Search results for: machine learning in soccer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2879

Search results for: machine learning in soccer

2729 Optimizing Dialogue Strategy Learning Using Learning Automata

Authors: G. Kumaravelan, R. Sivakumar

Abstract:

Modeling the behavior of the dialogue management in the design of a spoken dialogue system using statistical methodologies is currently a growing research area. This paper presents a work on developing an adaptive learning approach to optimize dialogue strategy. At the core of our system is a method formalizing dialogue management as a sequential decision making under uncertainty whose underlying probabilistic structure has a Markov Chain. Researchers have mostly focused on model-free algorithms for automating the design of dialogue management using machine learning techniques such as reinforcement learning. But in model-free algorithms there exist a dilemma in engaging the type of exploration versus exploitation. Hence we present a model-based online policy learning algorithm using interconnected learning automata for optimizing dialogue strategy. The proposed algorithm is capable of deriving an optimal policy that prescribes what action should be taken in various states of conversation so as to maximize the expected total reward to attain the goal and incorporates good exploration and exploitation in its updates to improve the naturalness of humancomputer interaction. We test the proposed approach using the most sophisticated evaluation framework PARADISE for accessing to the railway information system.

Keywords: Dialogue management, Learning automata, Reinforcement learning, Spoken dialogue system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610
2728 ILMI Approach for Robust Output Feedback Control of Induction Machine

Authors: Abdelwahed Echchatbi, Adil Rizki, Ali Haddi, Nabil Mrani, Noureddine Elalami

Abstract:

In this note, the robust static output feedback stabilisation of an induction machine is addressed. The machine is described by a non homogenous bilinear model with structural uncertainties, and the feedback gain is computed via an iterative LMI (ILMI) algorithm.

Keywords: Induction machine, Static output feedback, robust stabilisation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1876
2727 Performance Comparison of Different Regression Methods for a Polymerization Process with Adaptive Sampling

Authors: Florin Leon, Silvia Curteanu

Abstract:

Developing complete mechanistic models for polymerization reactors is not easy, because complex reactions occur simultaneously; there is a large number of kinetic parameters involved and sometimes the chemical and physical phenomena for mixtures involving polymers are poorly understood. To overcome these difficulties, empirical models based on sampled data can be used instead, namely regression methods typical of machine learning field. They have the ability to learn the trends of a process without any knowledge about its particular physical and chemical laws. Therefore, they are useful for modeling complex processes, such as the free radical polymerization of methyl methacrylate achieved in a batch bulk process. The goal is to generate accurate predictions of monomer conversion, numerical average molecular weight and gravimetrical average molecular weight. This process is associated with non-linear gel and glass effects. For this purpose, an adaptive sampling technique is presented, which can select more samples around the regions where the values have a higher variation. Several machine learning methods are used for the modeling and their performance is compared: support vector machines, k-nearest neighbor, k-nearest neighbor and random forest, as well as an original algorithm, large margin nearest neighbor regression. The suggested method provides very good results compared to the other well-known regression algorithms.

Keywords: Adaptive sampling, batch bulk methyl methacrylate polymerization, large margin nearest neighbor regression, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1400
2726 Analysis and Categorization of e-Learning Activities Based On Meaningful Learning Characteristics

Authors: Arda Yunianta, Norazah Yusof, Mohd Shahizan Othman, Dewi Octaviani

Abstract:

Learning is the acquisition of new mental schemata, knowledge, abilities and skills which can be used to solve problems potentially more successfully. The learning process is optimum when it is assisted and personalized. Learning is not a single activity, but should involve many possible activities to make learning become meaningful. Many e-learning applications provide facilities to support teaching and learning activities. One way to identify whether the e-learning system is being used by the learners is through the number of hits that can be obtained from the e-learning system's log data. However, we cannot rely solely to the number of hits in order to determine whether learning had occurred meaningfully. This is due to the fact that meaningful learning should engage five characteristics namely active, constructive, intentional, authentic and cooperative. This paper aims to analyze the e-learning activities that is meaningful to learning. By focusing on the meaningful learning characteristics, we match it to the corresponding Moodle e-learning activities. This analysis discovers the activities that have high impact to meaningful learning, as well as activities that are less meaningful. The high impact activities is given high weights since it become important to meaningful learning, while the low impact has less weight and said to be supportive e-learning activities. The result of this analysis helps us categorize which e-learning activities that are meaningful to learning and guide us to measure the effectiveness of e-learning usage.

