Search results for: health monitoring
1853 The Comparation of Limits of Detection of Lateral Flow Immunochromatographic Strips of Different Types of Mycotoxins
Abstract:
Mycotoxins are secondary metabolic products of fungi. These are poisonous, carcinogens and mutagens in nature and pose a serious health threat to both humans and animals, causing severe illnesses and even deaths. The rapid, simple and cheap detection methods of mycotoxins are of immense importance and in great demand in the food and beverage industry as well as in agriculture and environmental monitoring. Lateral flow immunochromatographic strips (ICSTs) have been widely used in food safety, environment monitoring. 46 papers were identified and reviewed on Google Scholar and Scopus for their limit of detection and nanomaterial on Lateral flow ICSTs on different types of mycotoxins. The papers were dated 2001-2021. 25 papers were compared to identify the lowest limit of detection of among different mycotoxins (Aflatoxin B1: 10, Zearalenone: 5, Fumonisin B1: 5, Trichothecene-A: 5). Most of these highly sensitive strips are competitive. Sandwich structures are usually used in large scale detection. In conclusion, the limit of detection of Aflatoxin B1 is the lowest among these mycotoxins. Gold-nanoparticle based immunochromatographic test strips have the lowest limit of detection. Five papers involve smartphone detection and they all detect aflatoxin B1 with gold nanoparticles.
Keywords: Aflatoxin B1, limit of detection, gold nanoparticle, lateral flow immunochromatographic strips, mycotoxins, smartphone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4141852 A Damage Level Assessment Model for Extra High Voltage Transmission Towers
Authors: Huan-Chieh Chiu, Hung-Shuo Wu, Chien-Hao Wang, Yu-Cheng Yang, Ching-Ya Tseng, Joe-Air Jiang
Abstract:
Power failure resulting from tower collapse due to violent seismic events might bring enormous and inestimable losses. The Chi-Chi earthquake, for example, strongly struck Taiwan and caused huge damage to the power system on September 21, 1999. Nearly 10% of extra high voltage (EHV) transmission towers were damaged in the earthquake. Therefore, seismic hazards of EHV transmission towers should be monitored and evaluated. The ultimate goal of this study is to establish a damage level assessment model for EHV transmission towers. The data of earthquakes provided by Taiwan Central Weather Bureau serve as a reference and then lay the foundation for earthquake simulations and analyses afterward. Some parameters related to the damage level of each point of an EHV tower are simulated and analyzed by the data from monitoring stations once an earthquake occurs. Through the Fourier transform, the seismic wave is then analyzed and transformed into different wave frequencies, and the data would be shown through a response spectrum. With this method, the seismic frequency which damages EHV towers the most is clearly identified. An estimation model is built to determine the damage level caused by a future seismic event. Finally, instead of relying on visual observation done by inspectors, the proposed model can provide a power company with the damage information of a transmission tower. Using the model, manpower required by visual observation can be reduced, and the accuracy of the damage level estimation can be substantially improved. Such a model is greatly useful for health and construction monitoring because of the advantages of long-term evaluation of structural characteristics and long-term damage detection.Keywords: Smart grid, EHV transmission tower, response spectrum, damage level monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10661851 Instant Location Detection of Objects Moving at High-Speedin C-OTDR Monitoring Systems
Authors: Andrey V. Timofeev
Abstract:
The practical efficient approach is suggested to estimate the high-speed objects instant bounds in C-OTDR monitoring systems. In case of super-dynamic objects (trains, cars) is difficult to obtain the adequate estimate of the instantaneous object localization because of estimation lag. In other words, reliable estimation coordinates of monitored object requires taking some time for data observation collection by means of C-OTDR system, and only if the required sample volume will be collected the final decision could be issued. But it is contrary to requirements of many real applications. For example, in rail traffic management systems we need to get data of the dynamic objects localization in real time. The way to solve this problem is to use the set of statistical independent parameters of C-OTDR signals for obtaining the most reliable solution in real time. The parameters of this type we can call as «signaling parameters» (SP). There are several the SP’s which carry information about dynamic objects instant localization for each of COTDR channels. The problem is that some of these parameters are very sensitive to dynamics of seismoacoustic emission sources, but are non-stable. On the other hand, in case the SP is very stable it becomes insensitive as rule. This report contains describing of the method for SP’s co-processing which is designed to get the most effective dynamic objects localization estimates in the C-OTDR monitoring system framework.
