends of diesel and Honge methyl ester as the fuel. Performance parameters like BTE, BSEC, Tex and emissions from the engine were measured. These experimental results were used for ANN modeling. RBF center initialization was done by random selection and by using Clustered techniques. Network was trained by using fixed and varying widths for the RBF units. It was observed that RBF results were having a good agreement with the experimental results. Networks trained by using clustering technique gave better results than using random selection of centers in terms of reduced MRE and increased prediction accuracy. The average MRE for the performance parameters was 3.25% with the prediction accuracy of 98% and for emissions it was 10.4% with a prediction accuracy of 80%.Keywords: Radial Basis Function networks, emissions, Performance parameters, Fuzzy c means.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17292588 Breast Cancer Prediction Using Score-Level Fusion of Machine Learning and Deep Learning Models
Authors: [email protected]
Abstract:
Breast cancer is one of the most common types in women. Early prediction of breast cancer helps physicians detect cancer in its early stages. Big cancer data need a very powerful tool to analyze and extract predictions. Machine learning and deep learning are two of the most efficient tools for predicting cancer based on textual data. In this study, we developed a fusion model of two machine learning and deep learning models. To obtain the final prediction, Long-Short Term Memory (LSTM), ensemble learning with hyper parameters optimization, and score-level fusion is used. Experiments are done on the Breast Cancer Surveillance Consortium (BCSC) dataset after balancing and grouping the class categories. Five different training scenarios are used, and the tests show that the designed fusion model improved the performance by 3.3% compared to the individual models.
Keywords: Machine learning, Deep learning, cancer prediction, breast cancer, LSTM, Score-Level Fusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4022587 Association of Brain Derived Neurotrophic Factor with Iron as well as Vitamin D, Folate and Cobalamin in Pediatric Metabolic Syndrome
Authors: Mustafa M. Donma, Orkide Donma
Abstract:
The impact of metabolic syndrome (MetS) on cognition and functions of the brain is being investigated. Iron deficiency and deficiencies of B9 (folate) as well as B12 (cobalamin) vitamins are best-known nutritional anemias. They are associated with cognitive disorders and learning difficulties. The antidepressant effects of vitamin D are known and the deficiency state affects mental functions negatively. The aim of this study is to investigate possible correlations of MetS with serum brain-derived neurotrophic factor (BDNF), iron, folate, cobalamin and vitamin D in pediatric patients. 30 children, whose age- and sex-dependent body mass index (BMI) percentiles vary between 85 and 15, 60 morbid obese children with above 99th percentiles constituted the study population. Anthropometric measurements were taken. BMI values were calculated. Age- and sex-dependent BMI percentile values were obtained using the appropriate tables prepared by the World Health Organization (WHO). Obesity classification was performed according to WHO criteria. Those with MetS were evaluated according to MetS criteria. Serum BDNF was determined by enzyme-linked immunosorbent assay. Serum folate was analyzed by an immunoassay analyzer. Serum cobalamin concentrations were measured using electrochemiluminescence immunoassay. Vitamin D status was determined by the measurement of 25-hydroxycholecalciferol [25-hydroxy vitamin D3, 25(OH)D] using high performance liquid chromatography. Statistical evaluations were performed using SPSS for Windows, version 16. The p values less than 0.05 were accepted as statistically significant. Although statistically insignificant, lower folate and cobalamin values were found in MO children compared to those observed for children with normal BMI. For iron and BDNF values, no alterations were detected among the groups. Significantly decreased vitamin D concentrations were noted in MO children with MetS in comparison with those in children with normal BMI (p ≤ 0.05). The positive correlation observed between iron and BDNF in normal-BMI group was not found in two MO groups. In THE MetS group, the partial correlation among iron, BDNF, folate, cobalamin, vitamin D controlling for waist circumference and BMI was r = -0.501; p ≤ 0.05. None was calculated in MO and normal BMI groups. In conclusion, vitamin D should also be considered during the assessment of pediatric MetS. Waist circumference and BMI should collectively be evaluated during the evaluation of MetS in children. Within this context, BDNF appears to be a key biochemical parameter during the examination of obesity degree in terms of mental functions, cognition and learning capacity. The association observed between iron and BDNF in children with normal BMI was not detected in MO groups possibly due to development of inflammation and other obesity-related pathologies. It was suggested that this finding may contribute to mental function impairments commonly observed among obese children.