Keywords: e-learning system, e-learning activity, meaningful learning characteristics, Moodle

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3150
2725 Heterogenous Dimensional Super Resolution of 3D CT Scans Using Transformers

Authors: Helen Zhang

Abstract:

Accurate segmentation of the airways from CT scans is crucial for early diagnosis of lung cancer. However, the existing airway segmentation algorithms often rely on thin-slice CT scans, which can be inconvenient and costly. This paper presents a set of machine learning-based 3D super-resolution algorithms along heterogenous dimensions to improve the resolution of thicker CT scans to reduce the reliance on thin-slice scans. To evaluate the efficacy of the super-resolution algorithms, quantitative assessments using PSNR (Peak Signal to Noise Ratio) and SSIM (Structural SIMilarity index) were performed. The impact of super-resolution on airway segmentation accuracy is also studied. The proposed approach has the potential to make airway segmentation more accessible and affordable, thereby facilitating early diagnosis and treatment of lung cancer.

Keywords: 3D super-resolution, airway segmentation, thin-slice CT scans, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 287
2724 EEG-Based Screening Tool for School Student’s Brain Disorders Using Machine Learning Algorithms

Authors: Abdelrahman A. Ramzy, Bassel S. Abdallah, Mohamed E. Bahgat, Sarah M. Abdelkader, Sherif H. ElGohary

Abstract:

Attention-Deficit/Hyperactivity Disorder (ADHD), epilepsy, and autism affect millions of children worldwide, many of which are undiagnosed despite the fact that all of these disorders are detectable in early childhood. Late diagnosis can cause severe problems due to the late treatment and to the misconceptions and lack of awareness as a whole towards these disorders. Moreover, electroencephalography (EEG) has played a vital role in the assessment of neural function in children. Therefore, quantitative EEG measurement will be utilized as a tool for use in the evaluation of patients who may have ADHD, epilepsy, and autism. We propose a screening tool that uses EEG signals and machine learning algorithms to detect these disorders at an early age in an automated manner. The proposed classifiers used with epilepsy as a step taken for the work done so far, provided an accuracy of approximately 97% using SVM, Naïve Bayes and Decision tree, while 98% using KNN, which gives hope for the work yet to be conducted.

Keywords: ADHD, autism, epilepsy, EEG, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 997
2723 Is E-learning Based On Learning Theories? A Literature Review

Authors: Apostolia Pange, Jenny Pange

Abstract:

E-learning aims to build knowledge and skills in order to enhance the quality of learning. Research has shown that the majority of the e-learning solutions lack in pedagogical background and present some serious deficiencies regarding teaching strategies and content delivery, time and pace management, interface design and preservation of learners- focus. The aim of this review is to approach the design of e-learning solutions with a pedagogical perspective and to present some good practices of e-learning design grounded on the core principles of Learning Theories (LTs).

Keywords: design principles, e-learning, Learning Theories

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5228
2722 Personalized Email Marketing Strategy: A Reinforcement Learning Approach

Authors: Lei Zhang, Tingting Xu, Jun He, Zhenyu Yan, Roger Brooks

Abstract:

Email marketing is one of the most important segments of online marketing. Email content is vital to customers. Different customers may have different familiarity with a product, so a successful marketing strategy must personalize email content based on individual customers’ product affinity. In this study, we build our personalized email marketing strategy with three types of emails: nurture, promotion, and conversion. Each type of emails has a different influence on customers. We investigate this difference by analyzing customers’ open rates, click rates and opt-out rates. Feature importance from response models is also analyzed. The goal of the marketing strategy is to improve the click rate on conversion-type emails. To build the personalized strategy, we formulate the problem as a reinforcement learning problem and adopt a Q-learning algorithm with variations. The simulation results show that our model-based strategy outperforms the current marketer’s strategy.