Keywords: C-OTDR-system, co-processing of signaling parameters, high-speed objects localization, multichannel monitoring systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19091850 A Decision Support System Based on Leprosy Scales
Authors: Dennys Robson Girardi, Hugo Bulegon, Claudia Maria Moro Barra
Abstract:
Leprosy is an infectious disease caused by Mycobacterium Leprae, this disease, generally, compromises the neural fibers, leading to the development of disability. Disabilities are changes that limit daily activities or social life of a normal individual. When comes to leprosy, the study of disability considered the functional limitation (physical disabilities), the limitation of activity and social participation, which are measured respectively by the scales: EHF, SALSA and PARTICIPATION SCALE. The objective of this work is to propose an on-line monitoring of leprosy patients, which is based on information scales EHF, SALSA and PARTICIPATION SCALE. It is expected that the proposed system is applied in monitoring the patient during treatment and after healing therapy of the disease. The correlations that the system is between the scales create a variety of information, presented the state of the patient and full of changes or reductions in disability. The system provides reports with information from each of the scales and the relationships that exist between them. This way, health professionals, with access to patient information, can intervene with techniques for the Prevention of Disability. Through the automated scale, the system shows the level of the patient and allows the patient, or the responsible, to take a preventive measure. With an online system, it is possible take the assessments and monitor patients from anywhere.Keywords: Leprosy, Medical Informatics, Decision SupportSystem, Disability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20491849 In situ Real-Time Multivariate Analysis of Methanolysis Monitoring of Sunflower Oil Using FTIR
Authors: Pascal Mwenge, Tumisang Seodigeng
Abstract:
The combination of world population and the third industrial revolution led to high demand for fuels. On the other hand, the decrease of global fossil 8fuels deposits and the environmental air pollution caused by these fuels has compounded the challenges the world faces due to its need for energy. Therefore, new forms of environmentally friendly and renewable fuels such as biodiesel are needed. The primary analytical techniques for methanolysis yield monitoring have been chromatography and spectroscopy, these methods have been proven reliable but are more demanding, costly and do not provide real-time monitoring. In this work, the in situ monitoring of biodiesel from sunflower oil using FTIR (Fourier Transform Infrared) has been studied; the study was performed using EasyMax Mettler Toledo reactor equipped with a DiComp (Diamond) probe. The quantitative monitoring of methanolysis was performed by building a quantitative model with multivariate calibration using iC Quant module from iC IR 7.0 software. 15 samples of known concentrations were used for the modelling which were taken in duplicate for model calibration and cross-validation, data were pre-processed using mean centering and variance scale, spectrum math square root and solvent subtraction. These pre-processing methods improved the performance indexes from 7.98 to 0.0096, 11.2 to 3.41, 6.32 to 2.72, 0.9416 to 0.9999, RMSEC, RMSECV, RMSEP and R2Cum, respectively. The R2 value of 1 (training), 0.9918 (test), 0.9946 (cross-validation) indicated the fitness of the model built. The model was tested against univariate model; small discrepancies were observed at low concentration due to unmodelled intermediates but were quite close at concentrations above 18%. The software eliminated the complexity of the Partial Least Square (PLS) chemometrics. It was concluded that the model obtained could be used to monitor methanol of sunflower oil at industrial and lab scale.
Keywords: Biodiesel, calibration, chemometrics, FTIR, methanolysis, multivariate analysis, transesterification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9361848 Management of Air Pollutants from Point Sources
Authors: N. Lokeshwari, G. Srinikethan, V. S. Hegde
Abstract:
Monitoring is essential to assessing the effectiveness of air pollution control actions. The goal of the air quality information system is through monitoring, to keep authorities, major polluters and the public informed on the short and long-term changes in air quality, thereby helping to raise awareness. Mathematical models are the best tools available for the prediction of the air quality management. The main objective of the work was to apply a Model that predicts the concentration levels of different pollutants at any instant of time. In this study, distribution of air pollutants concentration such as nitrogen dioxides (NO2), sulphur dioxides (SO2) and total suspended particulates (TSP) of industries are determined by using Gaussian model. Besides that, the effect of wind speed and its direction on the pollutant concentration within the affected area were evaluated. In order to determine the efficiency and percentage of error in the modeling, validation process of data was done. Sampling of air quality was conducted in getting existing air quality around a factory and the concentrations of pollutants in a plume were inversely proportional to wind velocity. The resultant ground level concentrations were then compared to the quality standards to determine if there could be a negative impact on health. This study concludes that concentration of pollutants can be significantly predicted using Gaussian Model. The data base management is developed for the air data of Hubli-Dharwad region.
