Search results for: Mixed oxide nuclear fuel
1618 Application of Computational Intelligence Techniques for Economic Load Dispatch
Authors: S.C. Swain, S. Panda, A.K. Mohanty, C. Ardil
Abstract:
This paper presents the applications of computational intelligence techniques to economic load dispatch problems. The fuel cost equation of a thermal plant is generally expressed as continuous quadratic equation. In real situations the fuel cost equations can be discontinuous. In view of the above, both continuous and discontinuous fuel cost equations are considered in the present paper. First, genetic algorithm optimization technique is applied to a 6- generator 26-bus test system having continuous fuel cost equations. Results are compared to conventional quadratic programming method to show the superiority of the proposed computational intelligence technique. Further, a 10-generator system each with three fuel options distributed in three areas is considered and particle swarm optimization algorithm is employed to minimize the cost of generation. To show the superiority of the proposed approach, the results are compared with other published methods.
Keywords: Economic Load Dispatch, Continuous Fuel Cost, Quadratic Programming, Real-Coded Genetic Algorithm, Discontinuous Fuel Cost, Particle Swarm Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22731617 Providing Energy Management of a Fuel Cell-Battery Hybrid Electric Vehicle
Authors: Fatma Keskin Arabul, Ibrahim Senol, Ahmet Yigit Arabul, Ali Rifat Boynuegri
Abstract:
On account of the concern of the fossil fuel is depleting and its negative effects on the environment, interest in alternative energy sources is increasing day by day. However, considering the importance of transportation in human life, instead of oil and its derivatives fueled vehicles with internal combustion engines, electric vehicles which are sensitive to the environment and working with electrical energy has begun to develop. In this study, simulation was carried out for providing energy management and recovering regenerative braking in fuel cell-battery hybrid electric vehicle. The main power supply of the vehicle is fuel cell on the other hand not only instantaneous power is supplied by the battery but also the energy generated due to regenerative breaking is stored in the battery. Obtained results of the simulation is analyzed and discussed.
Keywords: Electric vehicles, fuel cell, battery, regenerative braking, energy management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22441616 Alumina Supported Copper-Manganese Catalysts for Combustion of Exhaust Gases: Catalysts Characterization
Authors: Krasimir I. Ivanov, Elitsa N. Kolentsova, Dimitar Y. Dimitrov, Georgi V. Avdeev, Tatyana T. Tabakova
Abstract:
In recent research copper and manganese systems were found to be the most active in CO and organic compounds oxidation among the base catalysts. The mixed copper manganese oxide has been widely studied in oxidation reactions because of their higher activity at low temperatures in comparison with single oxide catalysts. The results showed that the formation of spinel CuxMn3−xO4 in the oxidized catalyst is responsible for the activity even at room temperature. That is why the most of the investigations are focused on the hopcalite catalyst (CuMn2O4) as the best coppermanganese catalyst. Now it’s known that this is true only for CO oxidation, but not for mixture of CO and VOCs. The purpose of this study is to investigate the alumina supported copper-manganese catalysts with different Cu/Mn molar ratio in terms of oxidation of CO, methanol and dimethyl ether. The catalysts were prepared by impregnation of γ-Al2O3 with copper and manganese nitrates and the catalytic activity measurements were carried out in two stage continuous flow equipment with an adiabatic reactor for simultaneous oxidation of all compounds under the conditions closest possible to the industrial. Gas mixtures on the input and output of the reactor were analyzed with a gas chromatograph, equipped with FID and TCD detectors. The texture characteristics were determined by low-temperature (- 196oС) nitrogen adsorption in a Quantachrome Instruments NOVA 1200e (USA) specific surface area & pore analyzer. Thermal, XRD and TPR analyses were performed. It was established that the active component of the mixed Cu- Mn/γ–alumina catalysts strongly depends on the Cu/Mn molar ratio. Highly active alumina supported Cu-Mn catalysts for CO, methanol and DME oxidation were synthesized. While the hopcalite is the best catalyst for CO oxidation, the best compromise for simultaneous oxidation of all components is the catalyst with Cu/Mn molar ratio 1:5.Keywords: Supported copper-manganese catalysts, CO and VOCs oxidation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24091615 ‘Saying’ the Nuclear Power in France: Evolution of the Images and Perceptions of a Sensitive Theme
Authors: Jandot Aurélia
Abstract:
As the nuclear power is a sensitive field leading to controversy, the quality of the communication about it is important. Between 1965 and 1981, in France, this one had gradually changed. This change is studied here in the main French news magazine L’Express, in connection with several parameters. As this represents a huge number of copies and occurrences, thus a considerable amount of information; this paper is focused on the main articles as well as the main “mental images”. These ones are important, as their aim is to direct the thought of the readers, and as they have led the public awareness to evolve. Over this 17 years, two trends are in confrontation: The first one is promoting the perception of the nuclear power, while the second one is discrediting it. These trends are organized in two axes: the evolution of engineering, and the risks. In both cases, the changes in the language allow discerning the deepest intentions of the magazine editing, over a period when the nuclear technology, to there a laboratory object accompanied with mystery and secret, has become a social issue seemingly open to all.
