Search results for: error detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2676

Search results for: error detection

2526 Error Rate Probability for Coded MQAM with MRC Diversity in the Presence of Cochannel Interferers over Nakagami-Fading Channels

Authors: J.S. Ubhi, M.S. Patterh, T.S. Kamal

Abstract:

Exact expressions for bit-error probability (BEP) for coherent square detection of uncoded and coded M-ary quadrature amplitude modulation (MQAM) using an array of antennas with maximal ratio combining (MRC) in a flat fading channel interference limited system in a Nakagami-m fading environment is derived. The analysis assumes an arbitrary number of independent and identically distributed Nakagami interferers. The results for coded MQAM are computed numerically for the case of (24,12) extended Golay code and compared with uncoded MQAM by plotting error probabilities versus average signal-to-interference ratio (SIR) for various values of order of diversity N, number of distinct symbols M, in order to examine the effect of cochannel interferers on the performance of the digital communication system. The diversity gains and net gains are also presented in tabular form in order to examine the performance of digital communication system in the presence of interferers, as the order of diversity increases. The analytical results presented in this paper are expected to provide useful information needed for design and analysis of digital communication systems with space diversity in wireless fading channels.

Keywords: Cochannel interference, maximal ratio combining, Nakagami-m fading, wireless digital communications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854
2525 Efficient Iterative Detection Technique in Wireless Communication System

Authors: Hwan-Jun Choi, Sung-Bok Choi, Hyoung-Kyu Song

Abstract:

Recently, among the MIMO-OFDM detection techniques, a lot of papers suggested V-BLAST scheme which can achieve high data rate. Therefore, the signal detection of MIMO-OFDM system is important issue. In this paper, efficient iterative V-BLAST detection technique is proposed in wireless communication system. The proposed scheme adjusts the number of candidate symbol and iterative scheme based on channel state. According to the simulation result, the proposed scheme has better BER performance than conventional schemes and similar BER performance of the QRD-M with iterative scheme. Moreover complexity of proposed scheme has 50.6% less than complexity of QRD-M detection with iterative scheme. Therefore the proposed detection scheme can be efficiently used in wireless communication.

Keywords: MIMO-OFDM, V-BLAST, QR-decomposition, QRD-M, DFE, Iterative scheme, Channel condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2056
2524 Real Time Video Based Smoke Detection Using Double Optical Flow Estimation

Authors: Anton Stadler, Thorsten Ike

Abstract:

In this paper, we present a video based smoke detection algorithm based on TVL1 optical flow estimation. The main part of the algorithm is an accumulating system for motion angles and upward motion speed of the flow field. We optimized the usage of TVL1 flow estimation for the detection of smoke with very low smoke density. Therefore, we use adapted flow parameters and estimate the flow field on difference images. We show in theory and in evaluation that this improves the performance of smoke detection significantly. We evaluate the smoke algorithm using videos with different smoke densities and different backgrounds. We show that smoke detection is very reliable in varying scenarios. Further we verify that our algorithm is very robust towards crowded scenes disturbance videos.

Keywords: Low density, optical flow, upward smoke motion, video based smoke detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419
2523 On the outlier Detection in Nonlinear Regression

Authors: Hossein Riazoshams, Midi Habshah, Jr., Mohamad Bakri Adam

Abstract:

The detection of outliers is very essential because of their responsibility for producing huge interpretative problem in linear as well as in nonlinear regression analysis. Much work has been accomplished on the identification of outlier in linear regression, but not in nonlinear regression. In this article we propose several outlier detection techniques for nonlinear regression. The main idea is to use the linear approximation of a nonlinear model and consider the gradient as the design matrix. Subsequently, the detection techniques are formulated. Six detection measures are developed that combined with three estimation techniques such as the Least-Squares, M and MM-estimators. The study shows that among the six measures, only the studentized residual and Cook Distance which combined with the MM estimator, consistently capable of identifying the correct outliers.