Keywords: DBMS, NO2, SO2, Wind rose plots.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20331847 Power Reduction by Automatic Monitoring and Control System in Active Mode
Authors: Somaye Abdollahi Pour, Mohsen Saneei
Abstract:
This paper describes a novel monitoring scheme to minimize total active power in digital circuits depend on the demand frequency, by adjusting automatically both supply voltage and threshold voltages based on circuit operating conditions such as temperature, process variations, and desirable frequency. The delay monitoring results, will be control and apply so as to be maintained at the minimum value at which the chip is able to operate for a given clock frequency. Design details of power monitor are examined using simulation framework in 32nm BTPM model CMOS process. Experimental results show the overhead of proposed circuit in terms of its power consumption is about 40 μW for 32nm technology; moreover the results show that our proposed circuit design is not far sensitive to the temperature variations and also process variations. Besides, uses the simple blocks which offer good sensitivity, high speed, the continuously feedback loop. This design provides up to 40% reduction in power consumption in active mode.Keywords: active mode, delay monitor, body biasing, VDD scaling, low power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18511846 Underwater Wireless Sensor Network Layer Design for Reef Restoration
Authors: T. T. Manikandan, Rajeev Sukumaran
Abstract:
Coral Reefs are very important for the majority of marine ecosystems. But, such vital species are under major threat due to the factors such as ocean acidification, overfishing, and coral bleaching. To conserve the coral reefs, reef restoration activities are carried out across the world. After reef restoration, various parameters have to be monitored in order to ensure the overall effectiveness of the reef restoration. Underwater Wireless Sensor Network (UWSN) based monitoring is widely adopted for such long monitoring activities. Since monitoring of coral reef restoration activities is time sensitive, the QoS guarantee offered by the network with respect to delay is vital. So this research focuses on the analytical modeling of network layer delay using Stochastic Network Calculus (SNC). The core focus of the proposed model will be on the analysis of stochastic dependencies between the network flow and deriving the stochastic delay bounds for the flows that traverse in tandem in UWSNs. The derived analytical bounds are evaluated for their effectiveness using discrete event simulations.
Keywords: Coral Reef Restoration, SNC, SFA, PMOO, Tandem of Queues, Delay Bound.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4261845 Energy-Efficient Clustering Protocol in Wireless Sensor Networks for Healthcare Monitoring
Authors: Ebrahim Farahmand, Ali Mahani
Abstract:
Wireless sensor networks (WSNs) can facilitate continuous monitoring of patients and increase early detection of emergency conditions and diseases. High density WSNs helps us to accurately monitor a remote environment by intelligently combining the data from the individual nodes. Due to energy capacity limitation of sensors, enhancing the lifetime and the reliability of WSNs are important factors in designing of these networks. The clustering strategies are verified as effective and practical algorithms for reducing energy consumption in WSNs and can tackle WSNs limitations. In this paper, an Energy-efficient weight-based Clustering Protocol (EWCP) is presented. Artificial retina is selected as a case study of WSNs applied in body sensors. Cluster heads’ (CHs) selection is equipped with energy efficient parameters. Moreover, cluster members are selected based on their distance to the selected CHs. Comparing with the other benchmark protocols, the lifetime of EWCP is improved significantly.Keywords: Clustering of WSNs, healthcare monitoring, weight-based clustering, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15551844 Student Feedback and Its Impact on Fostering the Quality of Teaching at the Academia
Authors: S. Vanker, A. Aaver, A. Roio, L. Nuut
Abstract:
To be sure about the effective and less effective/ineffective approaches to course instruction, we hold the opinion that the faculty members need regular feedback from their students in order to be aware of how well or unwell their teaching styles have worked when instructing the courses. It can be confirmed without a slightest hesitation that undergraduate students’ motivated-ness can be sustained when continually improving the quality of teaching and properly sequencing the academic courses both, in the curricula and timetables. At Estonian Aviation Academy, four different forms of feedback are used: Lecture monitoring, questionnaires for all students, study information system subject monitoring and direct feedback received by the lecturer. Questionnaires for all students are arranged once during a study year and separately for the first year and senior students. The results are discussed in academic departments together with student representatives, analyzed with the teaching staff and, if needed, improvements are suggested. In addition, a monitoring system is planned where a lecturer acts in both roles – as an observer and as the lecturer. This will foster better exchange of experience and through this help to make the whole study process more interesting.Keywords: Student support, learner motivation, feedback, undergraduate education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11761843 Fabrication of Microfluidic Device for Quantitative Monitoring of Algal Cell Behavior Using X-ray LIGA Technology
Authors: J. Ruenin, S. Sukprasong, R. Phatthanakun, N. Chomnawang, P. Kuntanawat
Abstract:
In this paper, a simple microfluidic device for monitoring algal cell behavior is proposed. An array of algal microwells is fabricated by PDMS soft-lithography using X-ray LIGA mold, placed on a glass substrate. Two layers of replicated PDMS and substrate are attached by oxygen plasma bonding, creating a microchannel for the microfluidic system. Algal cell are loaded into the microfluidic device, which provides positive charge on the bottom surface of wells. Algal cells, which are negative charged, can be attracted to the bottom of the wells via electrostatic interaction. By varying the concentration of algal cells in the loading suspension, it is possible to obtain wells with a single cell. Liquid medium for cells monitoring are flown continuously over the wells, providing nutrient and waste exchange between the well and the main flow. This device could lead to the uncovering of the quantitative biology of the algae, which is a key to effective and extensive algal utilizations in the field of biotechnology, food industry and bioenergy research and developments.