Keywords: Email marketing, email content, reinforcement learning, machine learning, Q-learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 728
2721 Perception and Implementation of Machine Translation Applications by the Iranian English Translators

Authors: Abdul Amir Hazbavi

Abstract:

The present study is an attempt to provide a relatively comprehensive preview of the Iranian English translators’ perception on Machine Translation. Furthermore, the study tries to shed light on the status of implementation of Machine Translation among the Iranian English Translators. To reach the aforementioned objectives, the Localization Industry Standards Association’s questioner for measuring perceptions with regard to the adoption of a technology innovation was adapted and used to investigate the perception and implementation of Machine Translation applications by the Iranian English language translators. The participants of the study were 224 last-year undergraduate Iranian students of English translation at 10 universities across the country. The study revealed a very low level of adoption and a very high level of willingness to get familiar with and learn about Machine Translation, as well as a positive perception of and attitude toward Machine Translation by the Iranian English translators.

Keywords: Translation Technology, Machine Translation, Perception and Implementation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2285
2720 E-Learning Experiences of Hong Kong Students

Authors: J. Lam, R. Chan

Abstract:

The adoption of e-learning in Hong Kong has been increasing rapidly in the past decade. To understand the e-learning experiences of the students, the School of Professional and Continuing Education of The University of Hong Kong conducted a survey. The survey aimed to collect students- experiences in using learning management system, their perceived e-learning advantages, barriers in e-learning and preferences in new e-learning development. A questionnaire with 84 questions was distributed in mid 2012 and 608 valid responds were received. The analysis results showed that the students found e-learning helpful to their study. They preferred interactive functions and mobile features. Blended learning mode, both face-to-face learning mode integrated with online learning and face-to-face learning mode supplemented with online resources, were preferred by the students. The results of experiences of Hong Kong students in e-learning provided a contemporary reference to the e-learning practitioners to understand the e-learning situation in Asia.

Keywords: E-learning, blended learning, learning experience, learning management system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1752
2719 Weka Based Desktop Data Mining as Web Service

Authors: Sujala.D.Shetty, S.Vadivel, Sakshi Vaghella

Abstract:

Data mining is the process of sifting through large volumes of data, analyzing data from different perspectives and summarizing it into useful information. One of the widely used desktop applications for data mining is the Weka tool which is nothing but a collection of machine learning algorithms implemented in Java and open sourced under the General Public License (GPL). A web service is a software system designed to support interoperable machine to machine interaction over a network using SOAP messages. Unlike a desktop application, a web service is easy to upgrade, deliver and access and does not occupy any memory on the system. Keeping in mind the advantages of a web service over a desktop application, in this paper we are demonstrating how this Java based desktop data mining application can be implemented as a web service to support data mining across the internet.

Keywords: desktop application, Weka mining, web service

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4080
2718 A Bayesian Kernel for the Prediction of Protein- Protein Interactions

Authors: Hany Alashwal, Safaai Deris, Razib M. Othman

Abstract:

Understanding proteins functions is a major goal in the post-genomic era. Proteins usually work in context of other proteins and rarely function alone. Therefore, it is highly relevant to study the interaction partners of a protein in order to understand its function. Machine learning techniques have been widely applied to predict protein-protein interactions. Kernel functions play an important role for a successful machine learning technique. Choosing the appropriate kernel function can lead to a better accuracy in a binary classifier such as the support vector machines. In this paper, we describe a Bayesian kernel for the support vector machine to predict protein-protein interactions. The use of Bayesian kernel can improve the classifier performance by incorporating the probability characteristic of the available experimental protein-protein interactions data that were compiled from different sources. In addition, the probabilistic output from the Bayesian kernel can assist biologists to conduct more research on the highly predicted interactions. The results show that the accuracy of the classifier has been improved using the Bayesian kernel compared to the standard SVM kernels. These results imply that protein-protein interaction can be predicted using Bayesian kernel with better accuracy compared to the standard SVM kernels.

Keywords: Bioinformatics, Protein-protein interactions, Bayesian Kernel, Support Vector Machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2163
2717 University Students Awareness on M-Learning

Authors: Sahilu Wendeson, Wan Fatimah Bt. Wan Ahmad, Nazleeni Samiha Bt. Haron

Abstract:

Mobile learning (M-learning) is the current technology that is becoming more popular. It uses the current mobile and wireless computing technology to complement the effectiveness of traditional learning process. The objective of this paper is presents a survey from 90 undergraduate students of Universiti Teknologi PETRONAS (UTP), to identify the students- perception on Mlearning. From the results, the students are willing to use M-learning. The acceptance level of the students is high, and the results obtained revealed that the respondents almost accept M-learning as one method of teaching and learning process and also able to improve the educational efficiency by complementing traditional learning in UTP.

