Search results for: knowledge clustering
2135 Energy and Distance Based Clustering: An Energy Efficient Clustering Method for Wireless Sensor Networks
Authors: Mehdi Saeidmanesh, Mojtaba Hajimohammadi, Ali Movaghar
Abstract:
In this paper, we propose an energy efficient cluster based communication protocol for wireless sensor network. Our protocol considers both the residual energy of sensor nodes and the distance of each node from the BS when selecting cluster-head. This protocol can successfully prolong the network-s lifetime by 1) reducing the total energy dissipation on the network and 2) evenly distributing energy consumption over all sensor nodes. In this protocol, the nodes with more energy and less distance from the BS are probable to be selected as cluster-head. Simulation results with MATLAB show that proposed protocol could increase the lifetime of network more than 94% for first node die (FND), and more than 6% for the half of the nodes alive (HNA) factor as compared with conventional protocols.Keywords: Clustering methods, energy efficiency, routing protocol, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21572134 Probabilistic Graphical Model for the Web
Authors: M. Nekri, A. Khelladi
Abstract:
The world wide web network is a network with a complex topology, the main properties of which are the distribution of degrees in power law, A low clustering coefficient and a weak average distance. Modeling the web as a graph allows locating the information in little time and consequently offering a help in the construction of the research engine. Here, we present a model based on the already existing probabilistic graphs with all the aforesaid characteristics. This work will consist in studying the web in order to know its structuring thus it will enable us to modelize it more easily and propose a possible algorithm for its exploration.
Keywords: Clustering coefficient, preferential attachment, small world, Web community.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16042133 Scattering Operator and Spectral Clustering for Ultrasound Images: Application on Deep Venous Thrombi
Authors: Thibaud Berthomier, Ali Mansour, Luc Bressollette, Frédéric Le Roy, Dominique Mottier, Léo Fréchier, Barthélémy Hermenault
Abstract:
Deep Venous Thrombosis (DVT) occurs when a thrombus is formed within a deep vein (most often in the legs). This disease can be deadly if a part or the whole thrombus reaches the lung and causes a Pulmonary Embolism (PE). This disorder, often asymptomatic, has multifactorial causes: immobilization, surgery, pregnancy, age, cancers, and genetic variations. Our project aims to relate the thrombus epidemiology (origins, patient predispositions, PE) to its structure using ultrasound images. Ultrasonography and elastography were collected using Toshiba Aplio 500 at Brest Hospital. This manuscript compares two classification approaches: spectral clustering and scattering operator. The former is based on the graph and matrix theories while the latter cascades wavelet convolutions with nonlinear modulus and averaging operators.Keywords: Deep venous thrombosis, ultrasonography, elastography, scattering operator, wavelet, spectral clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11782132 A Hybrid Approach for Color Image Quantization Using K-means and Firefly Algorithms
Authors: Parisut Jitpakdee, Pakinee Aimmanee, Bunyarit Uyyanonvara
Abstract:
Color Image quantization (CQ) is an important problem in computer graphics, image and processing. The aim of quantization is to reduce colors in an image with minimum distortion. Clustering is a widely used technique for color quantization; all colors in an image are grouped to small clusters. In this paper, we proposed a new hybrid approach for color quantization using firefly algorithm (FA) and K-means algorithm. Firefly algorithm is a swarmbased algorithm that can be used for solving optimization problems. The proposed method can overcome the drawbacks of both algorithms such as the local optima converge problem in K-means and the early converge of firefly algorithm. Experiments on three commonly used images and the comparison results shows that the proposed algorithm surpasses both the base-line technique k-means clustering and original firefly algorithm.Keywords: Clustering, Color quantization, Firefly algorithm, Kmeans.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22182131 Performance Evaluation of ROI Extraction Models from Stationary Images
Authors: K.V. Sridhar, Varun Gunnala, K.S.R Krishna Prasad
Abstract:
In this paper three basic approaches and different methods under each of them for extracting region of interest (ROI) from stationary images are explored. The results obtained for each of the proposed methods are shown, and it is demonstrated where each method outperforms the other. Two main problems in ROI extraction: the channel selection problem and the saliency reversal problem are discussed and how best these two are addressed by various methods is also seen. The basic approaches are 1) Saliency based approach 2) Wavelet based approach 3) Clustering based approach. The saliency approach performs well on images containing objects of high saturation and brightness. The wavelet based approach performs well on natural scene images that contain regions of distinct textures. The mean shift clustering approach partitions the image into regions according to the density distribution of pixel intensities. The experimental results of various methodologies show that each technique performs at different acceptable levels for various types of images.Keywords: clustering, ROI, saliency, wavelets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14092130 An Adaptive Fuzzy Clustering Approach for the Network Management