Keywords: Algal cells, microfluidic device, X-ray LIGA, X-ray lithography, metallic mold, synchrotron light, PDMS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24301842 Online Monitoring Rheological Property of Polymer Melt during Injection Molding
Authors: Chung-Chih Lin, Chien-Liang Wu
Abstract:
The detection of the polymer melt state during manufacture process is regarded as an efficient way to control the molded part quality in advance. Online monitoring rheological property of polymer melt during processing procedure provides an approach to understand the melt state immediately. Rheological property reflects the polymer melt state at different processing parameters and is very important in injection molding process especially. An approach that demonstrates how to calculate rheological property of polymer melt through in-process measurement, using injection molding as an example, is proposed in this study. The system consists of two sensors and a data acquisition module can process the measured data, which are used for the calculation of rheological properties of polymer melt. The rheological properties of polymer melt discussed in this study include shear rate and viscosity which are investigated with respect to injection speed and melt temperature. The results show that the effect of injection speed on the rheological properties is apparent, especially for high melt temperature and should be considered for precision molding process.
Keywords: Injection molding, melt viscosity, shear rate, monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28071841 Model based Soft-Sensor for Industrial Crystallization: On-line Mass of Crystals and Solubility Measurement
Authors: Cédric Damour, Michel Benne, Brigitte Grondin-Perez, Jean-Pierre Chabriat
Abstract:
Monitoring and control of cane sugar crystallization processes depend on the stability of the supersaturation (σ ) state. The most widely used information to represent σ is the electrical conductivity κ of the solutions. Nevertheless, previous studies point out the shortcomings of this approach: κ may be regarded as inappropriate to guarantee an accurate estimation of σ in impure solutions. To improve the process control efficiency, additional information is necessary. The mass of crystals in the solution ( c m ) and the solubility (mass ratio of sugar to water / s w m m ) are relevant to complete information. Indeed, c m inherently contains information about the mass balance and / s w m m contains information about the supersaturation state of the solution. The main problem is that c m and / s w m m are not available on-line. In this paper, a model based soft-sensor is presented for a final crystallization stage (C sugar). Simulation results obtained on industrial data show the reliability of this approach, c m and the crystal content ( cc ) being estimated with a sufficient accuracy for achieving on-line monitoring in industryKeywords: Soft-sensor, on-line monitoring, cane sugarcrystallization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21361840 Dynamically Monitoring Production Methods for Identifying Structural Changes relevant to Logistics
Authors: Marco Kennemann, Steffen C. Eickemeyer, Peter Nyhuis
Abstract:
Due to the growing dynamic and complexity within the market environment production enterprises in particular are faced with new logistic challenges. Moreover, it is here in this dynamic environment that the Logistic Operating Curve Theory also reaches its limits as a method for describing the correlations between the logistic objectives. In order to convert this theory into a method for dynamically monitoring productions this paper will introduce methods for reliably and quickly identifying structural changes relevant to logistics.Keywords: Dynamics, Logistic Operating Curves, Production Logistics, Production Planning and Control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13861839 Envelope-Wavelet Packet Transform for Machine Condition Monitoring
Authors: M. F. Yaqub, I. Gondal, J. Kamruzzaman
Abstract:
Wavelet transform has been extensively used in machine fault diagnosis and prognosis owing to its strength to deal with non-stationary signals. The existing Wavelet transform based schemes for fault diagnosis employ wavelet decomposition of the entire vibration frequency which not only involve huge computational overhead in extracting the features but also increases the dimensionality of the feature vector. This increase in the dimensionality has the tendency to 'over-fit' the training data and could mislead the fault diagnostic model. In this paper a novel technique, envelope wavelet packet transform (EWPT) is proposed in which features are extracted based on wavelet packet transform of the filtered envelope signal rather than the overall vibration signal. It not only reduces the computational overhead in terms of reduced number of wavelet decomposition levels and features but also improves the fault detection accuracy. Analytical expressions are provided for the optimal frequency resolution and decomposition level selection in EWPT. Experimental results with both actual and simulated machine fault data demonstrate significant gain in fault detection ability by EWPT at reduced complexity compared to existing techniques.Keywords: Envelope Detection, Wavelet Transform, Bearing Faults, Machine Health Monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19601838 A SAW-less Dual-Band CDMA Diversity and Simultaneous-GPS Zero-IF Receiver
Authors: Bassem Fahs, Philippe Barré, Patrick Ozenne, Eric Chartier, Guillaume Hérault, Sébastien Jacquet, Sébastien Clamagirand
Abstract:
We present a dual-band (Cellular & PCS) dual-path zero-IF receiver for CDMA2000 diversity, monitoring and simultaneous-GPS. The secondary path is a SAW-less diversity CDMA receiver which can be also used for advanced features like monitoring when supported with an additional external VCO. A GPS receiver is integrated with its dedicated VCO allowing simultaneous positioning during a cellular call. The circuit is implemented in a 0.25μm 40GHz-fT BiCMOS process and uses a HVQFN 56-pin package. It consumes a maximum 300mW from a 2.8V supply in dual-modes. The chip area is 12.8mm2.Keywords: CDMA, diversity, GPS, zero-IF, SAW-less