Keywords: Brain-derived neurotrophic factor, iron, Vitamin B9, Vitamin B12, Vitamin D.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7522586 Prediction of a Human Facial Image by ANN using Image Data and its Content on Web Pages
Authors: Chutimon Thitipornvanid, Siripun Sanguansintukul
Abstract:
Choosing the right metadata is a critical, as good information (metadata) attached to an image will facilitate its visibility from a pile of other images. The image-s value is enhanced not only by the quality of attached metadata but also by the technique of the search. This study proposes a technique that is simple but efficient to predict a single human image from a website using the basic image data and the embedded metadata of the image-s content appearing on web pages. The result is very encouraging with the prediction accuracy of 95%. This technique may become a great assist to librarians, researchers and many others for automatically and efficiently identifying a set of human images out of a greater set of images.Keywords: Metadata, Prediction, Multi-layer perceptron, Human facial image, Image mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12142585 Application of Seismic Wave Method in Early Estimation of Wencheng Earthquake
Authors: Wenlong Liu, Yucheng Liu
Abstract:
This paper introduces the application of seismic wave method in earthquake prediction and early estimation. The advantages of the seismic wave method over the traditional earthquake prediction method are demonstrated. An example is presented in this study to show the accuracy and efficiency of using the seismic wave method in predicting a medium-sized earthquake swarm occurred in Wencheng, Zhejiang, China. By applying this method, correct predictions were made on the day after this earthquake swarm started and the day the maximum earthquake occurred, which provided scientific bases for governmental decision-making.
Keywords: earthquake prediction, earthquake swarm, seismicactivity method, seismic wave method, Wencheng earthquake
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16562584 Multilayer Neural Network and Fuzzy Logic Based Software Quality Prediction
Authors: Sadaf Sahar, Usman Qamar, Sadaf Ayaz
Abstract:
In the software development lifecycle, the quality prediction techniques hold a prime importance in order to minimize future design errors and expensive maintenance. There are many techniques proposed by various researchers, but with the increasing complexity of the software lifecycle model, it is crucial to develop a flexible system which can cater for the factors which in result have an impact on the quality of the end product. These factors include properties of the software development process and the product along with its operation conditions. In this paper, a neural network (perceptron) based software quality prediction technique is proposed. Using this technique, the stakeholders can predict the quality of the resulting software during the early phases of the lifecycle saving time and resources on future elimination of design errors and costly maintenance. This technique can be brought into practical use using successful training.Keywords: Software quality, fuzzy logic, perceptron, prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11802583 Metallurgy of Friction Welding of Porous Stainless Steel-Solid Iron Billets
Authors: S. D. El Wakil
Abstract:
The research work reported here was aimed at investigating the feasibility of joining high-porosity stainless steel discs and wrought iron bars by friction welding. The sound friction-welded joints were then subjected to a metallurgical investigation and an analysis of failure resulting from tensile loading. Discs having 50 mm diameter and 10 mm thickness were produced by loose sintering of stainless steel powder at a temperature of 1350 oC in an argon atmosphere for one hour. Minor machining was then carried out to control the dimensions of the discs, and the density of each disc could then be determined. The level of porosity was calculated and was found to be about 40% in all of those discs. Solid wrought iron bars were also machined to facilitate tensile testing of the joints produced by friction welding. Using our previously gained experience, the porous stainless steel disc and the wrought iron tube were successfully friction welded. SEM was employed to examine the fracture surface after a tensile test of the joint in order to determine the type of failure. It revealed that the failure did not occur in the joint, but rather in the in the porous metal in the area adjacent to the joint. The load carrying capacity was actually determined by the strength of the porous metal and not by that of the welded joint. Macroscopic and microscopic metallographic examinations were also performed and showed that the welded joint involved a dense heat-affected zone where the porous metal underwent densification at elevated temperature, explaining and supporting the findings of the SEM study.
