Search results for: least square regression
1192 Decision Trees for Predicting Risk of Mortality using Routinely Collected Data
Authors: Tessy Badriyah, Jim S. Briggs, Dave R. Prytherch
Abstract:
It is well known that Logistic Regression is the gold standard method for predicting clinical outcome, especially predicting risk of mortality. In this paper, the Decision Tree method has been proposed to solve specific problems that commonly use Logistic Regression as a solution. The Biochemistry and Haematology Outcome Model (BHOM) dataset obtained from Portsmouth NHS Hospital from 1 January to 31 December 2001 was divided into four subsets. One subset of training data was used to generate a model, and the model obtained was then applied to three testing datasets. The performance of each model from both methods was then compared using calibration (the χ2 test or chi-test) and discrimination (area under ROC curve or c-index). The experiment presented that both methods have reasonable results in the case of the c-index. However, in some cases the calibration value (χ2) obtained quite a high result. After conducting experiments and investigating the advantages and disadvantages of each method, we can conclude that Decision Trees can be seen as a worthy alternative to Logistic Regression in the area of Data Mining.Keywords: Decision Trees, Logistic Regression, clinical outcome, risk of mortality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25251191 System Identification Based on Stepwise Regression for Dynamic Market Representation
Authors: Alexander Efremov
Abstract:
A system for market identification (SMI) is presented. The resulting representations are multivariable dynamic demand models. The market specifics are analyzed. Appropriate models and identification techniques are chosen. Multivariate static and dynamic models are used to represent the market behavior. The steps of the first stage of SMI, named data preprocessing, are mentioned. Next, the second stage, which is the model estimation, is considered in more details. Stepwise linear regression (SWR) is used to determine the significant cross-effects and the orders of the model polynomials. The estimates of the model parameters are obtained by a numerically stable estimator. Real market data is used to analyze SMI performance. The main conclusion is related to the applicability of multivariate dynamic models for representation of market systems.Keywords: market identification, dynamic models, stepwise regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16231190 Developing Measurement Model of Interpersonal Skills of Youth
Authors: Mohd Yusri Ibrahim
Abstract:
Although it is known that interpersonal skills are essential for personal development, the debate however continues as to how to measure those skills, especially in youths. This study was conducted to develop a measurement model of interpersonal skills by suggesting three construct namely personal, skills and relationship; six function namely self, perception, listening, conversation, emotion and conflict management; and 30 behaviours as indicators. This cross-sectional survey by questionnaires was applied in east side of peninsula of Malaysia for 150 respondents, and analyzed by structural equation modelling (SEM) by AMOS. The suggested constructs, functions and indicators were consider accepted as measurement elements by observing on regression weight for standard loading, average variance extracted (AVE) for convergent validity, square root of AVE for discriminant validity, composite reliability (CR), and at least three fit indexes for model fitness. Finally, a measurement model of interpersonal skill for youth was successfully developed.