Keywords: Nonlinear Regression, outliers, Gradient, LeastSquare, M-estimate, MM-estimate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3183
2522 Detection of Moving Images Using Neural Network

Authors: P. Latha, L. Ganesan, N. Ramaraj, P. V. Hari Venkatesh

Abstract:

Motion detection is a basic operation in the selection of significant segments of the video signals. For an effective Human Computer Intelligent Interaction, the computer needs to recognize the motion and track the moving object. Here an efficient neural network system is proposed for motion detection from the static background. This method mainly consists of four parts like Frame Separation, Rough Motion Detection, Network Formation and Training, Object Tracking. This paper can be used to verify real time detections in such a way that it can be used in defense applications, bio-medical applications and robotics. This can also be used for obtaining detection information related to the size, location and direction of motion of moving objects for assessment purposes. The time taken for video tracking by this Neural Network is only few seconds.

Keywords: Frame separation, Correlation Network, Neural network training, Radial Basis Function, object tracking, Motion Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3153
2521 Puff Noise Detection and Cancellation for Robust Speech Recognition

Authors: Sangjun Park, Jungpyo Hong, Byung-Ok Kang, Yun-keun Lee, Minsoo Hahn

Abstract:

In this paper, an algorithm for detecting and attenuating puff noises frequently generated under the mobile environment is proposed. As a baseline system, puff detection system is designed based on Gaussian Mixture Model (GMM), and 39th Mel Frequency Cepstral Coefficient (MFCC) is extracted as feature parameters. To improve the detection performance, effective acoustic features for puff detection are proposed. In addition, detected puff intervals are attenuated by high-pass filtering. The speech recognition rate was measured for evaluation and confusion matrix and ROC curve are used to confirm the validity of the proposed system.

Keywords: Gaussian mixture model, puff detection and cancellation, speech enhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2234
2520 Structural Damage Detection Using Sensors Optimally Located

Authors: Carlos Alberto Riveros, Edwin Fabián García, Javier Enrique Rivero

Abstract:

The measured data obtained from sensors in continuous monitoring of civil structures are mainly used for modal identification and damage detection. Therefore, when modal identification analysis is carried out the quality in the identification of the modes will highly influence the damage detection results. It is also widely recognized that the usefulness of the measured data used for modal identification and damage detection is significantly influenced by the number and locations of sensors. The objective of this study is the numerical implementation of two widely known optimum sensor placement methods in beam-like structures.

Keywords: Optimum sensor placement, structural damage detection, modal identification, beam-like structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2293
2519 Active Islanding Detection Method Using Intelligent Controller

Authors: Kuang-Hsiung Tan, Chih-Chan Hu, Chien-Wu Lan, Shih-Sung Lin, Te-Jen Chang

Abstract:

An active islanding detection method using disturbance signal injection with intelligent controller is proposed in this study. First, a DC\AC power inverter is emulated in the distributed generator (DG) system to implement the tracking control of active power, reactive power outputs and the islanding detection. The proposed active islanding detection method is based on injecting a disturbance signal into the power inverter system through the d-axis current which leads to a frequency deviation at the terminal of the RLC load when the utility power is disconnected. Moreover, in order to improve the transient and steady-state responses of the active power and reactive power outputs of the power inverter, and to further improve the performance of the islanding detection method, two probabilistic fuzzy neural networks (PFNN) are adopted to replace the traditional proportional-integral (PI) controllers for the tracking control and the islanding detection. Furthermore, the network structure and the online learning algorithm of the PFNN are introduced in detail. Finally, the feasibility and effectiveness of the tracking control and the proposed active islanding detection method are verified with experimental results.

Keywords: Distributed generators, probabilistic fuzzy neural network, islanding detection, non-detection zone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425
2518 Vehicle Detection Method using Haar-like Feature on Real Time System

Authors: Sungji Han, Youngjoon Han, Hernsoo Hahn

Abstract:

This paper presents a robust vehicle detection approach using Haar-like feature. It is possible to get a strong edge feature from this Haar-like feature. Therefore it is very effective to remove the shadow of a vehicle on the road. And we can detect the boundary of vehicles accurately. In the paper, the vehicle detection algorithm can be divided into two main steps. One is hypothesis generation, and the other is hypothesis verification. In the first step, it determines vehicle candidates using features such as a shadow, intensity, and vertical edge. And in the second step, it determines whether the candidate is a vehicle or not by using the symmetry of vehicle edge features. In this research, we can get the detection rate over 15 frames per second on our embedded system.