Authors: Amal Elmzabi, Mostafa Bellafkih, Mohammed Ramdani
Abstract:
The Chiu-s method which generates a Takagi-Sugeno Fuzzy Inference System (FIS) is a method of fuzzy rules extraction. The rules output is a linear function of inputs. In addition, these rules are not explicit for the expert. In this paper, we develop a method which generates Mamdani FIS, where the rules output is fuzzy. The method proceeds in two steps: first, it uses the subtractive clustering principle to estimate both the number of clusters and the initial locations of a cluster centers. Each obtained cluster corresponds to a Mamdani fuzzy rule. Then, it optimizes the fuzzy model parameters by applying a genetic algorithm. This method is illustrated on a traffic network management application. We suggest also a Mamdani fuzzy rules generation method, where the expert wants to classify the output variables in some fuzzy predefined classes.
Keywords: Fuzzy entropy, fuzzy inference systems, genetic algorithms, network management, subtractive clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18832129 Modeling Peer-to-Peer Networks with Interest-Based Clusters
Authors: Bertalan Forstner, Dr. Hassan Charaf
Abstract:
In the world of Peer-to-Peer (P2P) networking different protocols have been developed to make the resource sharing or information retrieval more efficient. The SemPeer protocol is a new layer on Gnutella that transforms the connections of the nodes based on semantic information to make information retrieval more efficient. However, this transformation causes high clustering in the network that decreases the number of nodes reached, therefore the probability of finding a document is also decreased. In this paper we describe a mathematical model for the Gnutella and SemPeer protocols that captures clustering-related issues, followed by a proposition to modify the SemPeer protocol to achieve moderate clustering. This modification is a sort of link management for the individual nodes that allows the SemPeer protocol to be more efficient, because the probability of a successful query in the P2P network is reasonably increased. For the validation of the models, we evaluated a series of simulations that supported our results.Keywords: Peer-to-Peer, model, performance, networkmanagement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13062128 An Energy Aware Data Aggregation in Wireless Sensor Network Using Connected Dominant Set
Authors: M. Santhalakshmi, P Suganthi
Abstract:
Wireless Sensor Networks (WSNs) have many advantages. Their deployment is easier and faster than wired sensor networks or other wireless networks, as they do not need fixed infrastructure. Nodes are partitioned into many small groups named clusters to aggregate data through network organization. WSN clustering guarantees performance achievement of sensor nodes. Sensor nodes energy consumption is reduced by eliminating redundant energy use and balancing energy sensor nodes use over a network. The aim of such clustering protocols is to prolong network life. Low Energy Adaptive Clustering Hierarchy (LEACH) is a popular protocol in WSN. LEACH is a clustering protocol in which the random rotations of local cluster heads are utilized in order to distribute energy load among all sensor nodes in the network. This paper proposes Connected Dominant Set (CDS) based cluster formation. CDS aggregates data in a promising approach for reducing routing overhead since messages are transmitted only within virtual backbone by means of CDS and also data aggregating lowers the ratio of responding hosts to the hosts existing in virtual backbones. CDS tries to increase networks lifetime considering such parameters as sensors lifetime, remaining and consumption energies in order to have an almost optimal data aggregation within networks. Experimental results proved CDS outperformed LEACH regarding number of cluster formations, average packet loss rate, average end to end delay, life computation, and remaining energy computation.Keywords: Wireless sensor network, connected dominant set, clustering, data aggregation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11292127 Identification of a PWA Model of a Batch Reactor for Model Predictive Control
Authors: Gorazd Karer, Igor Skrjanc, Borut Zupancic
Abstract:
The complex hybrid and nonlinear nature of many processes that are met in practice causes problems with both structure modelling and parameter identification; therefore, obtaining a model that is suitable for MPC is often a difficult task. The basic idea of this paper is to present an identification method for a piecewise affine (PWA) model based on a fuzzy clustering algorithm. First we introduce the PWA model. Next, we tackle the identification method. We treat the fuzzy clustering algorithm, deal with the projections of the fuzzy clusters into the input space of the PWA model and explain the estimation of the parameters of the PWA model by means of a modified least-squares method. Furthermore, we verify the usability of the proposed identification approach on a hybrid nonlinear batch reactor example. The result suggest that the batch reactor can be efficiently identified and thus formulated as a PWA model, which can eventually be used for model predictive control purposes.