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18171837 Technique for Online Condition Monitoring of Surge Arrestors
Authors: Anil S. Khopkar, Kartik S. Pandya
Abstract:
Lightning overvoltage phenomenon in power systems cannot be avoided; however, it can be controlled to certain extent. To prevent system failure, power system equipment must be protected against overvoltage. Metal Oxide Surge Arrestors (MOSA) are connected in the system to provide protection against overvoltages. Under normal working conditions, MOSA function as, insulators, offering a conductive path during overvoltage events. MOSA consists of zinc oxide elements (ZnO Blocks) which has non-linear V-I characteristics. The ZnO blocks are connected in series and fitted in ceramic or polymer housing. Over time, these components degrade due to continuous operation. The degradation of zinc oxide elements increases the leakage current flowing through the surge arrestors. This increased leakage current results in elevated temperatures within the surge arrester, further decreasing the resistance of the zinc oxide elements. Consequently, the leakage current increases, leading to higher temperatures within the MOSA. This cycle creates thermal runaway conditions for the MOSA. Once a surge arrester reaches the thermal runaway condition, it cannot return to normal working conditions. This condition is a primary cause of premature failure of surge arrestors. Given that MOSA constitutes a core protective device for electrical power systems against transients, it contributes significantly to the reliable operation of power system networks. Therefore, periodic condition monitoring of surge arrestors is essential. Both online and offline condition monitoring techniques are available for surge arrestors. Offline condition monitoring techniques are not as popular because they require the removal of surge arrestors from the system, which requires system shutdown. Therefore, online condition monitoring techniques are more commonly used. This paper presents an evaluation technique for the surge arrester condition based on leakage current analysis. The maximum amplitudes of total leakage current (IT), fundamental resistive leakage current (IR), and third harmonic resistive leakage current (I3rd) are analyzed as indicators for surge arrester condition monitoring.
Keywords: Metal Oxide Surge Arrester, MOSA, Over voltage, total leakage current, resistive leakage current, third harmonic resistive leakage current, capacitive leakage current.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 871836 Reconstitute Information about Discontinued Water Quality Variables in the Nile Delta Monitoring Network Using Two Record Extension Techniques
Authors: Bahaa Khalil, Taha B. M. J. Ouarda, André St-Hilaire
Abstract:
The world economic crises and budget constraints have caused authorities, especially those in developing countries, to rationalize water quality monitoring activities. Rationalization consists of reducing the number of monitoring sites, the number of samples, and/or the number of water quality variables measured. The reduction in water quality variables is usually based on correlation. If two variables exhibit high correlation, it is an indication that some of the information produced may be redundant. Consequently, one variable can be discontinued, and the other continues to be measured. Later, the ordinary least squares (OLS) regression technique is employed to reconstitute information about discontinued variable by using the continuously measured one as an explanatory variable. In this paper, two record extension techniques are employed to reconstitute information about discontinued water quality variables, the OLS and the Line of Organic Correlation (LOC). An empirical experiment is conducted using water quality records from the Nile Delta water quality monitoring network in Egypt. The record extension techniques are compared for their ability to predict different statistical parameters of the discontinued variables. Results show that the OLS is better at estimating individual water quality records. However, results indicate an underestimation of the variance in the extended records. The LOC technique is superior in preserving characteristics of the entire distribution and avoids underestimation of the variance. It is concluded from this study that the OLS can be used for the substitution of missing values, while LOC is preferable for inferring statements about the probability distribution.Keywords: Record extension, record augmentation, monitoringnetworks, water quality indicators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16121835 Classifying Turbomachinery Blade Mode Shapes Using Artificial Neural Networks
Authors: Ismail Abubakar, Hamid Mehrabi, Reg Morton
Abstract:
Currently, extensive signal analysis is performed in order to evaluate structural health of turbomachinery blades. This approach is affected by constraints of time and the availability of qualified personnel. Thus, new approaches to blade dynamics identification that provide faster and more accurate results are sought after. Generally, modal analysis is employed in acquiring dynamic properties of a vibrating turbomachinery blade and is widely adopted in condition monitoring of blades. The analysis provides useful information on the different modes of vibration and natural frequencies by exploring different shapes that can be taken up during vibration since all mode shapes have their corresponding natural frequencies. Experimental modal testing and finite element analysis are the traditional methods used to evaluate mode shapes with limited application to real live scenario to facilitate a robust condition monitoring scheme. For a real time mode shape evaluation, rapid evaluation and low computational cost is required and traditional techniques are unsuitable. In this study, artificial neural network is developed to evaluate the mode shape of a lab scale rotating blade assembly by using result from finite element modal analysis as training data. The network performance evaluation shows that artificial neural network (ANN) is capable of mapping the correlation between natural frequencies and mode shapes. This is achieved without the need of extensive signal analysis. The approach offers advantage from the perspective that the network is able to classify mode shapes and can be employed in real time including simplicity in implementation and accuracy of the prediction. The work paves the way for further development of robust condition monitoring system that incorporates real time mode shape evaluation.