Keywords: vehicle detection, haar-like feauture, single camera, real time

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3336
2517 Single Event Transient Tolerance Analysis in 8051 Microprocessor Using Scan Chain

Authors: Jun Sung Go, Jong Kang Park, Jong Tae Kim

Abstract:

As semi-conductor manufacturing technology evolves; the single event transient problem becomes more significant issue. Single event transient has a critical impact on both combinational and sequential logic circuits, so it is important to evaluate the soft error tolerance of the circuits at the design stage. In this paper, we present a soft error detecting simulation using scan chain. The simulation model generates a single event transient randomly in the circuit, and detects the soft error during the execution of the test patterns. We verified this model by inserting a scan chain in an 8051 microprocessor using 65 nm CMOS technology. While the test patterns generated by ATPG program are passing through the scan chain, we insert a single event transient and detect the number of soft errors per sub-module. The experiments show that the soft error rates per cell area of the SFR module is 277% larger than other modules.

Keywords: Scan chain, single event transient, soft error, 8051 processor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492
2516 Correction of Frequent English Writing Errors by Using Coded Indirect Corrective Feedback and Error Treatment

Authors: Chaiwat Tantarangsee

Abstract:

The purposes of this study are 1) to study the frequent English writing errors of students registering the course: Reading and Writing English for Academic Purposes II, and 2) to find out the results of writing error correction by using coded indirect corrective feedback and writing error treatments. Samples include 28 2nd year English Major students, Faculty of Education, Suan Sunandha Rajabhat University. Tool for experimental study includes the lesson plan of the course; Reading and Writing English for Academic Purposes II, and tool for data collection includes 4 writing tests of short texts. The research findings disclose that frequent English writing errors found in this course comprise 7 types of grammatical errors, namely Fragment sentence, Subject-verb agreement, Wrong form of verb tense, Singular or plural noun endings, Run-ons sentence, Wrong form of verb pattern and Lack of parallel structure. Moreover, it is found that the results of writing error correction by using coded indirect corrective feedback and error treatment reveal the overall reduction of the frequent English writing errors and the increase of students’ achievement in the writing of short texts with the significance at .05.

Keywords: Coded indirect corrective feedback, error correction, error treatment, frequent English writing errors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2199
2515 An Edit-Distance Algorithm to Detect Correlated Attacks in Distributed Systems

Authors: Sule Simsek

Abstract:

Intrusion detection systems (IDS)are crucial components of the security mechanisms of today-s computer systems. Existing research on intrusion detection has focused on sequential intrusions. However, intrusions can also be formed by concurrent interactions of multiple processes. Some of the intrusions caused by these interactions cannot be detected using sequential intrusion detection methods. Therefore, there is a need for a mechanism that views the distributed system as a whole. L-BIDS (Lattice-Based Intrusion Detection System) is proposed to address this problem. In the L-BIDS framework, a library of intrusions and distributed traces are represented as lattices. Then these lattices are compared in order to detect intrusions in the distributed traces.

Keywords: Attack graph, distributed, edit-distance, misuse detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1389
2514 A Moving Human-Object Detection for Video Access Monitoring

Authors: Won-Ho Kim, Nuwan Sanjeewa Rajasooriya

Abstract:

In this paper, a simple moving human detection method is proposed for video surveillance system or access monitoring system. The frame difference and noise threshold are used for initial detection of a moving human-object, and simple labeling method is applied for final human-object segmentation. The simulated results show that the applied algorithm is fast to detect the moving human-objects by performing 95% of correct detection rate. The proposed algorithm has confirmed that can be used as an intelligent video access monitoring system.