Keywords: French news magazine, mental images, nuclear power, public awareness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12501614 The Nuclear Power Plant Environment Monitoring System through Mobile Units
Authors: P. Tanuska, A. Elias, P. Vazan, B. Zahradnikova
Abstract:
This article describes the information system for measuring and evaluating the dose rate in the environment of nuclear power plants Mochovce and Bohunice in Slovakia. The article presents the results achieved in the implementation of the EU project – Research of monitoring and evaluation of nonstandard conditions in the area of nuclear power plants. The objectives included improving the system of acquisition, measuring and evaluating data with mobile and autonomous units applying new knowledge from research. The article provides basic and specific features of the system and compared to the previous version of the system, also new functions.
Keywords: Information system, dose rate, mobile devices, nuclear power plant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18061613 Ethanol Fuelled HCCI Engine: A Review
Authors: B. Bahri, A. A. Aziz, M. Shahbakhti, M. F. Muhamad Said
Abstract:
The greenhouse effect and limitations on carbon dioxide emissions concern engine maker and the future of the internal combustion engines should go toward substantially and improved thermal efficiency engine. Homogeneous charge compression ignition (HCCI) is an alternative high-efficiency technology for combustion engines to reduce exhaust emissions and fuel consumption. However, there are still tough challenges in the successful operation of HCCI engines, such as controlling the combustion phasing, extending the operating range, and high unburned hydrocarbon and CO emissions. HCCI and the exploitation of ethanol as an alternative fuel is one way to explore new frontiers of internal combustion engines with an eye towards maintaining its sustainability. This study was done to extend database knowledge about HCCI with ethanol a fuel.
Keywords: Ethanol combustion, Ethanol fuel, HCCI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28251612 Development of Synthetic Jet Air Blower for Air-breathing PEM Fuel Cell
Authors: Jongpil Choi, Eon-Soo Lee, Jae-Huk Jang, Young Ho Seo, Byeonghee Kim
Abstract:
This paper presents a synthetic jet air blower actuated by PZT for air blowing for air-breathing micro PEM fuel cell. The several factors to affect the performance of air-breathing PEM fuel cell such as air flow rate, opening ratio and cathode open type in the cathode side were studied. Especially, an air flow rate is critical condition to improve its performance. In this paper, we developed a synthetic jet air blower to supply a high stoichiometric air flow. The synthetic jet mechanism is a zero mass flux device that converts electrical energy into the momentum. The synthetic jet actuation is usually generated by a traditional PZT actuator, which consists of a small cylindrical cavity, in/outlet channel and PZT diaphragms. The flow rate of the fabricated synthetic jet air blower was 400cc/min at 550Hz and its power consumption was very low under 0.3W. The proposed air-breathing PEM fuel cell which installed synthetic jet air blower was higher performance and stability during continuous operation than the air-breathing fuel cell without auxiliary device to supply the air. The results showed that the maximum power density was 188mW/cm2 at 400mA/cm2. This maximum power density and durability were improved more than 40% and 20%, respectively.Keywords: Air-breathing PEM fuel cell, Synthetic jet air blower, Opening ratio, Power consumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22801611 Preparation of Nanosized Iron Oxide and their Photocatalytic Properties for Congo Red
Authors: Akram Hosseinian, Hourieh Rezaei, Ali Reza Mahjoub
Abstract:
Nanostructured Iron Oxide with different morphologies of rod-like and granular have been suc-cessfully prepared via a solid-state reaction in the presence of NaCl, NaBr, NaI and NaN3, respectively. The added salts not only prevent a drastic increase in the size of the products but also provide suitable conditions for the oriented growth of primary nanoparticles. The formation mechanisms of these materials by solid-state reaction at ambient temperature are proposed. The photocatalytic experiments for congo red (CR) have demonstrated that the mixture of α-Fe2O3 and Fe3O4 nanostructures were more efficient than α-Fe2O3 nanostructures.Keywords: Nano, Iron Oxide, Solid-State, Halide salts, Congored
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26411610 Microkinetic Modelling of NO Reduction on Pt Catalysts
Authors: Vishnu S. Prasad, Preeti Aghalayam
Abstract:
The major harmful automobile exhausts are nitric oxide (NO) and unburned hydrocarbon (HC). Reduction of NO using unburned fuel HC as a reductant is the technique used in hydrocarbon-selective catalytic reduction (HC-SCR). In this work, we study the microkinetic modelling of NO reduction using propene as a reductant on Pt catalysts. The selectivity of NO reduction to N2O is detected in some ranges of operating conditions, whereas the effect of inlet O2% causes a number of changes in the feasible regimes of operation.