Keywords: Modal analysis, artificial neural network, mode shape, natural frequencies, pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9081834 Development of Affordable and Reliable Diagnostic Tools to Record Vital Parameters for Improving Health Care in Low Resources Settings
Authors: Mannan Mridha, Usama Gazay, Kosovare V. Aslani, Hugo Linder, Alice Ravizza, Carmelo de Maria
Abstract:
In most developing countries, although the vast majority of the people are living in the rural areas, the qualified medical doctors are not available there. Health care workers and paramedics, called village doctors, informal healthcare providers, are largely responsible for the rural medical care. Mishaps due to wrong diagnosis and inappropriate medication have been causing serious suffering that is preventable. While innovators have created many devices, the vast majority of these technologies do not find applications to address the needs and conditions in low-resource settings. The primary motive is to address the acute lack of affordable medical technologies for the poor people in low-resource settings. A low cost smart medical device that is portable, battery operated and can be used at any point of care has been developed to detect breathing rate, electrocardiogram (ECG) and arterial pulse rate to improve diagnosis and monitoring of patients and thus improve care and safety. This simple and easy to use smart medical device can be used, managed and maintained effectively and safely by any health worker with some training. In order to empower the health workers and village doctors, our device is being further developed to integrate with ICT tools like smart phones and connect to the medical experts wherever available, to manage the serious health problems.
Keywords: Healthcare for low resources settings, health awareness education, improve patient care and safety, smart and affordable medical device.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8551833 ICT for Smart Appliances: Current Technology and Identification of Future ICT Trend
Authors: Abubakar Uba Ibrahim, Ibrahim Haruna Shanono
Abstract:
Smart metering and demand response are gaining ground in industrial and residential applications. Smart Appliances have been given concern towards achieving Smart home. The success of Smart grid development relies on the successful implementation of Information and Communication Technology (ICT) in power sector. Smart Appliances have been the technology under development and many new contributions to its realization have been reported in the last few years. The role of ICT here is to capture data in real time, thereby allowing bi-directional flow of information/data between producing and utilization point; that lead a way for the attainment of Smart appliances where home appliances can communicate between themselves and provide a self-control (switch on and off) using the signal (information) obtained from the grid. This paper depicts the background on ICT for smart appliances paying a particular attention to the current technology and identifying the future ICT trends for load monitoring through which smart appliances can be achieved to facilitate an efficient smart home system which promote demand response program. This paper grouped and reviewed the recent contributions, in order to establish the current state of the art and trends of the technology, so that the reader can be provided with a comprehensive and insightful review of where ICT for smart appliances stands and is heading to. The paper also presents a brief overview of communication types, and then narrowed the discussion to the load monitoring (Non-intrusive Appliances Load Monitoring ‘NALM’). Finally, some future trends and challenges in the further development of the ICT framework are discussed to motivate future contributions that address open problems and explore new possibilities.Keywords: Communication technology between appliances, demand response, load monitoring, smart appliances and smart grid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25531832 Design and Simulation of Heartbeat Measurement System Using Arduino Microcontroller in Proteus
Authors: Muhibul H. Bhuyan, Mafujul Hasan
Abstract:
If a person can monitor his/her heart rate regularly then he/she can detect heart disease early and thus he/she can enjoy longer life span. Therefore, this disease should be taken seriously. Hence, many health care devices and monitoring systems are being designed to keep track of the heart disease. This work reports a design and simulation processes of an Arduino microcontroller based heart rate measurement and monitoring system in Proteus environment. Clipping sensors were utilized to sense the heart rate of an individual from the finger tips. It is a digital device and uses mainly infrared (IR) transmitter (mainly IR LED) and receiver (mainly IR photo-transistor or IR photo-detector). When the heart pumps the blood and circulates it among the blood vessels of the body, the changed blood pressure is detected by the transmitter and then reflected back to the receiver accordingly. The reflected signals are then processed inside the microcontroller through a software written assembly language and appropriate heart rate (HR) is determined by it in beats per minute (bpm) from the detected signal for a duration of 10 seconds and display the same in bpm on the LCD screen in digital format. The designed system was simulated on several persons with varying ages, for example, infants, adult persons and active athletes. Simulation results were found very satisfactory.