Keywords: M-learning, Traditional learning, WirelessTechnology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684
2716 Body Mass Index for Australian Athletes Participating in Rugby Union, Soccer and Touch Football at the World Masters Games

Authors: Walsh Joe, Climstein Mike, Heazlewood Ian Timothy, Burke Stephen, Kettunen Jyrki, Adams Kent, DeBeliso Mark

Abstract:

Whilst there is growing evidence that activity across the lifespan is beneficial for improved health, there are also many changes involved with the aging process and subsequently the potential for reduced indices of health. Data gathered on a subsample of 535 football code athletes, aged 31-72 yrs ( = 47.4, s = ±7.1), competing at the Sydney World Masters Games (2009) demonstrated a significantly (p < 0.001), reduced classification of obesity using Body Mass Index (BMI) when compared to the general Australian population. This evidence of improved classification in one index of health (BMI < 30) for master athletes (when compared to the general population) implies there are either improved levels of this index of health due to adherence to sport or possibly the reduced BMI is advantageous and contributes to this cohort adhering (or being attracted) to masters sport. Demonstration of this proportionately under-investigated World Masters Games population having improved health over the general population is of particular interest.

Keywords: BMI, masters athlete, rugby union, soccer, touch football.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2195
2715 Learning Classifier Systems Approach for Automated Discovery of Crisp and Fuzzy Hierarchical Production Rules

Authors: Suraiya Jabin, Kamal K. Bharadwaj

Abstract:

This research presents a system for post processing of data that takes mined flat rules as input and discovers crisp as well as fuzzy hierarchical structures using Learning Classifier System approach. Learning Classifier System (LCS) is basically a machine learning technique that combines evolutionary computing, reinforcement learning, supervised or unsupervised learning and heuristics to produce adaptive systems. A LCS learns by interacting with an environment from which it receives feedback in the form of numerical reward. Learning is achieved by trying to maximize the amount of reward received. Crisp description for a concept usually cannot represent human knowledge completely and practically. In the proposed Learning Classifier System initial population is constructed as a random collection of HPR–trees (related production rules) and crisp / fuzzy hierarchies are evolved. A fuzzy subsumption relation is suggested for the proposed system and based on Subsumption Matrix (SM), a suitable fitness function is proposed. Suitable genetic operators are proposed for the chosen chromosome representation method. For implementing reinforcement a suitable reward and punishment scheme is also proposed. Experimental results are presented to demonstrate the performance of the proposed system.

Keywords: Hierarchical Production Rule, Data Mining, Learning Classifier System, Fuzzy Subsumption Relation, Subsumption matrix, Reinforcement Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1455
2714 Boosting Method for Automated Feature Space Discovery in Supervised Quantum Machine Learning Models

Authors: Vladimir Rastunkov, Jae-Eun Park, Abhijit Mitra, Brian Quanz, Steve Wood, Christopher Codella, Heather Higgins, Joseph Broz

Abstract:

Quantum Support Vector Machines (QSVM) have become an important tool in research and applications of quantum kernel methods. In this work we propose a boosting approach for building ensembles of QSVM models and assess performance improvement across multiple datasets. This approach is derived from the best ensemble building practices that worked well in traditional machine learning and thus should push the limits of quantum model performance even further. We find that in some cases, a single QSVM model with tuned hyperparameters is sufficient to simulate the data, while in others - an ensemble of QSVMs that are forced to do exploration of the feature space via proposed method is beneficial.