Keywords: Microkinetic modelling, NOx, Pt on alumina catalysts, selective catalytic reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14851609 Effects of Silicon Oxide Filler Material and Fibre Orientation on Erosive Wear of GF/EP Composites
Authors: M. Bagci, H. Imrek, Omari M. Khalfan
Abstract:
Materials added to the matrix help improving operating properties of a composite. This experimental study has targeted to investigate this aim where Silicon Oxide particles were added to glass fibre and epoxy resin at an amount of 15% to the main material to obtain a sort of new composite material. Erosive wear behavior of epoxy-resin dipped composite materials reinforced with glass fibre and Silicon Oxide under three different impingement angles (30°, 60° and 90°), three different impact velocities (23, 34 and 53 m/s), two different angular Aluminum abrasive particle sizes (approximately 200 and 400 μm) and the fibre orientation of 45° (45/-45) were investigated. In the test results, erosion rates were obtained as functions of impingement angles, impact velocities, particle sizes and fibre orientation. Moreover, materials with addition of Silicon Oxide filler material exhibited lower wear as compared to neat materials with no added filler material. In addition, SEM views showing worn out surfaces of the test specimens were scrutinized.
Keywords: Erosive wear, fibre orientation, GF/EP, silicon oxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25621608 Microscopic Emission and Fuel Consumption Modeling for Light-duty Vehicles Using Portable Emission Measurement System Data
Authors: Wei Lei, Hui Chen, Lin Lu
Abstract:
Microscopic emission and fuel consumption models have been widely recognized as an effective method to quantify real traffic emission and energy consumption when they are applied with microscopic traffic simulation models. This paper presents a framework for developing the Microscopic Emission (HC, CO, NOx, and CO2) and Fuel consumption (MEF) models for light-duty vehicles. The variable of composite acceleration is introduced into the MEF model with the purpose of capturing the effects of historical accelerations interacting with current speed on emission and fuel consumption. The MEF model is calibrated by multivariate least-squares method for two types of light-duty vehicle using on-board data collected in Beijing, China by a Portable Emission Measurement System (PEMS). The instantaneous validation results shows the MEF model performs better with lower Mean Absolute Percentage Error (MAPE) compared to other two models. Moreover, the aggregate validation results tells the MEF model produces reasonable estimations compared to actual measurements with prediction errors within 12%, 10%, 19%, and 9% for HC, CO, NOx emissions and fuel consumption, respectively.Keywords: Emission, Fuel consumption, Light-duty vehicle, Microscopic, Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20041607 Green Synthesized Iron Oxide Nanoparticles: A Nano-Nutrient for the Growth and Enhancement of Flax (Linum usitatissimum L.) Plant
Authors: G. Karunakaran, M. Jagathambal, N. Van Minh, E. Kolesnikov, A. Gusev, O. V. Zakharova, E. V. Scripnikova, E. D. Vishnyakova, D. Kuznetsov
Abstract:
Iron oxide nanoparticles (Fe2O3NPs) are widely used in different applications due to its ecofriendly nature and biocompatibility. Hence, in this investigation, biosynthesized Fe2O3NPs influence on flax (Linum usitatissimum L.) plant was examined. The biosynthesized nanoparticles were found to be cubic phase which is confirmed by XRD analysis. FTIR analysis confirmed the presence of functional groups corresponding to the iron oxide nanoparticle. The elemental analysis also confirmed that the obtained nanoparticle is iron oxide nanoparticle. The scanning electron microscopy and the transmission electron microscopy confirm that the average particle size was around 56 nm. The effect of Fe2O3NPs on seed germination followed by biochemical analysis was carried out using standard methods. The results obtained after four days and 11 days of seed vigor studies showed that the seedling length (cm), average number of seedling with leaves, increase in root length (cm) was found to be enhanced on treatment with iron oxide nanoparticles when compared to control. A positive correlation was noticed with the dose of the nanoparticle and plant growth, which may be due to changes in metabolic activity. Hence, to evaluate the change in metabolic activity, peroxidase and catalase activities were estimated. It was clear from the observation that higher concentration of iron oxide nanoparticles (Fe2O3NPs 1000 mg/L) has enhanced peroxidase and catalase activities and in turn plant growth. Thus, this study clearly showed that biosynthesized iron oxide nanoparticles will be an effective nano-nutrient for agriculture applications.