Keywords: Interpersonal communication, interpersonal skill, youth.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12741189 Change Detection and Non Stationary Signals Tracking by Adaptive Filtering
Authors: Mounira RouaÐùnia, Noureddine Doghmane
Abstract:
In this paper we consider the problem of change detection and non stationary signals tracking. Using parametric estimation of signals based on least square lattice adaptive filters we consider for change detection statistical parametric methods using likelihood ratio and hypothesis tests. In order to track signals dynamics, we introduce a compensation procedure in the adaptive estimation. This will improve the adaptive estimation performances and fasten it-s convergence after changes detection.Keywords: Change detection, Hypothesis test, likelihood ratioleast square lattice adaptive filters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16371188 The Strengths and Limitations of the Statistical Modeling of Complex Social Phenomenon: Focusing on SEM, Path Analysis, or Multiple Regression Models
Authors: Jihye Jeon
Abstract:
This paper analyzes the conceptual framework of three statistical methods, multiple regression, path analysis, and structural equation models. When establishing research model of the statistical modeling of complex social phenomenon, it is important to know the strengths and limitations of three statistical models. This study explored the character, strength, and limitation of each modeling and suggested some strategies for accurate explaining or predicting the causal relationships among variables. Especially, on the studying of depression or mental health, the common mistakes of research modeling were discussed.Keywords: Multiple regression, path analysis, structural equation models, statistical modeling, social and psychological phenomenon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 92551187 Ensembling Adaptively Constructed Polynomial Regression Models
Authors: Gints Jekabsons
Abstract:
The approach of subset selection in polynomial regression model building assumes that the chosen fixed full set of predefined basis functions contains a subset that is sufficient to describe the target relation sufficiently well. However, in most cases the necessary set of basis functions is not known and needs to be guessed – a potentially non-trivial (and long) trial and error process. In our research we consider a potentially more efficient approach – Adaptive Basis Function Construction (ABFC). It lets the model building method itself construct the basis functions necessary for creating a model of arbitrary complexity with adequate predictive performance. However, there are two issues that to some extent plague the methods of both the subset selection and the ABFC, especially when working with relatively small data samples: the selection bias and the selection instability. We try to correct these issues by model post-evaluation using Cross-Validation and model ensembling. To evaluate the proposed method, we empirically compare it to ABFC methods without ensembling, to a widely used method of subset selection, as well as to some other well-known regression modeling methods, using publicly available data sets.Keywords: Basis function construction, heuristic search, modelensembles, polynomial regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16751186 Harmonics Elimination in Multilevel Inverter Using Linear Fuzzy Regression
Authors: A. K. Al-Othman, H. A. Al-Mekhaizim
Abstract:
Multilevel inverters supplied from equal and constant dc sources almost don-t exist in practical applications. The variation of the dc sources affects the values of the switching angles required for each specific harmonic profile, as well as increases the difficulty of the harmonic elimination-s equations. This paper presents an extremely fast optimal solution of harmonic elimination of multilevel inverters with non-equal dc sources using Tanaka's fuzzy linear regression formulation. A set of mathematical equations describing the general output waveform of the multilevel inverter with nonequal dc sources is formulated. Fuzzy linear regression is then employed to compute the optimal solution set of switching angles.Keywords: Multilevel converters, harmonics, pulse widthmodulation (PWM), optimal control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17991185 Burning Rate Response of Solid Fuels in Laminar Boundary Layer
Authors: A. M. Tahsini
Abstract:
Solid fuel transient burning behavior under oxidizer gas flow is numerically investigated. It is done using analysis of the regression rate responses to the imposed sudden and oscillatory variation at inflow properties. The conjugate problem is considered by simultaneous solution of flow and solid phase governing equations to compute the fuel regression rate. The advection upstream splitting method is used as flow computational scheme in finite volume method. The ignition phase is completely simulated to obtain the exact initial condition for response analysis. The results show that the transient burning effects which lead to the combustion instabilities and intermittent extinctions could be observed in solid fuels as the solid propellants.Keywords: Extinction, Oscillation, Regression rate, Response, Transient burning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23691184 Experimental Modal Analysis of Reinforced Concrete Square Slabs
Authors: M. S. Ahmed, F. A. Mohammad
Abstract:
The aim of this paper is to perform experimental modal analysis (EMA) of reinforced concrete (RC) square slabs. EMA is the process of determining the modal parameters (Natural Frequencies, damping factors, modal vectors) of a structure from a set of frequency response functions FRFs (curve fitting). Although, experimental modal analysis (or modal testing) has grown steadily in popularity since the advent of the digital FFT spectrum analyzer in the early 1970’s, studying all types of members and materials using such method have not yet been well documented. Therefore, in this work, experimental tests were conducted on RC square slab specimens of dimensions 600mm x 600mmx 40mm. Experimental analysis was based on freely supported boundary condition. Moreover, impact testing as a fast and economical means of finding the modes of vibration of a structure was used during the experiments. In addition, Pico Scope 6 device and MATLAB software were used to acquire data, analyze and plot Frequency Response Function (FRF). The experimental natural frequencies which were extracted from measurements exhibit good agreement with analytical predictions. It is showed that EMA method can be usefully employed to investigate the dynamic behavior of RC slabs.