Keywords: Moving human-object detection, Video access monitoring, Image processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2508
2513 Detecting Defects in Textile Fabrics with Optimal Gabor Filters

Authors: K. L. Mak, P. Peng

Abstract:

This paper investigates the problem of automated defect detection for textile fabrics and proposes a new optimal filter design method to solve this problem. Gabor Wavelet Network (GWN) is chosen as the major technique to extract the texture features from textile fabrics. Based on the features extracted, an optimal Gabor filter can be designed. In view of this optimal filter, a new semi-supervised defect detection scheme is proposed, which consists of one real-valued Gabor filter and one smoothing filter. The performance of the scheme is evaluated by using an offline test database with 78 homogeneous textile images. The test results exhibit accurate defect detection with low false alarm, thus showing the effectiveness and robustness of the proposed scheme. To evaluate the detection scheme comprehensively, a prototyped detection system is developed to conduct a real time test. The experiment results obtained confirm the efficiency and effectiveness of the proposed detection scheme.

Keywords: Defect detection, Filtering, Gabor function, Gaborwavelet networks, Textile fabrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2362
2512 Probability-Based Damage Detection of Structures Using Kriging Surrogates and Enhanced Ideal Gas Molecular Movement Algorithm

Authors: M. R. Ghasemi, R. Ghiasi, H. Varaee

Abstract:

Surrogate model has received increasing attention for use in detecting damage of structures based on vibration modal parameters. However, uncertainties existing in the measured vibration data may lead to false or unreliable output result from such model. In this study, an efficient approach based on Monte Carlo simulation is proposed to take into account the effect of uncertainties in developing a surrogate model. The probability of damage existence (PDE) is calculated based on the probability density function of the existence of undamaged and damaged states. The kriging technique allows one to genuinely quantify the surrogate error, therefore it is chosen as metamodeling technique. Enhanced version of ideal gas molecular movement (EIGMM) algorithm is used as main algorithm for model updating. The developed approach is applied to detect simulated damage in numerical models of 72-bar space truss and 120-bar dome truss. The simulation results show the proposed method can perform well in probability-based damage detection of structures with less computational effort compared to direct finite element model.

Keywords: Enhanced ideal gas molecular movement, Kriging, probability-based damage detection, probability of damage existence, surrogate modeling, uncertainty quantification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 949
2511 Hybrid Intelligent Intrusion Detection System

Authors: Norbik Bashah, Idris Bharanidharan Shanmugam, Abdul Manan Ahmed

Abstract:

Intrusion Detection Systems are increasingly a key part of systems defense. Various approaches to Intrusion Detection are currently being used, but they are relatively ineffective. Artificial Intelligence plays a driving role in security services. This paper proposes a dynamic model Intelligent Intrusion Detection System, based on specific AI approach for intrusion detection. The techniques that are being investigated includes neural networks and fuzzy logic with network profiling, that uses simple data mining techniques to process the network data. The proposed system is a hybrid system that combines anomaly, misuse and host based detection. Simple Fuzzy rules allow us to construct if-then rules that reflect common ways of describing security attacks. For host based intrusion detection we use neural-networks along with self organizing maps. Suspicious intrusions can be traced back to its original source path and any traffic from that particular source will be redirected back to them in future. Both network traffic and system audit data are used as inputs for both.

Keywords: Intrusion Detection, Network Security, Data mining, Fuzzy Logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2133
2510 Joint Microstatistic Multiuser Detection and Cancellation of Nonlinear Distortion Effects for the Uplink of MC-CDMA Systems Using Golay Codes

Authors: Peter Drotar, Juraj Gazda, Pavol Galajda, Dusan Kocur

Abstract:

The study in this paper underlines the importance of correct joint selection of the spreading codes for uplink of multicarrier code division multiple access (MC-CDMA) at the transmitter side and detector at the receiver side in the presence of nonlinear distortion due to high power amplifier (HPA). The bit error rate (BER) of system for different spreading sequences (Walsh code, Gold code, orthogonal Gold code, Golay code and Zadoff-Chu code) and different kinds of receivers (minimum mean-square error receiver (MMSE-MUD) and microstatistic multi-user receiver (MSF-MUD)) is compared by means of simulations for MC-CDMA transmission system. Finally, the results of analysis will show, that the application of MSF-MUD in combination with Golay codes can outperform significantly the other tested spreading codes and receivers for all mostly used models of HPA.