Keywords: Fracture of friction-welded joints, metallurgy of friction welding, solid-porous structures, strength of joint.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11612582 Formation of Nanosize Phases under Thermomechanical Strengthening of Low Carbon Steel
Authors: Victor E. Gromov, Yurii F. Ivanov, Vadim B. Kosterev, Sergey V. Konovalov, Veronica I. Myasnikova, Guoyi Tang
Abstract:
A study of the H-beam's nanosize structure phase states after thermomechanical strengthening was carried out by TEM. The following processes were analyzed. 1. The dispersing of the cementite plates by cutting them by moving dislocations. 2. The dissolution of cementite plates and repeated precipitation of the cementite particles on the dislocations, the boundaries, subgrains and grains. 3. The decay of solid solution of carbon in the α-iron after "self-tempering" of martensite. 4. The final transformation of the retained austenite in beinite with α-iron particles and cementite formation. 5. The implementation of the diffusion mechanism of γ ⇒ α transformation.Keywords: nanosize, phase, steel, strengthening
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16842581 Carbothermic Reduction of Mechanically Activated Mixtures of Celestite and Carbon
Authors: N.Setoudeh, M. Ali Askari Zamani, N.J.Welham
Abstract:
The effect of dry milling on the carbothermic reduction of celestite was investigated. Mixtures of celestite concentrate (98% SrSO4) and activated carbon (99% carbon) was milled for 1 and 24 hours in a planetary ball mill. Un-milled and milled mixtures and their products after carbothermic reduction were studied by a combination of XRD and TGA/DTA experiments. The thermogravimetric analyses and XRD results showed that by milling celestite-carbon mixtures for one hour, the formation temperature of strontium sulfide decreased from about 720°C (in un-milled sample) to about 600°C, after 24 hours milling it decreased to 530°C. It was concluded that milling induces increasingly thorough mixing of the reactants to reduction occurring at lower temperaturesKeywords: Activated carbon, Celestite, Ball milling, Carbothermic reduction, Strontium sulfide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21252580 Fe3O4 and Fe3O4@Au Nanoparticles: Synthesis and Functionalisation for Biomolecular Attachment
Authors: Hendriëtte van der Walt, Lesley Chown, Richard Harris, Ndabenhle Sosibo, Robert Tshikhudo
Abstract:
The use of magnetic and magnetic/gold core/shell nanoparticles in biotechnology or medicine has shown good promise due to their hybrid nature which possesses superior magnetic and optical properties. Some of these potential applications include hyperthermia treatment, bio-separations, diagnostics, drug delivery and toxin removal. Synthesis refinement to control geometric and magnetic/optical properties, and finding functional surfactants for biomolecular attachment, are requirements to meet application specifics. Various high-temperature preparative methods were used for the synthesis of iron oxide and gold-coated iron oxide nanoparticles. Different surface functionalities, such as 11-aminoundecanoic and 11-mercaptoundecanoic acid, were introduced on the surface of the particles to facilitate further attachment of biomolecular functionality and drug-like molecules. Nanoparticle thermal stability, composition, state of aggregation, size and morphology were investigated and the results from techniques such as Fourier Transform-Infra Red spectroscopy (FT-IR), Ultraviolet visible spectroscopy (UV-vis), Transmission Electron Microscopy (TEM) and thermal analysis are discussed.Keywords: Core/shell, Iron oxide, Gold coating, Nanoparticles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29552579 Analysis and Performance Evaluation of Noise-Reduction Transformer
Authors: Toshiaki Yanada, Kazumi Ishikawa
Abstract:
The present paper deals with the analysis and development of noise-reduction transformer that has a filter function for conductive noise transmission. Two types of prototype noise-reduction transformers with two different output voltages are proposed. To determine an optimum design for the noise-reduction transformer, noise attenuation characteristics are discussed based on the experiments and the equivalent circuit analysis. The analysis gives a relation between the circuit parameters and the noise attenuation. High performance step-down noise-reduction transformer for direct power supply to electronics equipment is developed. The input voltage of the transformer is 100 V and the output voltage is 5 V. Frequency characteristics of noise attenuation are discussed, and prevention of pulse noise transmission is demonstrated. Normal mode noise attenuation of this transformer is –80 dB, and common mode exceeds –90 dB. The step-down noise-reduction transformer eliminates pulse noise efficiently.