Keywords: QSVM, Quantum Support Vector Machines, quantum kernel, boosting, ensemble.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 439
2713 Mobile Learning Implementation: Students- Perceptions in UTP

Authors: Ahmad Sobri bin Hashim, Wan Fatimah Bt. Wan Ahmad, Rohiza Bt. Ahmad

Abstract:

Mobile Learning (M-Learning) is a new technology which is to enhance current learning practices and activities for all people especially students and academic practitioners UTP is currently, implemented two types of learning styles which are conventional and electronic learning. In order to improve current learning approaches, it is necessary for UTP to implement m-learning in UTP. This paper presents a study on the students- perceptions on mobile utilization in the learning practices in UTP. Besides, this paper also presents a survey that was conducted among 82 students from System Analysis and Design (SAD) course in UTP. The survey includes basic information of mobile devices that have been used by the students, opinions on current learning practices and also the opinions regarding the m-learning implementation in the current learning practices especially in SAD course. Based on the results of the survey, majority of the students are using the mobile devices that can support m-learning environment. Other than that, students also agreed that current learning practices are ineffective and they believe that m-learning utilization can improve the effectiveness of current learning practices.

Keywords: m-learning, conventional learning, electronic learning, mobile devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2233
2712 Prediction-Based Midterm Operation Planning for Energy Management of Exhibition Hall

Authors: Doseong Eom, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

Large exhibition halls require a lot of energy to maintain comfortable atmosphere for the visitors viewing inside. One way of reducing the energy cost is to have thermal energy storage systems installed so that the thermal energy can be stored in the middle of night when the energy price is low and then used later when the price is high. To minimize the overall energy cost, however, we should be able to decide how much energy to save during which time period exactly. If we can foresee future energy load and the corresponding cost, we will be able to make such decisions reasonably. In this paper, we use machine learning technique to obtain models for predicting weather conditions and the number of visitors on hourly basis for the next day. Based on the energy load thus predicted, we build a cost-optimal daily operation plan for the thermal energy storage systems and cooling and heating facilities through simulation-based optimization.

Keywords: Building energy management, machine learning, simulation-based optimization, operation planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 989
2711 Support Vector Fuzzy Based Neural Networks For Exchange Rate Modeling

Authors: Prof. Chokri SLIM

Abstract:

A Novel fuzzy neural network combining with support vector learning mechanism called support-vector-based fuzzy neural networks (SVBFNN) is proposed. The SVBFNN combine the capability of minimizing the empirical risk (training error) and expected risk (testing error) of support vector learning in high dimensional data spaces and the efficient human-like reasoning of FNN.

Keywords: Neural network, fuzzy inference, machine learning, fuzzy modeling and rule extraction, support vector regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16686
2710 Information System for Data Selection and New Information Acquisition for Reconfigurable Multifunctional Machine Tools

Authors: Sasho Guergov

Abstract:

The purpose of the paper is to develop an informationcontrol environment for overall management and self-reconfiguration of the reconfigurable multifunctional machine tool for machining both rotation and prismatic parts and high concentration of different technological operations - turning, milling, drilling, grinding, etc. For the realization of this purpose on the basis of defined sub-processes for the implementation of the technological process, architecture of the information-search system for machine control is suggested. By using the object-oriented method, a structure and organization of the search system based on agents and manager with central control are developed. Thus conditions for identification of available information in DBs, self-reconfiguration of technological system and entire control of the reconfigurable multifunctional machine tool are created.

Keywords: Information system, multifunctional machine tool, reconfigurable machine tool, search system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1328
2709 An Anomaly Detection Approach to Detect Unexpected Faults in Recordings from Test Drives

Authors: Andreas Theissler, Ian Dear

Abstract:

In the automotive industry test drives are being conducted during the development of new vehicle models or as a part of quality assurance of series-production vehicles. The communication on the in-vehicle network, data from external sensors, or internal data from the electronic control units is recorded by automotive data loggers during the test drives. The recordings are used for fault analysis. Since the resulting data volume is tremendous, manually analysing each recording in great detail is not feasible. This paper proposes to use machine learning to support domainexperts by preventing them from contemplating irrelevant data and rather pointing them to the relevant parts in the recordings. The underlying idea is to learn the normal behaviour from available recordings, i.e. a training set, and then to autonomously detect unexpected deviations and report them as anomalies. The one-class support vector machine “support vector data description” is utilised to calculate distances of feature vectors. SVDDSUBSEQ is proposed as a novel approach, allowing to classify subsequences in multivariate time series data. The approach allows to detect unexpected faults without modelling effort as is shown with experimental results on recordings from test drives.