Keywords: HPA, MC-CDMA, microstatistic filter, multi-user receivers, PAPR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1762
2509 Accurate Positioning Method of Indoor Plastering Robot Based on Line Laser

Authors: Guanqiao Wang, Hongyang Yu

Abstract:

There is a lot of repetitive work in the traditional construction industry. These repetitive tasks can significantly improve production efficiency by replacing manual tasks with robots. Therefore, robots appear more and more frequently in the construction industry. Navigation and positioning is a very important task for construction robots, and the requirements for accuracy of positioning are very high. Traditional indoor robots mainly use radio frequency or vision methods for positioning. Compared with ordinary robots, the indoor plastering robot needs to be positioned closer to the wall for wall plastering, so the requirements for construction positioning accuracy are higher, and the traditional navigation positioning method has a large error, which will cause the robot to move. Without the exact position, the wall cannot be plastered or the error of plastering the wall is large. A positioning method is proposed, which is assisted by line lasers and uses image processing-based positioning to perform more accurate positioning on the traditional positioning work. In actual work, filter, edge detection, Hough transform and other operations are performed on the images captured by the camera. Each time the position of the laser line is found, it is compared with the standard value, and the position of the robot is moved or rotated to complete the positioning work. The experimental results show that the actual positioning error is reduced to less than 0.5 mm by this accurate positioning method.

Keywords: Indoor plastering robot, navigation, precise positioning, line laser, image processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 544
2508 Performance of Hybrid-MIMO Receiver Scheme in Cognitive Radio Network

Authors: Tanapong Khomyat, Peerapong Uthansakul, Monthippa Uthansakul

Abstract:

In this paper, we evaluate the performance of the Hybrid-MIMO Receiver Scheme (HMRS) in Cognitive Radio network (CR-network). We investigate the efficiency of the proposed scheme which the energy level and user number of primary user are varied according to the characteristic of CR-network. HMRS can allow users to transmit either Space-Time Block Code (STBC) or Spatial-Multiplexing (SM) streams simultaneously by using Successive Interference Cancellation (SIC) and Maximum Likelihood Detection (MLD). From simulation, the results indicate that the interference level effects to the performance of HMRS. Moreover, the exact closed-form capacity of the proposed scheme is derived and compared with STBC scheme.

Keywords: Hybrid-MIMO, Cognitive radio network (CRnetwork), Symbol Error Rate (SER), Successive interference cancellation (SIC), Maximum likelihood detection (MLD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1638
2507 Algebraic Approach for the Reconstruction of Linear and Convolutional Error Correcting Codes

Authors: Johann Barbier, Guillaume Sicot, Sebastien Houcke

Abstract:

In this paper we present a generic approach for the problem of the blind estimation of the parameters of linear and convolutional error correcting codes. In a non-cooperative context, an adversary has only access to the noised transmission he has intercepted. The intercepter has no knowledge about the parameters used by the legal users. So, before having acess to the information he has first to blindly estimate the parameters of the error correcting code of the communication. The presented approach has the main advantage that the problem of reconstruction of such codes can be expressed in a very simple way. This allows us to evaluate theorical bounds on the complexity of the reconstruction process but also bounds on the estimation rate. We show that some classical reconstruction techniques are optimal and also explain why some of them have theorical complexities greater than these experimentally observed.

Keywords: Blind estimation parameters, error correcting codes, non-cooperative context, reconstruction algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2200
2506 A Survey on Facial Feature Points Detection Techniques and Approaches

Authors: Rachid Ahdid, Khaddouj Taifi, Said Safi, Bouzid Manaut

Abstract:

Automatic detection of facial feature points plays an important role in applications such as facial feature tracking, human-machine interaction and face recognition. The majority of facial feature points detection methods using two-dimensional or three-dimensional data are covered in existing survey papers. In this article chosen approaches to the facial features detection have been gathered and described. This overview focuses on the class of researches exploiting facial feature points detection to represent facial surface for two-dimensional or three-dimensional face. In the conclusion, we discusses advantages and disadvantages of the presented algorithms.