Keywords: conductive noise, EMC, EMI, noise attenuation, transformer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19722578 FCNN-MR: A Parallel Instance Selection Method Based on Fast Condensed Nearest Neighbor Rule
Authors: Lu Si, Jie Yu, Shasha Li, Jun Ma, Lei Luo, Qingbo Wu, Yongqi Ma, Zhengji Liu
Abstract:
Instance selection (IS) technique is used to reduce the data size to improve the performance of data mining methods. Recently, to process very large data set, several proposed methods divide the training set into some disjoint subsets and apply IS algorithms independently to each subset. In this paper, we analyze the limitation of these methods and give our viewpoint about how to divide and conquer in IS procedure. Then, based on fast condensed nearest neighbor (FCNN) rule, we propose a large data sets instance selection method with MapReduce framework. Besides ensuring the prediction accuracy and reduction rate, it has two desirable properties: First, it reduces the work load in the aggregation node; Second and most important, it produces the same result with the sequential version, which other parallel methods cannot achieve. We evaluate the performance of FCNN-MR on one small data set and two large data sets. The experimental results show that it is effective and practical.Keywords: Instance selection, data reduction, MapReduce, kNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10172577 Research on Reservoir Lithology Prediction Based on Residual Neural Network and Squeeze-and- Excitation Neural Network
Authors: Li Kewen, Su Zhaoxin, Wang Xingmou, Zhu Jian Bing
Abstract:
Conventional reservoir prediction methods ar not sufficient to explore the implicit relation between seismic attributes, and thus data utilization is low. In order to improve the predictive classification accuracy of reservoir lithology, this paper proposes a deep learning lithology prediction method based on ResNet (Residual Neural Network) and SENet (Squeeze-and-Excitation Neural Network). The neural network model is built and trained by using seismic attribute data and lithology data of Shengli oilfield, and the nonlinear mapping relationship between seismic attribute and lithology marker is established. The experimental results show that this method can significantly improve the classification effect of reservoir lithology, and the classification accuracy is close to 70%. This study can effectively predict the lithology of undrilled area and provide support for exploration and development.