Keywords: Batch reactor, fuzzy clustering, hybrid systems, identification, nonlinear systems, PWA systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21952126 A Optimal Subclass Detection Method for Credit Scoring
Authors: Luciano Nieddu, Giuseppe Manfredi, Salvatore D'Acunto, Katia La Regina
Abstract:
In this paper a non-parametric statistical pattern recognition algorithm for the problem of credit scoring will be presented. The proposed algorithm is based on a clustering k- means algorithm and allows for the determination of subclasses of homogenous elements in the data. The algorithm will be tested on two benchmark datasets and its performance compared with other well known pattern recognition algorithm for credit scoring.
Keywords: Constrained clustering, Credit scoring, Statistical pattern recognition, Supervised classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20492125 Predictive Clustering Hybrid Regression(pCHR) Approach and Its Application to Sucrose-Based Biohydrogen Production
Authors: Nikhil, Ari Visa, Chin-Chao Chen, Chiu-Yue Lin, Jaakko A. Puhakka, Olli Yli-Harja
Abstract:
A predictive clustering hybrid regression (pCHR) approach was developed and evaluated using dataset from H2- producing sucrose-based bioreactor operated for 15 months. The aim was to model and predict the H2-production rate using information available about envirome and metabolome of the bioprocess. Selforganizing maps (SOM) and Sammon map were used to visualize the dataset and to identify main metabolic patterns and clusters in bioprocess data. Three metabolic clusters: acetate coupled with other metabolites, butyrate only, and transition phases were detected. The developed pCHR model combines principles of k-means clustering, kNN classification and regression techniques. The model performed well in modeling and predicting the H2-production rate with mean square error values of 0.0014 and 0.0032, respectively.Keywords: Biohydrogen, bioprocess modeling, clusteringhybrid regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17772124 A Comparison between Heuristic and Meta-Heuristic Methods for Solving the Multiple Traveling Salesman Problem
Authors: San Nah Sze, Wei King Tiong
Abstract:
The multiple traveling salesman problem (mTSP) can be used to model many practical problems. The mTSP is more complicated than the traveling salesman problem (TSP) because it requires determining which cities to assign to each salesman, as well as the optimal ordering of the cities within each salesman's tour. Previous studies proposed that Genetic Algorithm (GA), Integer Programming (IP) and several neural network (NN) approaches could be used to solve mTSP. This paper compared the results for mTSP, solved with Genetic Algorithm (GA) and Nearest Neighbor Algorithm (NNA). The number of cities is clustered into a few groups using k-means clustering technique. The number of groups depends on the number of salesman. Then, each group is solved with NNA and GA as an independent TSP. It is found that k-means clustering and NNA are superior to GA in terms of performance (evaluated by fitness function) and computing time.Keywords: Multiple Traveling Salesman Problem, GeneticAlgorithm, Nearest Neighbor Algorithm, k-Means Clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32312123 Barriers to Knowledge Management: A Theoretical Framework and a Review of Industrial Cases
Authors: Chihab BenMoussa
Abstract:
Firms have invested heavily in knowledge management (KM) with the aim to build a knowledge capability and use it to achieve a competitive advantage. Research has shown, however, that not all knowledge management projects succeed. Some studies report that about 84% of knowledge management projects fail. This paper has integrated studies on the impediments to knowledge management into a theoretical framework. Based on this framework, five cases documenting failed KM initiatives were analysed. The analysis gave us a clear picture about why certain KM projects fail. The high failure rate of KM can be explained by the gaps that exist between users and management in terms of KM perceptions and objectivesKeywords: Knowledge management, barriers to knowledge management, Knowledge-gaps, supply-driven approach to knowledge management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31912122 Enhancing K-Means Algorithm with Initial Cluster Centers Derived from Data Partitioning along the Data Axis with the Highest Variance
Authors: S. Deelers, S. Auwatanamongkol
Abstract:
In this paper, we propose an algorithm to compute initial cluster centers for K-means clustering. Data in a cell is partitioned using a cutting plane that divides cell in two smaller cells. The plane is perpendicular to the data axis with the highest variance and is designed to reduce the sum squared errors of the two cells as much as possible, while at the same time keep the two cells far apart as possible. Cells are partitioned one at a time until the number of cells equals to the predefined number of clusters, K. The centers of the K cells become the initial cluster centers for K-means. The experimental results suggest that the proposed algorithm is effective, converge to better clustering results than those of the random initialization method. The research also indicated the proposed algorithm would greatly improve the likelihood of every cluster containing some data in it.Keywords: Clustering algorithm, K-means algorithm, Datapartitioning, Initial cluster centers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28662121 Corporate Knowledge Communication and Knowledge Communication Difficulties