Keywords: Facial feature points, face recognition, facial feature tracking, two-dimensional data, three-dimensional data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682
2505 Feature Point Detection by Combining Advantages of Intensity-based Approach and Edge-based Approach

Authors: Sungho Kim, Chaehoon Park, Yukyung Choi, Soon Kwon, In So Kweon

Abstract:

In this paper, a novel corner detection method is presented to stably extract geometrically important corners. Intensity-based corner detectors such as the Harris corner can detect corners in noisy environments but has inaccurate corner position and misses the corners of obtuse angles. Edge-based corner detectors such as Curvature Scale Space can detect structural corners but show unstable corner detection due to incomplete edge detection in noisy environments. The proposed image-based direct curvature estimation can overcome limitations in both inaccurate structural corner detection of the Harris corner detector (intensity-based) and the unstable corner detection of Curvature Scale Space caused by incomplete edge detection. Various experimental results validate the robustness of the proposed method.

Keywords: Feature, intensity, contour, hybrid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831
2504 Fault Detection and Isolation in Attitude Control Subsystem of Spacecraft Formation Flying Using Extended Kalman Filters

Authors: S. Ghasemi, K. Khorasani

Abstract:

In this paper, the problem of fault detection and isolation in the attitude control subsystem of spacecraft formation flying is considered. In order to design the fault detection method, an extended Kalman filter is utilized which is a nonlinear stochastic state estimation method. Three fault detection architectures, namely, centralized, decentralized, and semi-decentralized are designed based on the extended Kalman filters. Moreover, the residual generation and threshold selection techniques are proposed for these architectures.

Keywords: Formation flight of satellites, extended Kalman filter, fault detection and isolation, actuator fault.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950
2503 Correction of Frequent English Writing Errors by Using Coded Indirect Corrective Feedback and Error Treatment: The Case of Reading and Writing English for Academic Purposes II

Authors: Chaiwat Tantarangsee

Abstract:

The purposes of this study are 1) to study the frequent English writing errors of students registering the course: Reading and Writing English for Academic Purposes II, and 2) to find out the results of writing error correction by using coded indirect corrective feedback and writing error treatments. Samples include 28 2nd year English Major students, Faculty of Education, Suan Sunandha Rajabhat University. Tool for experimental study includes the lesson plan of the course; Reading and Writing English for Academic Purposes II, and tool for data collection includes 4 writing tests of short texts. The research findings disclose that frequent English writing errors found in this course comprise 7 types of grammatical errors, namely Fragment sentence, Subject-verb agreement, Wrong form of verb tense, Singular or plural noun endings, Run-ons sentence, Wrong form of verb pattern and Lack of parallel structure. Moreover, it is found that the results of writing error correction by using coded indirect corrective feedback and error treatment reveal the overall reduction of the frequent English writing errors and the increase of students’ achievement in the writing of short texts with the significance at .05.

Keywords: Coded indirect corrective feedback, error correction, and error treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1093
2502 Improved C-Fuzzy Decision Tree for Intrusion Detection

Authors: Krishnamoorthi Makkithaya, N. V. Subba Reddy, U. Dinesh Acharya

Abstract:

As the number of networked computers grows, intrusion detection is an essential component in keeping networks secure. Various approaches for intrusion detection are currently being in use with each one has its own merits and demerits. This paper presents our work to test and improve the performance of a new class of decision tree c-fuzzy decision tree to detect intrusion. The work also includes identifying best candidate feature sub set to build the efficient c-fuzzy decision tree based Intrusion Detection System (IDS). We investigated the usefulness of c-fuzzy decision tree for developing IDS with a data partition based on horizontal fragmentation. Empirical results indicate the usefulness of our approach in developing the efficient IDS.

Keywords: Data mining, Decision tree, Feature selection, Fuzzyc- means clustering, Intrusion detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
2501 Error Propagation in the RK5GL3 Method

Authors: J.S.C. Prentice

Abstract:

The RK5GL3 method is a numerical method for solving initial value problems in ordinary differential equations, and is based on a combination of a fifth-order Runge-Kutta method and 3-point Gauss-Legendre quadrature. In this paper we describe the propagation of local errors in this method, and show that the global order of RK5GL3 is expected to be six, one better than the underlying Runge- Kutta method.