Keywords: Anomaly detection, fault detection, test drive analysis, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2477
2708 e/b-Learning Activities and High School Pedagogy

Authors: Rui Antunes

Abstract:

This article presents the implementation of several different e/b-Learning collaborative activities, used to improve the students learning process in an high school Polytechnic Institution. A new learning model arises, based on a combination between face-toface and distance leaning. Learning is now becoming centered with the development of collaborative activities, and its actors (teachers and students) have to be re-socialized to a new e/b-Learning paradigm. Measuring approaches are proposed for this model and results are presented, showing prospective correlation between students learning success and the use of online collaborative activities.

Keywords: e/b-Learning, Collaborative Learning, TeachingCommunities, Web-based Courseware

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703
2707 Blended Learning through Google Classroom

Authors: Lee Bih Ni

Abstract:

This paper discusses that good learning involves all academic groups in the school. Blended learning is learning outside the classroom. Google Classroom is a free service learning app for schools, non-profit organizations and anyone with a personal Google account. Facilities accessed through computers and mobile phones are very useful for school teachers and students. Blended learning classrooms using both traditional and technology-based methods for teaching have become the norm for many educators. Using Google Classroom gives students access to online learning. Even if the teacher is not in the classroom, the teacher can provide learning. This is the supervision of the form of the teacher when the student is outside the school.

Keywords: Blended learning, learning app, Google classroom, schools.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2462
2706 Design and Implementation of a Software Platform Based on Artificial Intelligence for Product Recommendation

Authors: G. Settanni, A. Panarese, R. Vaira, A. Galiano

Abstract:

Nowadays, artificial intelligence is used successfully in the field of e-commerce for its ability to learn from a large amount of data. In this research study, a prototype software platform was designed and implemented in order to suggest to users the most suitable products for their needs. The platform includes a recommender system based on artificial intelligence algorithms that provide suggestions and decision support to the customer. Specifically, support vector machine algorithms have been implemented combined with natural language processing techniques that allow the user to interact with the system, express their requests and receive suggestions. The interested user can access the web platform on the internet using a computer, tablet or mobile phone, register, provide the necessary information and view the products that the system deems them the most appropriate. The platform also integrates a dashboard that allows the use of the various functions, which the platform is equipped with, in an intuitive and simple way. Also, Long Short-Term Memory algorithms have been implemented and trained on historical data in order to predict customer scores of the different items. Items with the highest scores are recommended to customers.

Keywords: Deep Learning, Long Short-Term Memory, Machine Learning, Recommender Systems, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 324
2705 The Future of Blended Learning

Authors: Reem A. Alebaikan

Abstract:

The emergence of blended learning has been influenced by the rapid changes in Higher Education within the last few years. However, there is a lack of studies that look into the future of blended learning in the Saudi context. The most likely explanation is that blended learning is relatively new and, with respect to learning in general, under-researched. This study addresses this gap and explores the views of lecturers and students towards the future of blended learning in Saudi Arabia. This study was informed by the interpretive paradigm that appears to be most appropriate to understand and interpret the perceptions of students and instructors towards a new learning environment. While globally there has been considerable research on the perceptions of e-learning and blended learning with its different models, there is plenty of space for further research specifically in the Arab region, and in Saudi Arabia where blended learning is now being introduced.

Keywords: blended learning, higher education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2416
2704 Evolving a Fuzzy Rule-Base for Image Segmentation

Authors: A. Borji, M. Hamidi

Abstract:

A new method for color image segmentation using fuzzy logic is proposed in this paper. Our aim here is to automatically produce a fuzzy system for color classification and image segmentation with least number of rules and minimum error rate. Particle swarm optimization is a sub class of evolutionary algorithms that has been inspired from social behavior of fishes, bees, birds, etc, that live together in colonies. We use comprehensive learning particle swarm optimization (CLPSO) technique to find optimal fuzzy rules and membership functions because it discourages premature convergence. Here each particle of the swarm codes a set of fuzzy rules. During evolution, a population member tries to maximize a fitness criterion which is here high classification rate and small number of rules. Finally, particle with the highest fitness value is selected as the best set of fuzzy rules for image segmentation. Our results, using this method for soccer field image segmentation in Robocop contests shows 89% performance. Less computational load is needed when using this method compared with other methods like ANFIS, because it generates a smaller number of fuzzy rules. Large train dataset and its variety, makes the proposed method invariant to illumination noise