Authors: H. Buluthan Cetintas, M. Nejat Ozupek
Abstract:
Communication is an important factor and a prop in directing corporate activities efficiently, in ensuring the flow of knowledge which is necessary for the continuity of the institution, in creating a common language in the institution, in transferring corporate culture and ultimately in corporate success. The idea of transmitting the knowledge among the workers in a healthy manner has revived knowledge communication. Knowledge communication can be defined as the act of mutual creation and communication of intuitions, assessments, experiences and capabilities, as long as maintained effectively, can provide advantages such as corporate continuity, access to corporate objectives and making true administrative decisions. Although the benefits of the knowledge communication to corporations are known, and the necessary worth and care is given, some hardships may arise which makes it difficult or even block it. In this article, difficulties that prevent knowledge communication will be discussed and solutions will be proposed.Keywords: Corporate knowledge communication, knowledge communication, knowledge communication barriers
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14352120 Modeling of Knowledge-Intensive Business Processes
Authors: Eckhard M. Ammann
Abstract:
Knowledge development in companies relies on knowledge-intensive business processes, which are characterized by a high complexity in their execution, weak structuring, communication-oriented tasks and high decision autonomy, and often the need for creativity and innovation. A foundation of knowledge development is provided, which is based on a new conception of knowledge and knowledge dynamics. This conception consists of a three-dimensional model of knowledge with types, kinds and qualities. Built on this knowledge conception, knowledge dynamics is modeled with the help of general knowledge conversions between knowledge assets. Here knowledge dynamics is understood to cover all of acquisition, conversion, transfer, development and usage of knowledge. Through this conception we gain a sound basis for knowledge management and development in an enterprise. Especially the type dimension of knowledge, which categorizes it according to its internality and externality with respect to the human being, is crucial for enterprise knowledge management and development, because knowledge should be made available by converting it to more external types. Built on this conception, a modeling approach for knowledgeintensive business processes is introduced, be it human-driven,e-driven or task-driven processes. As an example for this approach, a model of the creative activity for the renewal planning of a product is given.Keywords: Conception of knowledge, knowledge dynamics, modeling notation, knowledge-intensive business processes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18342119 Recursive Similarity Hashing of Fractal Geometry
Authors: Timothee G. Leleu
Abstract:
A new technique of topological multi-scale analysis is introduced. By performing a clustering recursively to build a hierarchy, and analyzing the co-scale and intra-scale similarities, an Iterated Function System can be extracted from any data set. The study of fractals shows that this method is efficient to extract self-similarities, and can find elegant solutions the inverse problem of building fractals. The theoretical aspects and practical implementations are discussed, together with examples of analyses of simple fractals.Keywords: hierarchical clustering, multi-scale analysis, Similarity hashing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18632118 An Optimal Unsupervised Satellite image Segmentation Approach Based on Pearson System and k-Means Clustering Algorithm Initialization
Authors: Ahmed Rekik, Mourad Zribi, Ahmed Ben Hamida, Mohamed Benjelloun
Abstract:
This paper presents an optimal and unsupervised satellite image segmentation approach based on Pearson system and k-Means Clustering Algorithm Initialization. Such method could be considered as original by the fact that it utilised K-Means clustering algorithm for an optimal initialisation of image class number on one hand and it exploited Pearson system for an optimal statistical distributions- affectation of each considered class on the other hand. Satellite image exploitation requires the use of different approaches, especially those founded on the unsupervised statistical segmentation principle. Such approaches necessitate definition of several parameters like image class number, class variables- estimation and generalised mixture distributions. Use of statistical images- attributes assured convincing and promoting results under the condition of having an optimal initialisation step with appropriated statistical distributions- affectation. Pearson system associated with a k-means clustering algorithm and Stochastic Expectation-Maximization 'SEM' algorithm could be adapted to such problem. For each image-s class, Pearson system attributes one distribution type according to different parameters and especially the Skewness 'β1' and the kurtosis 'β2'. The different adapted algorithms, K-Means clustering algorithm, SEM algorithm and Pearson system algorithm, are then applied to satellite image segmentation problem. Efficiency of those combined algorithms was firstly validated with the Mean Quadratic Error 'MQE' evaluation, and secondly with visual inspection along several comparisons of these unsupervised images- segmentation.