Keywords: RK5GL3, RKrGLm, Runge-Kutta, Gauss-Legendre, initial value problem, order, local error, global error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1217
2500 Towards Integrating Statistical Color Features for Human Skin Detection

Authors: Mohd Zamri Osman, Mohd Aizaini Maarof, Mohd Foad Rohani

Abstract:

Human skin detection recognized as the primary step in most of the applications such as face detection, illicit image filtering, hand recognition and video surveillance. The performance of any skin detection applications greatly relies on the two components: feature extraction and classification method. Skin color is the most vital information used for skin detection purpose. However, color feature alone sometimes could not handle images with having same color distribution with skin color. A color feature of pixel-based does not eliminate the skin-like color due to the intensity of skin and skin-like color fall under the same distribution. Hence, the statistical color analysis will be exploited such mean and standard deviation as an additional feature to increase the reliability of skin detector. In this paper, we studied the effectiveness of statistical color feature for human skin detection. Furthermore, the paper analyzed the integrated color and texture using eight classifiers with three color spaces of RGB, YCbCr, and HSV. The experimental results show that the integrating statistical feature using Random Forest classifier achieved a significant performance with an F1-score 0.969.

Keywords: Color space, neural network, random forest, skin detection, statistical feature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957
2499 Satellite Beam Handoff Detection Algorithm Based On RCST Mobility Information

Authors: Ji Nyong Jang, Min Woo Lee, Eun Kyung Kim, Ki Keun Kim, Jae Sung Lim

Abstract:

Since DVB-RCS has been successively implemented, the mobile communication on the multi-beam satellite communication is attractive attention. And the DVB-RCS standard sets up to support mobility of a RCST. In the case of the spot-beam satellite system, the received signal strength does not differ largely between the center and the boundary of the beam. Thus, the RSS based handoff detection algorithm is not benefit to the satellite system as a terrestrial system. Therefore we propose an Adaptive handoff detection algorithm based on RCST mobility information. Our handoff detection algorithm not only can be used as centralized handoff detection algorithm but also removes uncertainties of handoff due to the variation of RSS. Performances were compared with RSS based handoff algorithm. Simulation results show that the proposed handoff detection algorithm not only achieved better handoff and link degradation rate, but also achieved better forward link spectral efficiency.

Keywords: DVB-RCS, satellite multi-beam handoff, mobility information, handover.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1713
2498 Target Detection with Improved Image Texture Feature Coding Method and Support Vector Machine

Authors: R. Xu, X. Zhao, X. Li, C. Kwan, C.-I Chang

Abstract:

An image texture analysis and target recognition approach of using an improved image texture feature coding method (TFCM) and Support Vector Machine (SVM) for target detection is presented. With our proposed target detection framework, targets of interest can be detected accurately. Cascade-Sliding-Window technique was also developed for automated target localization. Application to mammogram showed that over 88% of normal mammograms and 80% of abnormal mammograms can be correctly identified. The approach was also successfully applied to Synthetic Aperture Radar (SAR) and Ground Penetrating Radar (GPR) images for target detection.

Keywords: Image texture analysis, feature extraction, target detection, pattern classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780
2497 An Earth Mover’s Distance Algorithm Based DDoS Detection Mechanism in SDN

Authors: Yang Zhou, Kangfeng Zheng, Wei Ni, Ren Ping Liu

Abstract:

Software-defined networking (SDN) provides a solution for scalable network framework with decoupled control and data plane. However, this architecture also induces a particular distributed denial-of-service (DDoS) attack that can affect or even overwhelm the SDN network. DDoS attack detection problem has to date been mostly researched as entropy comparison problem. However, this problem lacks the utilization of SDN, and the results are not accurate. In this paper, we propose a DDoS attack detection method, which interprets DDoS detection as a signature matching problem and is formulated as Earth Mover’s Distance (EMD) model. Considering the feasibility and accuracy, we further propose to define the cost function of EMD to be a generalized Kullback-Leibler divergence. Simulation results show that our proposed method can detect DDoS attacks by comparing EMD values with the ones computed in the case without attacks. Moreover, our method can significantly increase the true positive rate of detection.

Keywords: DDoS detection, EMD, relative entropy, SDN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 766