Keywords: Comprehensive learning Particle Swarmoptimization, fuzzy classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1955
2703 Hybrid Anomaly Detection Using Decision Tree and Support Vector Machine

Authors: Elham Serkani, Hossein Gharaee Garakani, Naser Mohammadzadeh, Elaheh Vaezpour

Abstract:

Intrusion detection systems (IDS) are the main components of network security. These systems analyze the network events for intrusion detection. The design of an IDS is through the training of normal traffic data or attack. The methods of machine learning are the best ways to design IDSs. In the method presented in this article, the pruning algorithm of C5.0 decision tree is being used to reduce the features of traffic data used and training IDS by the least square vector algorithm (LS-SVM). Then, the remaining features are arranged according to the predictor importance criterion. The least important features are eliminated in the order. The remaining features of this stage, which have created the highest level of accuracy in LS-SVM, are selected as the final features. The features obtained, compared to other similar articles which have examined the selected features in the least squared support vector machine model, are better in the accuracy, true positive rate, and false positive. The results are tested by the UNSW-NB15 dataset.

Keywords: Intrusion detection system, decision tree, support vector machine, feature selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1239
2702 Artificial Intelligence-Based Detection of Individuals Suffering from Vestibular Disorder

Authors: D. Hişam, S. İkizoğlu

Abstract:

Identifying the problem behind balance disorder is one of the most interesting topics in medical literature. This study has considerably enhanced the development of artificial intelligence (AI) algorithms applying multiple machine learning (ML) models to sensory data on gait collected from humans to classify between normal people and those suffering from Vestibular System (VS) problems. Although AI is widely utilized as a diagnostic tool in medicine, AI models have not been used to perform feature extraction and identify VS disorders through training on raw data. In this study, three ML models, the Random Forest Classifier (RF), Extreme Gradient Boosting (XGB), and K-Nearest Neighbor (KNN), have been trained to detect VS disorder, and the performance comparison of the algorithms has been made using accuracy, recall, precision, and f1-score. With an accuracy of 95.28 %, Random Forest (RF) Classifier was the most accurate model.

Keywords: Vestibular disorder, machine learning, random forest classifier, k-nearest neighbor, extreme gradient boosting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 167
2701 Novel Direct Flux and Torque Control of Optimally Designed 6 Phase Reluctance Machine with Special Current Waveform

Authors: E T. Rakgati, E. Matlotse

Abstract:

In this paper the principle, basic torque theory and design optimisation of a six-phase reluctance dc machine are considered. A trapezoidal phase current waveform for the machine drive is proposed and evaluated to minimise ripple torque. Low cost normal laminated salient-pole rotors with and without slits and chamfered poles are investigated. The six-phase machine is optimised in multi-dimensions by linking the finite-element analysis method directly with an optimisation algorithm; the objective function is to maximise the torque per copper losses of the machine. The armature reaction effect is investigated in detail and found to be severe. The measured and calculated torque performances of a 35 kW optimum designed six-phase reluctance dc machine drive are presented.

Keywords: Reluctance dc machine, current waveform, design optimisation, finite element analysis, armature reaction effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728
2700 Efficient Web-Learning Collision Detection Tool on Five-Axis Machine

Authors: Chia-Jung Chen, Rong-Shine Lin, Rong-Guey Chang

Abstract:

As networking has become popular, Web-learning tends to be a trend while designing a tool. Moreover, five-axis machining has been widely used in industry recently; however, it has potential axial table colliding problems. Thus this paper aims at proposing an efficient web-learning collision detection tool on five-axis machining. However, collision detection consumes heavy resource that few devices can support, thus this research uses a systematic approach based on web knowledge to detect collision. The methodologies include the kinematics analyses for five-axis motions, separating axis method for collision detection, and computer simulation for verification. The machine structure is modeled as STL format in CAD software. The input to the detection system is the g-code part program, which describes the tool motions to produce the part surface. This research produced a simulation program with C programming language and demonstrated a five-axis machining example with collision detection on web site. The system simulates the five-axis CNC motion for tool trajectory and detects for any collisions according to the input g-codes and also supports high-performance web service benefiting from C. The result shows that our method improves 4.5 time of computational efficiency, comparing to the conventional detection method.

Keywords: Collision detection, Five-axis machining, Separating axis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2180