Keywords: Convolutional neural network, lithology, prediction of reservoir lithology, seismic attributes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6542576 Briquetting of Metal Chips by Controlled Impact: Experimental Study
Authors: Todor Penchev, Dimitar Karastojanov, Ivan Altaparmakov
Abstract:
For briquetting of metal chips are used hydraulic and mechanical presses. The density of the briquettes in this case is about 60% - 70 % on the density of solid metal. In this work are presented the results of experimental studies for briquetting of metal chips, by using a new technology for impact briquetting. The used chips are by Armco iron, steel, cast iron, copper, aluminum and brass. It has been found that: (i) in a controlled impact the density of the briquettes can be increases up to 30%; (ii) at the same specific impact energy Es (J/sm3) the density of the briquettes increases with increasing of the impact velocity; (iii), realization of the repeated impact leads to decrease of chips density, which can be explained by distribution of elastic waves in the briquette.Keywords: Briquetting, chips briquetting, impact briquetting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14242575 Computational Intelligence Hybrid Learning Approach to Time Series Forecasting
Authors: Chunshien Li, Jhao-Wun Hu, Tai-Wei Chiang, Tsunghan Wu
Abstract:
Time series forecasting is an important and widely popular topic in the research of system modeling. This paper describes how to use the hybrid PSO-RLSE neuro-fuzzy learning approach to the problem of time series forecasting. The PSO algorithm is used to update the premise parameters of the proposed prediction system, and the RLSE is used to update the consequence parameters. Thanks to the hybrid learning (HL) approach for the neuro-fuzzy system, the prediction performance is excellent and the speed of learning convergence is much faster than other compared approaches. In the experiments, we use the well-known Mackey-Glass chaos time series. According to the experimental results, the prediction performance and accuracy in time series forecasting by the proposed approach is much better than other compared approaches, as shown in Table IV. Excellent prediction performance by the proposed approach has been observed.Keywords: forecasting, hybrid learning (HL), Neuro-FuzzySystem (NFS), particle swarm optimization (PSO), recursiveleast-squares estimator (RLSE), time series
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15592574 A Novel Prediction Method for Tag SNP Selection using Genetic Algorithm based on KNN
Authors: Li-Yeh Chuang, Yu-Jen Hou, Jr., Cheng-Hong Yang
Abstract:
Single nucleotide polymorphisms (SNPs) hold much promise as a basis for disease-gene association. However, research is limited by the cost of genotyping the tremendous number of SNPs. Therefore, it is important to identify a small subset of informative SNPs, the so-called tag SNPs. This subset consists of selected SNPs of the genotypes, and accurately represents the rest of the SNPs. Furthermore, an effective evaluation method is needed to evaluate prediction accuracy of a set of tag SNPs. In this paper, a genetic algorithm (GA) is applied to tag SNP problems, and the K-nearest neighbor (K-NN) serves as a prediction method of tag SNP selection. The experimental data used was taken from the HapMap project; it consists of genotype data rather than haplotype data. The proposed method consistently identified tag SNPs with considerably better prediction accuracy than methods from the literature. At the same time, the number of tag SNPs identified was smaller than the number of tag SNPs in the other methods. The run time of the proposed method was much shorter than the run time of the SVM/STSA method when the same accuracy was reached.
Keywords: Genetic Algorithm (GA), Genotype, Single nucleotide polymorphism (SNP), tag SNPs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17712573 Residual Life Prediction for a System Subject to Condition Monitoring and Two Failure Modes
Authors: Akram Khaleghei Ghosheh Balagh, Viliam Makis
Abstract:
In this paper, we investigate the residual life prediction problem for a partially observable system subject to two failure modes, namely a catastrophic failure and a failure due to the system degradation. The system is subject to condition monitoring and the degradation process is described by a hidden Markov model with unknown parameters. The parameter estimation procedure based on an EM algorithm is developed and the formulas for the conditional reliability function and the mean residual life are derived, illustrated by a numerical example.
Keywords: Partially observable system, hidden Markov model, competing risks, residual life prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20412572 The Cardiac Diagnostic Prediction Applied to a Designed Holter
Authors: Leonardo Juan Ramírez López, Javier Oswaldo Rodriguez Velasquez
Abstract:
We have designed a Holter that measures the heart´s activity for over 24 hours, implemented a prediction methodology, and generate alarms as well as indicators to patients and treating physicians. Various diagnostic advances have been developed in clinical cardiology thanks to Holter implementation; however, their interpretation has largely been conditioned to clinical analysis and measurements adjusted to diverse population characteristics, thus turning it into a subjective examination. This, however, requires vast population studies to be validated that, in turn, have not achieved the ultimate goal: mortality prediction. Given this context, our Insight Research Group developed a mathematical methodology that assesses cardiac dynamics through entropy and probability, creating a numerical and geometrical attractor which allows quantifying the normalcy of chronic and acute disease as well as the evolution between such states, and our Tigum Research Group developed a holter device with 12 channels and advanced computer software. This has been shown in different contexts with 100% sensitivity and specificity results.
Keywords: Entropy, mathematical, prediction, cardiac, holter, attractor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 711