Keywords: Natural frequencies, Mode shapes, Modal analysis, RC slabs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26211183 A Model for Test Case Selection in the Software-Development Life Cycle
Authors: Adtha Lawanna
Abstract:
Software maintenance is one of the essential processes of Software-Development Life Cycle. The main philosophies of retaining software concern the improvement of errors, the revision of codes, the inhibition of future errors, and the development in piece and capacity. While the adjustment has been employing, the software structure has to be retested to an upsurge a level of assurance that it will be prepared due to the requirements. According to this state, the test cases must be considered for challenging the revised modules and the whole software. A concept of resolving this problem is ongoing by regression test selection such as the retest-all selections, random/ad-hoc selection and the safe regression test selection. Particularly, the traditional techniques concern a mapping between the test cases in a test suite and the lines of code it executes. However, there are not only the lines of code as one of the requirements that can affect the size of test suite but including the number of functions and faulty versions. Therefore, a model for test case selection is developed to cover those three requirements by the integral technique which can produce the smaller size of the test cases when compared with the traditional regression selection techniques.
Keywords: Software maintenance, regression test selection, test case.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17001182 A Model for Test Case Selection in the Software-Development Life Cycle
Authors: Adtha Lawanna
Abstract:
Software maintenance is one of the essential processes of Software-Development Life Cycle. The main philosophies of retaining software concern the improvement of errors, the revision of codes, the inhibition of future errors, and the development in piece and capacity. While the adjustment has been employing, the software structure has to be retested to an upsurge a level of assurance that it will be prepared due to the requirements. According to this state, the test cases must be considered for challenging the revised modules and the whole software. A concept of resolving this problem is ongoing by regression test selection such as the retest-all selections, random/ad-hoc selection and the safe regression test selection. Particularly, the traditional techniques concern a mapping between the test cases in a test suite and the lines of code it executes. However, there are not only the lines of code as one of the requirements that can affect the size of test suite but including the number of functions and faulty versions. Therefore, a model for test case selection is developed to cover those three requirements by the integral technique which can produce the smaller size of the test cases when compared with the traditional regression selection techniques.
Keywords: Software maintenance, regression test selection, test case.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16011181 Mathematical Modeling to Predict Surface Roughness in CNC Milling
Authors: Ab. Rashid M.F.F., Gan S.Y., Muhammad N.Y.
Abstract:
Surface roughness (Ra) is one of the most important requirements in machining process. In order to obtain better surface roughness, the proper setting of cutting parameters is crucial before the process take place. This research presents the development of mathematical model for surface roughness prediction before milling process in order to evaluate the fitness of machining parameters; spindle speed, feed rate and depth of cut. 84 samples were run in this study by using FANUC CNC Milling α-Τ14ιE. Those samples were randomly divided into two data sets- the training sets (m=60) and testing sets(m=24). ANOVA analysis showed that at least one of the population regression coefficients was not zero. Multiple Regression Method was used to determine the correlation between a criterion variable and a combination of predictor variables. It was established that the surface roughness is most influenced by the feed rate. By using Multiple Regression Method equation, the average percentage deviation of the testing set was 9.8% and 9.7% for training data set. This showed that the statistical model could predict the surface roughness with about 90.2% accuracy of the testing data set and 90.3% accuracy of the training data set.