Keywords: Unsupervised classification, Pearson system, Satellite image, Segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20402117 Development of a Clustered Network based on Unique Hop ID
Authors: Hemanth Kumar, A. R., Sudhakar G, Satyanarayana B. S.
Abstract:
In this paper, Land Marks for Unique Addressing( LMUA) algorithm is develped to generate unique ID for each and every node which leads to the formation of overlapping/Non overlapping clusters based on unique ID. To overcome the draw back of the developed LMUA algorithm, the concept of clustering is introduced. Based on the clustering concept a Land Marks for Unique Addressing and Clustering(LMUAC) Algorithm is developed to construct strictly non-overlapping clusters and classify those nodes in to Cluster Heads, Member Nodes, Gate way nodes and generating the Hierarchical code for the cluster heads to operate in the level one hierarchy for wireless communication switching. The expansion of the existing network can be performed or not without modifying the cost of adding the clusterhead is shown. The developed algorithm shows one way of efficiently constructing the
Keywords: Cluster Dimension, Cluster Basis, Metric Dimension, Metric Basis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13052116 Analysis of Cooperative Learning Behavior Based on the Data of Students' Movement
Authors: Wang Lin, Li Zhiqiang
Abstract:
The purpose of this paper is to analyze the cooperative learning behavior pattern based on the data of students' movement. The study firstly reviewed the cooperative learning theory and its research status, and briefly introduced the k-means clustering algorithm. Then, it used clustering algorithm and mathematical statistics theory to analyze the activity rhythm of individual student and groups in different functional areas, according to the movement data provided by 10 first-year graduate students. It also focused on the analysis of students' behavior in the learning area and explored the law of cooperative learning behavior. The research result showed that the cooperative learning behavior analysis method based on movement data proposed in this paper is feasible. From the results of data analysis, the characteristics of behavior of students and their cooperative learning behavior patterns could be found.Keywords: Behavior pattern, cooperative learning, data analyze, K-means clustering algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8142115 Simultaneous Clustering and Feature Selection Method for Gene Expression Data
Authors: T. Chandrasekhar, K. Thangavel, E. N. Sathishkumar
Abstract:
Microarrays are made it possible to simultaneously monitor the expression profiles of thousands of genes under various experimental conditions. It is used to identify the co-expressed genes in specific cells or tissues that are actively used to make proteins. This method is used to analysis the gene expression, an important task in bioinformatics research. Cluster analysis of gene expression data has proved to be a useful tool for identifying co-expressed genes, biologically relevant groupings of genes and samples. In this work K-Means algorithms has been applied for clustering of Gene Expression Data. Further, rough set based Quick reduct algorithm has been applied for each cluster in order to select the most similar genes having high correlation. Then the ACV measure is used to evaluate the refined clusters and classification is used to evaluate the proposed method. They could identify compact clusters with feature selection method used to genes are selected.