Keywords: Catalase, fertilizer, iron oxide nanoparticles, Linum usitatissimum L., nano-nutrient, peroxidase.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16831606 A Review on the Potential of Electric Vehicles in Reducing World CO2 Footprints
Authors: S. Alotaibi, S. Omer, Y. Su
Abstract:
The conventional Internal Combustion Engine (ICE) based vehicles are a threat to the environment as they account for a large proportion of the overall greenhouse gas (GHG) emissions in the world. Hence, it is required to replace these vehicles with more environment-friendly vehicles. Electric Vehicles (EVs) are promising technologies which offer both human comfort “noise, pollution” as well as reduced (or no) emissions of GHGs. In this paper, different types of EVs are reviewed and their advantages and disadvantages are identified. It is found that in terms of fuel economy, Plug-in Hybrid EVs (PHEVs) have the best fuel economy, followed by Hybrid EVs (HEVs) and ICE vehicles. Since Battery EVs (BEVs) do not use any fuel, their fuel economy is estimated as price per kilometer. Similarly, in terms of GHG emissions, BEVs are the most environmentally friendly since they do not result in any emissions while HEVs and PHEVs produce less emissions compared to the conventional ICE based vehicles. Fuel Cell EVs (FCEVs) are also zero-emission vehicles, but they have large costs associated with them. Finally, if the electricity is provided by using the renewable energy technologies through grid connection, then BEVs could be considered as zero emission vehicles.
Keywords: Electric vehicle, fuel cell electric vehicle, hybrid electric vehicle, internal combustion engine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5381605 Assessment of Solar Hydrogen Production in an Energetic Hybrid PV-PEMFC System
Authors: H. Rezzouk, M. Hatti, H. Rahmani, S. Atoui
Abstract:
This paper discusses the design and analysis of a hybrid PV-Fuel cell energy system destined to power a DC load. The system is composed of a photovoltaic array, a fuel cell, an electrolyzer and a hydrogen tank. HOMER software is used in this study to calculate the optimum capacities of the power system components that their combination allows an efficient use of solar resource to cover the hourly load needs. The optimal system sizing allows establishing the right balance between the daily electrical energy produced by the power system and the daily electrical energy consumed by the DC load using a 28 KW PV array, a 7.5 KW fuel cell, a 40KW electrolyzer and a 270 Kg hydrogen tank. The variation of powers involved into the DC bus of the hybrid PV-fuel cell system has been computed and analyzed for each hour over one year: the output powers of the PV array and the fuel cell, the input power of the elctrolyzer system and the DC primary load. Equally, the annual variation of stored hydrogen produced by the electrolyzer has been assessed. The PV array contributes in the power system with 82% whereas the fuel cell produces 18%. 38% of the total energy consumption belongs to the DC primary load while the rest goes to the electrolyzer.