Keywords: Surface roughness, regression analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21341180 Stature Prediction Model Based On Hand Anthropometry
Authors: Arunesh Chandra, Pankaj Chandna, Surinder Deswal, Rajesh Kumar Mishra, Rajender Kumar
Abstract:
The arm length, hand length, hand breadth and middle finger length of 1540 right-handed industrial workers of Haryana state was used to assess the relationship between the upper limb dimensions and stature. Initially, the data were analyzed using basic univariate analysis and independent t-tests; then simple and multiple linear regression models were used to estimate stature using SPSS (version 17). There was a positive correlation between upper limb measurements (hand length, hand breadth, arm length and middle finger length) and stature (p < 0.01), which was highest for hand length. The accuracy of stature prediction ranged from ± 54.897 mm to ± 58.307 mm. The use of multiple regression equations gave better results than simple regression equations. This study provides new forensic standards for stature estimation from the upper limb measurements of male industrial workers of Haryana (India). The results of this research indicate that stature can be determined using hand dimensions with accuracy, when only upper limb is available due to any reasons likewise explosions, train/plane crashes, mutilated bodies, etc. The regression formula derived in this study will be useful for anatomists, archaeologists, anthropologists, design engineers and forensic scientists for fairly prediction of stature using regression equations.
Keywords: Anthropometric dimensions, Forensic identification, Industrial workers, Stature prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29671179 Influence Analysis of Macroeconomic Parameters on Real Estate Price Variation in Taipei, Taiwan
Authors: Li Li, Kai-Hsuan Chu
Abstract:
It is well known that the real estate price depends on a lot of factors. Each house current value is dependent on the location, room number, transportation, living convenience, year and surrounding environments. Although, there are different experienced models for housing agent to estimate the price, it is a case by case study without overall dynamic variation investigation. However, many economic parameters may more or less influence the real estate price variation. Here, the influences of most macroeconomic parameters on real estate price are investigated individually based on least-square scheme and grey correlation strategy. Then those parameters are classified into leading indices, simultaneous indices and laggard indices. In addition, the leading time period is evaluated based on least square method. The important leading and simultaneous indices can be used to establish an artificial intelligent neural network model for real estate price variation prediction. The real estate price variation of Taipei, Taiwan during 2005 ~ 2017 are chosen for this research data analysis and validation. The results show that the proposed method has reasonable prediction function for real estate business reference.Keywords: Real estate price, least-square, grey correlation, macroeconomics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9931178 Short-Term Load Forecasting Based on Variational Mode Decomposition and Least Square Support Vector Machine
Authors: Jiangyong Liu, Xiangxiang Xu, Bote Luo, Xiaoxue Luo, Jiang Zhu, Lingzhi Yi
Abstract:
To address the problems of non-linearity and high randomness of the original power load sequence causing the degradation of power load forecasting accuracy, a short-term load forecasting method is proposed. The method is based on the least square support vector machine (LSSVM) optimized by an improved sparrow search algorithm combined with the variational mode decomposition proposed in this paper. The application of the variational mode decomposition technique decomposes the raw power load data into a series of intrinsic mode functions components, which can reduce the complexity and instability of the raw data while overcoming modal confounding; the proposed improved sparrow search algorithm can solve the problem of difficult selection of learning parameters in the LSSVM. Finally, through comparison experiments, the results show that the method can effectively improve prediction accuracy.
Keywords: Load forecasting, variational mode decomposition, improved sparrow search algorithm, least square support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 631177 Modeling Aeration of Sharp Crested Weirs by Using Support Vector Machines
Authors: Arun Goel
Abstract:
The present paper attempts to investigate the prediction of air entrainment rate and aeration efficiency of a free overfall jets issuing from a triangular sharp crested weir by using regression based modelling. The empirical equations, Support vector machine (polynomial and radial basis function) models and the linear regression techniques were applied on the triangular sharp crested weirs relating the air entrainment rate and the aeration efficiency to the input parameters namely drop height, discharge, and vertex angle. It was observed that there exists a good agreement between the measured values and the values obtained using empirical equations, Support vector machine (Polynomial and rbf) models and the linear regression techniques. The test results demonstrated that the SVM based (Poly & rbf) model also provided acceptable prediction of the measured values with reasonable accuracy along with empirical equations and linear regression techniques in modelling the air entrainment rate and the aeration efficiency of a free overfall jets issuing from triangular sharp crested weir. Further sensitivity analysis has also been performed to study the impact of input parameter on the output in terms of air entrainment rate and aeration efficiency.Keywords: Air entrainment rate, dissolved oxygen, regression, SVM, weir.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19571176 A Research on Inference from Multiple Distance Variables in Hedonic Regression – Focus on Three Variables
Authors: Yan Wang, Yasushi Asami, Yukio Sadahiro
Abstract:
In urban context, urban nodes such as amenity or hazard will certainly affect house price, while classic hedonic analysis will employ distance variables measured from each urban nodes. However, effects from distances to facilities on house prices generally do not represent the true price of the property. Distance variables measured on the same surface are suffering a problem called multicollinearity, which is usually presented as magnitude variance and mean value in regression, errors caused by instability. In this paper, we provided a theoretical framework to identify and gather the data with less bias, and also provided specific sampling method on locating the sample region to avoid the spatial multicollinerity problem in three distance variable’s case.