Keywords: Heart rate measurement, design, simulation, Proteus, Arduino Uno microcontroller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17981831 Perceptions of Health Risks amongst Tertiary Education Students in Mauritius
Authors: Smita S. D. Goorah, Dilish Jokhoo
Abstract:
A personal estimate of a health risk may not correspond to a scientific assessment of the health risk. Hence, there is a need to investigate perceived health risks in the public. In this study, a young, educated and healthy group of people from a tertiary institute were questioned about their health concerns. Ethics clearance was obtained and data was collected by means of a questionnaire. 362 students participated in the study. Tobacco use, heavy alcohol drinking, illicit drugs, unsafe sex and potential carcinogens were perceived to be the five greatest threats to health in this cohort. On the other hand natural health products, unemployment, unmet contraceptive needs, family violence and homelessness were felt to be the least perceived health risks. Nutrition-related health risks as well as health risks due to physical inactivity and obesity were not perceived as major health threats. Such a study of health perceptions may guide health promotion campaigns.
Keywords: Health promotion, perceptions of health risks, university students.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18631830 Adaptive Nonparametric Approach for Guaranteed Real-Time Detection of Targeted Signals in Multichannel Monitoring Systems
Authors: Andrey V. Timofeev
Abstract:
An adaptive nonparametric method is proposed for stable real-time detection of seismoacoustic sources in multichannel C-OTDR systems with a significant number of channels. This method guarantees given upper boundaries for probabilities of Type I and Type II errors. Properties of the proposed method are rigorously proved. The results of practical applications of the proposed method in a real C-OTDR-system are presented in this report.Keywords: Adaptive detection, change point, interval estimation, guaranteed detection, multichannel monitoring systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18841829 The Implementation of the Multi-Agent Classification System (MACS) in Compliance with FIPA Specifications
Authors: Mohamed R. Mhereeg
Abstract:
The paper discusses the implementation of the MultiAgent classification System (MACS) and utilizing it to provide an automated and accurate classification of end users developing applications in the spreadsheet domain. However, different technologies have been brought together to build MACS. The strength of the system is the integration of the agent technology with the FIPA specifications together with other technologies, which are the .NET widows service based agents, the Windows Communication Foundation (WCF) services, the Service Oriented Architecture (SOA), and Oracle Data Mining (ODM). The Microsoft's .NET widows service based agents were utilized to develop the monitoring agents of MACS, the .NET WCF services together with SOA approach allowed the distribution and communication between agents over the WWW. The Monitoring Agents (MAs) were configured to execute automatically to monitor excel spreadsheets development activities by content. Data gathered by the Monitoring Agents from various resources over a period of time was collected and filtered by a Database Updater Agent (DUA) residing in the .NET client application of the system. This agent then transfers and stores the data in Oracle server database via Oracle stored procedures for further processing that leads to the classification of the end user developers.
Keywords: MACS, Implementation, Multi-Agent, SOA, Autonomous, WCF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17091828 Artificial Neural Networks for Identification and Control of a Lab-Scale Distillation Column Using LABVIEW
Authors: J. Fernandez de Canete, S. Gonzalez-Perez, P. del Saz-Orozco
Abstract:
LABVIEW is a graphical programming language that has its roots in automation control and data acquisition. In this paper we have utilized this platform to provide a powerful toolset for process identification and control of nonlinear systems based on artificial neural networks (ANN). This tool has been applied to the monitoring and control of a lab-scale distillation column DELTALAB DC-SP. The proposed control scheme offers high speed of response for changes in set points and null stationary error for dual composition control and shows robustness in presence of externally imposed disturbance.