Keywords: Electrolyzer, Hydrogen, Hydrogen Fueled Cell, Photovoltaic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15871604 Thermal Hydraulic Analysis of the IAEA 10MW Benchmark Reactor under Normal Operating Condition
Authors: Hamed Djalal
Abstract:
The aim of this paper is to perform a thermal-hydraulic analysis of the IAEA 10 MW benchmark reactor solving analytically and numerically, by mean of the finite volume method, respectively the steady state and transient forced convection in rectangular narrow channel between two parallel MTR-type fuel plates, imposed under a cosine shape heat flux. A comparison between both solutions is presented to determine the minimal coolant velocity which can ensure a safe reactor core cooling, where the cladding temperature should not reach a specific safety limit 90 °C. For this purpose, a computer program is developed to determine the principal parameter related to the nuclear core safety, such as the temperature distribution in the fuel plate and in the coolant (light water) as a function of the inlet coolant velocity. Finally, a good agreement is noticed between the both analytical and numerical solutions, where the obtained results are displayed graphically.
Keywords: Forced convection, friction factor pressure drop thermal hydraulic analysis, vertical heated rectangular channel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8661603 Optimization of Proton Exchange Membrane Fuel Cell Parameters Based on Modified Particle Swarm Algorithms
Authors: M. Dezvarei, S. Morovati
Abstract:
In recent years, increasing usage of electrical energy provides a widespread field for investigating new methods to produce clean electricity with high reliability and cost management. Fuel cells are new clean generations to make electricity and thermal energy together with high performance and no environmental pollution. According to the expansion of fuel cell usage in different industrial networks, the identification and optimization of its parameters is really significant. This paper presents optimization of a proton exchange membrane fuel cell (PEMFC) parameters based on modified particle swarm optimization with real valued mutation (RVM) and clonal algorithms. Mathematical equations of this type of fuel cell are presented as the main model structure in the optimization process. Optimized parameters based on clonal and RVM algorithms are compared with the desired values in the presence and absence of measurement noise. This paper shows that these methods can improve the performance of traditional optimization methods. Simulation results are employed to analyze and compare the performance of these methodologies in order to optimize the proton exchange membrane fuel cell parameters.Keywords: Clonal algorithm, proton exchange membrane fuel cell, particle swarm optimization, real valued mutation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11801602 An Adaptive Least-squares Mixed Finite Element Method for Pseudo-parabolic Integro-differential Equations
Authors: Zilong Feng, Hong Li, Yang Liu, Siriguleng He
Abstract:
In this article, an adaptive least-squares mixed finite element method is studied for pseudo-parabolic integro-differential equations. The solutions of least-squares mixed weak formulation and mixed finite element are proved. A posteriori error estimator is constructed based on the least-squares functional and the posteriori errors are obtained.
Keywords: Pseudo-parabolic integro-differential equation, least squares mixed finite element method, adaptive method, a posteriori error estimates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13181601 Microbial Oil Production by Mixed Culture of Microalgae Chlorella sp. KKU-S2 and Yeast Torulaspora maleeae Y30
Authors: Ratanaporn Leesing, Rattanaporn Baojungharn, Thidarat Papone
Abstract:
Compared to oil production from microorganisms, little work has been performed for mixed culture of microalgae and yeast. In this article it is aimed to show high oil accumulation potential of mixed culture of microalgae Chlorella sp. KKU-S2 and oleaginous yeast Torulaspora maleeae Y30 using sugarcane molasses as substrate. The monoculture of T. maleeae Y30 grew faster than that of microalgae Chlorella sp. KKU-S2. In monoculture of yeast, a biomass of 6.4g/L with specific growth rate (m) of 0.265 (1/d) and lipid yield of 0.466g/L were obtained, while 2.53g/L of biomass with m of 0.133 (1/d) and lipid yield of 0.132g/L were obtained for monoculture of Chlorella sp. KKU-S2. The biomass concentration in the mixed culture of T. maleeae Y30 with Chlorella sp. KKU-S2 increased faster and was higher compared with that in the monoculture and mixed culture of microalgae. In mixed culture of microalgae Chlorella sp. KKU-S2 and C. vulgaris TISTR8580, a biomass of 3.47g/L and lipid yield of 0.123 g/L were obtained. In mixed culture of T. maleeae Y30 with Chlorella sp. KKU-S2, a maximum biomass of 7.33 g/L and lipid yield of 0.808g/L were obtained. Maximum cell yield coefficient (YX/S, 0.229g/L), specific yield of lipid (YP/X, 0.11g lipid/g cells) and volumetric lipid production rate (QP, 0.115 g/L/d) were obtained in mixed culture of yeast and microalgae. Clearly, T. maleeae Y30 and Chlorella sp. KKU-S2 use sugarcane molasses as organic nutrients efficiently in mixed culture under mixotrophic growth. The biomass productivity and lipid yield are notably enhanced in comparison with monoculture.