Keywords: Hedonic regression, urban node, distance variables, multicollinerity, collinearity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19961175 The Effect of the Hourly Compensation on the Unemployment Rate: Comparative Analysis of United States, Canada and the United Kingdom Using Panel Data Regression Analysis
Authors: Ashiquer Rahman, Hares Mohammad, Ummey Salma
Abstract:
A country’s hourly compensation and unemployment rates are two of its most crucial components. They are not merely statistics but they have profound effects on individual, families, country, and the economy. They are inversely related to one another. The increased hourly compensation in the manufacturing sector can have a favorable effect on job changing issues. Moreover, the relationship between hourly compensation and unemployment is complex and influenced by broader economic factors. In this paper, in order to determine the effect of hourly compensation on unemployment rate, we use the panel data regression models and evaluate the expected link between hourly compensation and unemployment rate. We estimate the fixed effects model (FEM), evaluate the error components model (ECM), and determine which model (the FEM or ECM) is better through pooling all 60 observations. We then analyze and review the data by comparing countries (United States, Canada and the United Kingdom) using panel data regression models. Finally, we provide result, analysis and a summary of this extensive research on how the hourly compensation affects unemployment rate. Additionally, this paper offers relevant and useful guideline for the government and academic community to use an econometrics and social approach for the hourly compensation on unemployment rate to eliminate the problem.
Keywords: Hourly compensation, unemployment rate, panel data regression models, dummy variables, random effects model, fixed effects model, the linear regression model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 781174 Visualization of Sediment Thickness Variation for Sea Bed Logging using Spline Interpolation
Authors: Hanita Daud, Noorhana Yahya, Vijanth Sagayan, Muizuddin Talib
Abstract:
This paper discusses on the use of Spline Interpolation and Mean Square Error (MSE) as tools to process data acquired from the developed simulator that shall replicate sea bed logging environment. Sea bed logging (SBL) is a new technique that uses marine controlled source electromagnetic (CSEM) sounding technique and is proven to be very successful in detecting and characterizing hydrocarbon reservoirs in deep water area by using resistivity contrasts. It uses very low frequency of 0.1Hz to 10 Hz to obtain greater wavelength. In this work the in house built simulator was used and was provided with predefined parameters and the transmitted frequency was varied for sediment thickness of 1000m to 4000m for environment with and without hydrocarbon. From series of simulations, synthetics data were generated. These data were interpolated using Spline interpolation technique (degree of three) and mean square error (MSE) were calculated between original data and interpolated data. Comparisons were made by studying the trends and relationship between frequency and sediment thickness based on the MSE calculated. It was found that the MSE was on increasing trends in the set up that has the presence of hydrocarbon in the setting than the one without. The MSE was also on decreasing trends as sediment thickness was increased and with higher transmitted frequency.Keywords: Spline Interpolation, Mean Square Error, Sea Bed Logging, Controlled Source Electromagnetic
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16601173 On the Fast Convergence of DD-LMS DFE Using a Good Strategy Initialization
Authors: Y.Ben Jemaa, M.Jaidane
Abstract:
In wireless communication system, a Decision Feedback Equalizer (DFE) to cancel the intersymbol interference (ISI) is required. In this paper, an exact convergence analysis of the (DFE) adapted by the Least Mean Square (LMS) algorithm during the training phase is derived by taking into account the finite alphabet context of data transmission. This allows us to determine the shortest training sequence that allows to reach a given Mean Square Error (MSE). With the intention of avoiding the problem of ill-convergence, the paper proposes an initialization strategy for the blind decision directed (DD) algorithm. This then yields a semi-blind DFE with high speed and good convergence.