Keywords: Clustering, Feature selection, Gene expression data, Quick reduct.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19672114 A New Approach for Image Segmentation using Pillar-Kmeans Algorithm
Authors: Ali Ridho Barakbah, Yasushi Kiyoki
Abstract:
This paper presents a new approach for image segmentation by applying Pillar-Kmeans algorithm. This segmentation process includes a new mechanism for clustering the elements of high-resolution images in order to improve precision and reduce computation time. The system applies K-means clustering to the image segmentation after optimized by Pillar Algorithm. The Pillar algorithm considers the pillars- placement which should be located as far as possible from each other to withstand against the pressure distribution of a roof, as identical to the number of centroids amongst the data distribution. This algorithm is able to optimize the K-means clustering for image segmentation in aspects of precision and computation time. It designates the initial centroids- positions by calculating the accumulated distance metric between each data point and all previous centroids, and then selects data points which have the maximum distance as new initial centroids. This algorithm distributes all initial centroids according to the maximum accumulated distance metric. This paper evaluates the proposed approach for image segmentation by comparing with K-means and Gaussian Mixture Model algorithm and involving RGB, HSV, HSL and CIELAB color spaces. The experimental results clarify the effectiveness of our approach to improve the segmentation quality in aspects of precision and computational time.Keywords: Image segmentation, K-means clustering, Pillaralgorithm, color spaces.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33722113 Implementing Knowledge Transfer Solution through Web-based Help Desk System
Authors: Mazeyanti M. Ariffin, Noreen Izza Arshad, Ainol Rahmah Shaarani, Syed Uzair Shah
Abstract:
Knowledge management is a process taking any steps that needed to get the most out of available knowledge resources. KM involved several steps; capturing the knowledge discovering new knowledge, sharing the knowledge and applied the knowledge in the decision making process. In applying the knowledge, it is not necessary for the individual that use the knowledge to comprehend it as long as the available knowledge is used in guiding the decision making and actions. When an expert is called and he provides stepby- step procedure on how to solve the problems to the caller, the expert is transferring the knowledge or giving direction to the caller. And the caller is 'applying' the knowledge by following the instructions given by the expert. An appropriate mechanism is needed to ensure effective knowledge transfer which in this case is by telephone or email. The problem with email and telephone is that the knowledge is not fully circulated and disseminated to all users. In this paper, with related experience of local university Help Desk, it is proposed the usage of Information Technology (IT)to effectively support the knowledge transfer in the organization. The issues covered include the existing knowledge, the related works, the methodology used in defining the knowledge management requirements as well the overview of the prototype.Keywords: Knowledge Management, Knowledge Transfer, Help Desk, Web-based system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17812112 Effect of Incentives on Knowledge Sharing and Learning – Evidence from the Indian IT Sector
Authors: Asish O. Mathew, Lewlyn L. R. Rodrigues
Abstract:
The organizations in the knowledge economy era have recognized the importance of building knowledge assets for sustainable growth and development. In comparison to other industries, Information Technology (IT) enterprises, holds an edge in developing an effective Knowledge Management (KM) programmethanks to their in-house technological abilities. This paper tries to study the various knowledge based incentive programmes and its effect on Knowledge Sharing and Learning in the context of the Indian IT sector. A conceptual model is developed linking KM Incentives, Knowledge Sharing and Learning. A questionnaire study is conducted to collect primary data from the knowledge workers of the IT organizations located in India. The data was analysed using Structural Equation Modeling using Partial Least Square method. The results show a strong influence of knowledge management incentives on knowledge sharing and an indirect influence on learning.