Keywords: Microbial oil, Chlorella sp. KKU-S2, Chlorella vulgaris, Torulaspora maleeae Y30, mixed culture, biodiesel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28561600 Computational Investigation of Air-Gas Venturi Mixer for Powered Bi-Fuel Diesel Engine
Authors: Mofid Gorjibandpy, Mehdi Kazemi Sangsereki
Abstract:
In a bi-fuel diesel engine, the carburetor plays a vital role in switching from fuel gas to petrol mode operation and viceversa. The carburetor is the most important part of the fuel system of a diesel engine. All diesel engines carry variable venturi mixer carburetors. The basic operation of the carburetor mainly depends on the restriction barrel called the venturi. When air flows through the venturi, its speed increases and its pressure decreases. The main challenge focuses on designing a mixing device which mixes the supplied gas is the incoming air at an optimum ratio. In order to surmount the identified problems, the way fuel gas and air flow in the mixer have to be analyzed. In this case, the Computational Fluid Dynamics or CFD approach is applied in design of the prototype mixer. The present work is aimed at further understanding of the air and fuel flow structure by performing CFD studies using a software code. In this study for mixing air and gas in the condition that has been mentioned in continuance, some mixers have been designed. Then using of computational fluid dynamics, the optimum mixer has been selected. The results indicated that mixer with 12 holes can produce a homogenous mixture than those of 8-holes and 6-holes mixer. Also the result showed that if inlet convergency was smoother than outlet divergency, the mixture get more homogenous, the reason of that is in increasing turbulence in outlet divergency.Keywords: Computational Fluid Dynamics, Venturi mixer, Air-fuel ratio, Turbulence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39801599 Reaction Kinetics of Biodiesel Production from Refined Cottonseed Oil Using Calcium Oxide
Authors: Ude N. Callistus, Amulu F. Ndidi, Onukwuli D. Okechukwu, Amulu E. Patrick
Abstract:
Power law approximation was used in this study to evaluate the reaction orders of calcium oxide, CaO catalyzed transesterification of refined cottonseed oil and methanol. The kinetics study was carried out at temperatures of 45, 55 and 65 oC. The kinetic parameters such as reaction order 2.02 and rate constant 2.8 hr-1g-1cat, obtained at the temperature of 65 oC best fitted the kinetic model. The activation energy, Ea obtained was 127.744 KJ/mol. The results indicate that the transesterification reaction of the refined cottonseed oil using calcium oxide catalyst is approximately second order reaction.Keywords: Refined cottonseed oil, transesterification, CaO, heterogeneous catalysts, kinetic model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17171598 A New Approach for Classifying Large Number of Mixed Variables
Authors: Hashibah Hamid
Abstract:
The issue of classifying objects into one of predefined groups when the measured variables are mixed with different types of variables has been part of interest among statisticians in many years. Some methods for dealing with such situation have been introduced that include parametric, semi-parametric and nonparametric approaches. This paper attempts to discuss on a problem in classifying a data when the number of measured mixed variables is larger than the size of the sample. A propose idea that integrates a dimensionality reduction technique via principal component analysis and a discriminant function based on the location model is discussed. The study aims in offering practitioners another potential tool in a classification problem that is possible to be considered when the observed variables are mixed and too large.Keywords: classification, location model, mixed variables, principal component analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15571597 The Nuclear Energy Museum in Brazil: Creative Solutions to Transform Science Education into Meaningful Learning
Authors: Denise Levy, Helen J. Khoury
Abstract:
Nuclear technology is a controversial issue among a great share of the Brazilian population. Misinformation and common wrong beliefs confuse public’s perceptions and the scientific community is expected to offer a wider perspective on the benefits and risks resulting from ionizing radiation in everyday life. Attentive to the need of new approaches between science and society, the Nuclear Energy Museum, in northeast Brazil, is an initiative created to communicate the growing impact of the beneficial applications of nuclear technology in medicine, industry, agriculture and electric power generation. Providing accessible scientific information, the museum offers a rich learning environment, making use of different educational strategies, such as films, interactive panels and multimedia learning tools, which not only increase the enjoyment of visitors, but also maximize their learning potential. Developed according to modern active learning instructional strategies, multimedia materials are designed to present the increasingly role of nuclear science in modern life, transforming science education into a meaningful learning experience. In year 2016, nine different interactive computer-based activities were developed, presenting curiosities about ionizing radiation in different landmarks around the world, such as radiocarbon dating works in Egypt, nuclear power generation in France and X-radiography of famous paintings in Italy. Feedback surveys have reported a high level of visitors’ satisfaction, proving the high quality experience in learning nuclear science at the museum. The Nuclear Energy Museum is the first and, up to the present time, the only permanent museum in Brazil devoted entirely to nuclear science.