Keywords: Adaptive Decision Feedback Equalizer, PerformanceAnalysis, Finite Alphabet Case, Ill-Convergence, Convergence speed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20721172 Implementation of Response Surface Methodology using in Small Brown Rice Peeling Machine: Part I
Authors: S. Bangphan, P. Bangphan, T.Boonkang
Abstract:
Implementation of response surface methodology (RSM) was employed to study the effects of two factor (rubber clearance and round per minute) in brown rice peeling machine of The optimal BROKENS yield (19.02, average of three repeats),.The optimized composition derived from RSM regression was analyzed using Regression analysis and Analysis of Variance (ANOVA). At a significant level α = 0.05, the values of Regression coefficient, R 2 (adj)were 97.35 % and standard deviation were 1.09513. The independent variables are initial rubber clearance, and round per minute parameters namely. The investigating responses are final rubber clearance, and round per minute (RPM). The restriction of the optimization is the designated.
Keywords: Brown rice, Response surface methodology(RSM), Rubber clearance, Round per minute (RPM), Peeling machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19741171 Enhancing the Performance of H.264/AVC in Adaptive Group of Pictures Mode Using Octagon and Square Search Pattern
Authors: S. Sowmyayani, P. Arockia Jansi Rani
Abstract:
This paper integrates Octagon and Square Search pattern (OCTSS) motion estimation algorithm into H.264/AVC (Advanced Video Coding) video codec in Adaptive Group of Pictures (AGOP) mode. AGOP structure is computed based on scene change in the video sequence. Octagon and square search pattern block-based motion estimation method is implemented in inter-prediction process of H.264/AVC. Both these methods reduce bit rate and computational complexity while maintaining the quality of the video sequence respectively. Experiments are conducted for different types of video sequence. The results substantially proved that the bit rate, computation time and PSNR gain achieved by the proposed method is better than the existing H.264/AVC with fixed GOP and AGOP. With a marginal gain in quality of 0.28dB and average gain in bitrate of 132.87kbps, the proposed method reduces the average computation time by 27.31 minutes when compared to the existing state-of-art H.264/AVC video codec.Keywords: Block Distortion Measure, Block Matching Algorithms, H.264/AVC, Motion estimation, Search patterns, Shot cut detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17351170 Climate Change in Albania and Its Effect on Cereal Yield
Abstract:
This study is focused on analyzing climate change in Albania and its potential effects on cereal yields. Initially, monthly temperature and rainfalls in Albania were studied for the period 1960-2021. Climacteric variables are important variables when trying to model cereal yield behavior, especially when significant changes in weather conditions are observed. For this purpose, in the second part of the study, linear and nonlinear models explaining cereal yield are constructed for the same period, 1960-2021. The multiple linear regression analysis and lasso regression method are applied to the data between cereal yield and each independent variable: average temperature, average rainfall, fertilizer consumption, arable land, land under cereal production, and nitrous oxide emissions. In our regression model, heteroscedasticity is not observed, data follow a normal distribution, and there is a low correlation between factors, so we do not have the problem of multicollinearity. Machine learning methods, such as Random Forest (RF), are used to predict cereal yield responses to climacteric and other variables. RF showed high accuracy compared to the other statistical models in the prediction of cereal yield. We found that changes in average temperature negatively affect cereal yield. The coefficients of fertilizer consumption, arable land, and land under cereal production are positively affecting production. Our results show that the RF method is an effective and versatile machine-learning method for cereal yield prediction compared to the other two methods: multiple linear regression and lasso regression method.