Keywords: Knowledge Management, Knowledge Management Incentives, Knowledge Sharing, Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36902111 Architecting a Knowledge Theatre
Authors: David C. White
Abstract:
This paper describes the architectural design considerations for building a new class of application, a Personal Knowledge Integrator and a particular example a Knowledge Theatre. It then supports this description by describing a scenario of a child acquiring knowledge and how this process could be augmented by the proposed architecture and design of a Knowledge Theatre. David Merrill-s first “principles of instruction" are kept in focus to provide a background to view the learning potential.Keywords: Knowledge, personal, open data, visualization, learning, teaching
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13382110 A Balanced Cost Cluster-Heads Selection Algorithm for Wireless Sensor Networks
Authors: Ouadoudi Zytoune, Youssef Fakhri, Driss Aboutajdine
Abstract:
This paper focuses on reducing the power consumption of wireless sensor networks. Therefore, a communication protocol named LEACH (Low-Energy Adaptive Clustering Hierarchy) is modified. We extend LEACHs stochastic cluster-head selection algorithm by a modifying the probability of each node to become cluster-head based on its required energy to transmit to the sink. We present an efficient energy aware routing algorithm for the wireless sensor networks. Our contribution consists in rotation selection of clusterheads considering the remoteness of the nodes to the sink, and then, the network nodes residual energy. This choice allows a best distribution of the transmission energy in the network. The cluster-heads selection algorithm is completely decentralized. Simulation results show that the energy is significantly reduced compared with the previous clustering based routing algorithm for the sensor networks.Keywords: Wireless Sensor Networks, Energy efficiency, WirelessCommunications, Clustering-based algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26452109 Volterra Filter for Color Image Segmentation
Authors: M. B. Meenavathi, K. Rajesh
Abstract:
Color image segmentation plays an important role in computer vision and image processing areas. In this paper, the features of Volterra filter are utilized for color image segmentation. The discrete Volterra filter exhibits both linear and nonlinear characteristics. The linear part smoothes the image features in uniform gray zones and is used for getting a gross representation of objects of interest. The nonlinear term compensates for the blurring due to the linear term and preserves the edges which are mainly used to distinguish the various objects. The truncated quadratic Volterra filters are mainly used for edge preserving along with Gaussian noise cancellation. In our approach, the segmentation is based on K-means clustering algorithm in HSI space. Both the hue and the intensity components are fully utilized. For hue clustering, the special cyclic property of the hue component is taken into consideration. The experimental results show that the proposed technique segments the color image while preserving significant features and removing noise effects.Keywords: Color image segmentation, HSI space, K–means clustering, Volterra filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18572108 The Development of a Narrative Management System: Storytelling in Knowledge Management
Authors: Savita K.S, Hazwani H., Kalid K. S.
Abstract:
This paper presents a narrative management system for organizations to capture organization's tacit knowledge through stories. The intention of capturing tacit knowledge is to address the problem that comes with the mobility of workforce in organisation. Storytelling in knowledge management context is seen as a powerful management tool to communicate tacit knowledge in organization. This narrative management system is developed firstly to enable uploading of many types of knowledge sharing stories, from general to work related-specific stories and secondly, each video has comment functionality where knowledge users can post comments to other knowledge users. The narrative management system allows the stories to browse, search and view by the users. In the system, stories are stored in a video repository. Stories that were produced from this framework will improve learning, knowledge transfer facilitation and tacit knowledge quality in an organization.Keywords: Knowledge Management, Storytelling, Stories, Tacit Knowledge
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24422107 A Constrained Clustering Algorithm for the Classification of Industrial Ores
Authors: Luciano Nieddu, Giuseppe Manfredi
Abstract:
In this paper a Pattern Recognition algorithm based on a constrained version of the k-means clustering algorithm will be presented. The proposed algorithm is a non parametric supervised statistical pattern recognition algorithm, i.e. it works under very mild assumptions on the dataset. The performance of the algorithm will be tested, togheter with a feature extraction technique that captures the information on the closed two-dimensional contour of an image, on images of industrial mineral ores.Keywords: K-means, Industrial ores classification, Invariant Features, Supervised Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13812106 Face Recognition Based On Vector Quantization Using Fuzzy Neuro Clustering
Authors: Elizabeth B. Varghese, M. Wilscy
Abstract:
A face recognition system is a computer application for automatically identifying or verifying a person from a digital image or a video frame. A lot of algorithms have been proposed for face recognition. Vector Quantization (VQ) based face recognition is a novel approach for face recognition. Here a new codebook generation for VQ based face recognition using Integrated Adaptive Fuzzy Clustering (IAFC) is proposed. IAFC is a fuzzy neural network which incorporates a fuzzy learning rule into a competitive neural network. The performance of proposed algorithm is demonstrated by using publicly available AT&T database, Yale database, Indian Face database and a small face database, DCSKU database created in our lab. In all the databases the proposed approach got a higher recognition rate than most of the existing methods. In terms of Equal Error Rate (ERR) also the proposed codebook is better than the existing methods.
Keywords: Face Recognition, Vector Quantization, Integrated Adaptive Fuzzy Clustering, Self Organization Map.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2241