Keywords: Distillation, neural networks, LABVIEW, monitoring, identification, control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29191827 A Low-Cost Air Quality Monitoring Internet of Things Platform
Authors: Christos Spandonidis, Stefanos Tsantilas, Elias Sedikos, Nektarios Galiatsatos, Fotios Giannopoulos, Panagiotis Papadopoulos, Nikolaos Demagos, Dimitrios Reppas, Christos Giordamlis
Abstract:
In the present paper, a low cost, compact and modular Internet of Things (IoT) platform for air quality monitoring in urban areas is presented. This platform comprises of dedicated low cost, low power hardware and the associated embedded software that enable measurement of particles (PM2.5 and PM10), NO, CO, CO2 and O3 concentration in the air, along with relative temperature and humidity. This integrated platform acts as part of a greater air pollution data collecting wireless network that is able to monitor the air quality in various regions and neighborhoods of an urban area, by providing sensor measurements at a high rate that reaches up to one sample per second. It is therefore suitable for Big Data analysis applications such as air quality forecasts, weather forecasts and traffic prediction. The first real world test for the developed platform took place in Thessaloniki, Greece, where 16 devices were installed in various buildings in the city. In the near future, many more of these devices are going to be installed in the greater Thessaloniki area, giving a detailed air quality map of the city.Keywords: Distributed sensor system, environmental monitoring, Internet of Things, IoT, Smart Cities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8281826 Automated Process Quality Monitoring with Prediction of Fault Condition Using Measurement Data
Authors: Hyun-Woo Cho
Abstract:
Detection of incipient abnormal events is important to improve safety and reliability of machine operations and reduce losses caused by failures. Improper set-ups or aligning of parts often leads to severe problems in many machines. The construction of prediction models for predicting faulty conditions is quite essential in making decisions on when to perform machine maintenance. This paper presents a multivariate calibration monitoring approach based on the statistical analysis of machine measurement data. The calibration model is used to predict two faulty conditions from historical reference data. This approach utilizes genetic algorithms (GA) based variable selection, and we evaluate the predictive performance of several prediction methods using real data. The results shows that the calibration model based on supervised probabilistic principal component analysis (SPPCA) yielded best performance in this work. By adopting a proper variable selection scheme in calibration models, the prediction performance can be improved by excluding non-informative variables from their model building steps.Keywords: Prediction, operation monitoring, on-line data, nonlinear statistical methods, empirical model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16581825 Blood Glucose Level Measurement from Breath Analysis
Authors: Tayyab Hassan, Talha Rehman, Qasim Abdul Aziz, Ahmad Salman
Abstract:
The constant monitoring of blood glucose level is necessary for maintaining health of patients and to alert medical specialists to take preemptive measures before the onset of any complication as a result of diabetes. The current clinical monitoring of blood glucose uses invasive methods repeatedly which are uncomfortable and may result in infections in diabetic patients. Several attempts have been made to develop non-invasive techniques for blood glucose measurement. In this regard, the existing methods are not reliable and are less accurate. Other approaches claiming high accuracy have not been tested on extended dataset, and thus, results are not statistically significant. It is a well-known fact that acetone concentration in breath has a direct relation with blood glucose level. In this paper, we have developed the first of its kind, reliable and high accuracy breath analyzer for non-invasive blood glucose measurement. The acetone concentration in breath was measured using MQ 138 sensor in the samples collected from local hospitals in Pakistan involving one hundred patients. The blood glucose levels of these patients are determined using conventional invasive clinical method. We propose a linear regression classifier that is trained to map breath acetone level to the collected blood glucose level achieving high accuracy.
Keywords: Blood glucose level, breath acetone concentration, diabetes, linear regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15531824 MATLAB-Based Graphical User Interface (GUI) for Data Mining as a Tool for Environment Management
Authors: M. Awawdeh, A. Fedi
Abstract:
The application of data mining to environmental monitoring has become crucial for a number of tasks related to emergency management. Over recent years, many tools have been developed for decision support system (DSS) for emergency management. In this article a graphical user interface (GUI) for environmental monitoring system is presented. This interface allows accomplishing (i) data collection and observation and (ii) extraction for data mining. This tool may be the basis for future development along the line of the open source software paradigm.
Keywords: Data Mining, Environmental data, Mathematical Models, Matlab Graphical User Interface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4741