Keywords: Cereal yield, climate change, machine learning, multiple regression model, random forest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2711169 A Mini Radar System for Low Altitude Targets Detection
Authors: Kangkang Wu, Kaizhi Wang, Zhijun Yuan
Abstract:
This paper deals with a mini radar system aimed at detecting small targets at the low latitude. The radar operates at Ku-band in the frequency modulated continuous wave (FMCW) mode with two receiving channels. The radar system has the characteristics of compactness, mobility, and low power consumption. This paper focuses on the implementation of the radar system, and the Block least mean square (Block LMS) algorithm is applied to minimize the fortuitous distortion. It is validated from a series of experiments that the track of the unmanned aerial vehicle (UAV) can be easily distinguished with the radar system.
Keywords: Unmanned aerial vehicle, interference, block least mean square, frequency modulated continuous wave.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10981168 Influence of Probiotics on Dairy Cows Diet
Authors: V. A. Vieira, M. P. Sforcini, V. Endo, G. C. Magioni, M. D. S. Oliveira
Abstract:
The main goal of this paper was evaluate the effect of diets containing different levels of probiotic on performance and milk composition of lactating cows. Eight Holstein cows were distributed in two 4x4 Latin square. The diets were based on corn silage, concentrate and the treatment (0, 3, 6 or 9 grams of probiotic/animal/day). It was evaluated the dry matter intake of nutrients, milk yield and composition. The use of probiotics did not affect the nutrient intake (p>0.05) neither the daily milk production or corrected to 4% fat (p>0.05). However, it was observed that there was a significant fall in milk composition with higher levels of probiotics supplementation. These results emphasize the need of further studies with different experimental designs or improve the number of Latin square with longer periods of adaptation.
Keywords: Dairy cow, milk composition, probiotics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36311167 A Numerical Study of Seismic Response of Shallow Square Tunnels in Two-Layered Ground
Authors: Mahmoud Hassanlourad, Mehran Naghizadehrokni, Vahid Molaei
Abstract:
In this study, the seismic behavior of a shallow tunnel with square cross section is investigated in a two layered and elastic heterogeneous environment using numerical method. To do so, FLAC finite difference software was used. Behavioral model of the ground and tunnel structure was assumed linear elastic. Dynamic load was applied to the model for 0.2 seconds from the bottom in form of a square pulse with maximum acceleration of 1 m/s2. The interface between the two layers was considered at three different levels of crest, middle, and bottom of the tunnel. The stiffness of the two upper and lower layers was considered to be varied from 10 MPa to 1000 MPa. Deformation of cross section of the tunnel due to dynamic load propagation, as well as the values of axial force and bending moment created in the tunnel structure, were examined in the three states mentioned above. The results of analyses show that heterogeneity of the environment, its stratification, and positioning of the interface of the two layers with respect to tunnel height and the stiffness ratio of the two layers have significant effects on the value of bending moment, axial force, and distortion of tunnel cross-section.Keywords: Dynamic analysis, shallow-buried tunnel, two-layered ground.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7721166 Magnetohydrodynamic Free Convection in a Square Cavity Heated from Below and Cooled from Other Walls
Authors: S. Jani, M. Mahmoodi, M. Amini
Abstract:
Magnetohydrodynamic free convection fluid flow and heat transfer in a square cavity filled with an electric conductive fluid with Prandtl number of 0.7 has been investigated numerically. The horizontal bottom wall of the cavity was kept at Th while the side and the top walls of the cavity were maintained at a constant temperature Tc with Th>Tc. The governing equations written in terms of the primitive variables were solved numerically using the finite volume method while the SIMPLER algorithm was used to couple the velocity and pressure fields. Using the developed code, a parametric study was performed, and the effects of the Rayleigh number and the Hartman number on the fluid flow and heat transfer inside the cavity were investigated. The obtained results showed that temperature distribution and flow pattern inside the cavity depended on both strength of the magnetic field and Rayleigh number. For all cases two counter rotating eddies were formed inside the cavity. The magnetic field decreased the intensity of free convection and flow velocity. Also it was found that for higher Rayleigh numbers a relatively stronger magnetic field was needed to decrease the heat transfer through free convection.
Keywords: Free Convection, Magnetic Field, Square Cavity, Numerical Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23161165 Clustering Mixed Data Using Non-normal Regression Tree for Process Monitoring
Authors: Youngji Yoo, Cheong-Sool Park, Jun Seok Kim, Young-Hak Lee, Sung-Shick Kim, Jun-Geol Baek
Abstract:
In the semiconductor manufacturing process, large amounts of data are collected from various sensors of multiple facilities. The collected data from sensors have several different characteristics due to variables such as types of products, former processes and recipes. In general, Statistical Quality Control (SQC) methods assume the normality of the data to detect out-of-control states of processes. Although the collected data have different characteristics, using the data as inputs of SQC will increase variations of data, require wide control limits, and decrease performance to detect outof- control. Therefore, it is necessary to separate similar data groups from mixed data for more accurate process control. In the paper, we propose a regression tree using split algorithm based on Pearson distribution to handle non-normal distribution in parametric method. The regression tree finds similar properties of data from different variables. The experiments using real semiconductor manufacturing process data show improved performance in fault detecting ability.Keywords: Semiconductor, non-normal mixed process data, clustering, Statistical Quality Control (SQC), regression tree, Pearson distribution system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17821164 Differences in Innovative Orientation of the Entrepreneurially Active Adults: The Case of Croatia
Authors: Nataša Šarlija, Sanja Pfeifer
Abstract:
This study analyzes the innovative orientation of the Croatian entrepreneurs. Innovative orientation is represented by the perceived extent to which an entrepreneur’s product or service or technology is new, and no other businesses offer the same product. The sample is extracted from the GEM Croatia Adult Population Survey dataset for the years 2003-2013. We apply descriptive statistics, t-test, Chi-square test and logistic regression. Findings indicate that innovative orientations vary with personal, firm, meso and macro level variables, and between different stages in entrepreneurship process. Significant predictors are occupation of the entrepreneurs, size of the firm and export aspiration for both early stage and established entrepreneurs. In addition, fear of failure, expecting to start a new business and seeing an entrepreneurial career as a desirable choice are predictors of innovative orientation among early stage entrepreneurs.
Keywords: Multilevel determinants of the innovative orientation, Croatian early stage entrepreneurs, established businesses, GEM evidence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19491163 Performance Comparison of Different Regression Methods for a Polymerization Process with Adaptive Sampling
Authors: Florin Leon, Silvia Curteanu
Abstract:
Developing complete mechanistic models for polymerization reactors is not easy, because complex reactions occur simultaneously; there is a large number of kinetic parameters involved and sometimes the chemical and physical phenomena for mixtures involving polymers are poorly understood. To overcome these difficulties, empirical models based on sampled data can be used instead, namely regression methods typical of machine learning field. They have the ability to learn the trends of a process without any knowledge about its particular physical and chemical laws. Therefore, they are useful for modeling complex processes, such as the free radical polymerization of methyl methacrylate achieved in a batch bulk process. The goal is to generate accurate predictions of monomer conversion, numerical average molecular weight and gravimetrical average molecular weight. This process is associated with non-linear gel and glass effects. For this purpose, an adaptive sampling technique is presented, which can select more samples around the regions where the values have a higher variation. Several machine learning methods are used for the modeling and their performance is compared: support vector machines, k-nearest neighbor, k-nearest neighbor and random forest, as well as an original algorithm, large margin nearest neighbor regression. The suggested method provides very good results compared to the other well-known regression algorithms.Keywords: Adaptive sampling, batch bulk methyl methacrylate polymerization, large margin nearest neighbor regression, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1403