Keywords: Nuclear technology, multimedia learning tools, science museum, society and education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12251596 Hydrothermal Fabrication of Iodine Doped Titanium Oxide Films on Ti Substrate
Authors: M. P. Neupane, T. S. N. Sankara Narayanan, J. E. Park, Y. K. Kim, I. S. Park, K. Y. Song, T. S. Bae, M. H. Lee
Abstract:
Titanium oxide films with different morphologies have for the first time been fabricated through hydrothermal reactions between a titanium substrate and iodine powder in water or ethanol. SEM revealed that iodine supported titanium (Ti-I2) surface shows different morphologies with variable treatment conditions. The mean surface roughness (Ra) was increased in the different groups. Use of surfactant has a role to increase the roughness of the film. The surface roughness was in the range of 0.15 μm-0.42 μm. Furthermore, the electrochemical examinations showed that the Ti-I2 surface fabricated in alcoholic medium has high corrosion resistance than in aqueous medium.
Keywords: Corrosion, Hydrothermal, Surface roughness, Titanium oxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19261595 Serum Nitric Oxide and Sialic Acid: Possible Biochemical Markers for Progression of Diabetic Nephropathy
Authors: Syed M. Shahid, Rozeena Shaikh, Syeda N. Nawab, Shah A. Qader, Abid Azhar, Tabassum Mahboob
Abstract:
This study was designed to investigate the role of serum nitric oxide and sialic acid in the development of diabetic nephropathy as disease marker. Total 210 diabetic patients (age and sex matched) were selected followed by informed consent and divided into four groups (70 each) as I: control; II: diabetic; III: diabetic hypertensive; IV: diabetic nephropathy. The blood samples of all subjects were collected and analyzed for serum nitric oxide, sialic acid, fasting blood glucose, serum urea, creatinine, HbA1c and GFR. The BMI, systolic and diastolic blood pressures, blood glucose, HbA1c and serum sialic acid levels were high (p<0.01) in group II as compared to control subjects. The higher levels (p<0.01) of BMI, systolic and diastolic blood pressures, blood glucose, HbA1c, serum urea, creatinine and sialic acid were observed in group III and IV as compared to controls. Significantly low levels of GFR and serum nitric oxide (p<0.01) were observed in group III and IV as compared to controls. Results indicated that serum nitric oxide and sialic acid are the major biochemical indicators for micro and macrovascular complications of diabetes such as hypertension and nephropathy. These should be taken into account during screening procedures regarding identifications of the diabetic patients to get them rid of progressive renal impairment to ESRD.
Keywords: Diabetic nephropathy, hypertension, nitric oxide, sialic acid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16911594 Titanium-Aluminum Oxide Coating on Aluminized Steel
Authors: Fuyan Sun, Guang Wang, Xueyuan Nie
Abstract:
In this study, a plasma electrolytic oxidation (PEO) process was used to form titanium-aluminum oxide coating on aluminized steel. The present work was mainly to study the effects of treatment time of PEO process on properties of the titanium coating. A potentiodynamic polarization corrosion test was employed to investigate the corrosion resistance of the coating. The friction coefficient and wear resistance of the coating were studied by using pin-on-disc test. The thermal transfer behaviors of uncoated and PEO-coated aluminized steels were also studied. It could be seen that treatment time of PEO process significantly influenced the properties of the titanium oxide coating. Samples with a longer treatment time had a better performance for corrosion and wear protection. This paper demonstrated different treatment time could alter the surface behavior of the coating material.
Keywords: Corrosion, plasma electrolytic oxidation, thermal property, titanium-aluminum oxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35831593 Low NOx Combustion of Pulverized Petroleum Cokes
Authors: Sewon Kim, Minjun Kwon, Changyeop Lee
Abstract:
This paper is aimed to study combustion characteristics of low NOx burner using petroleum cokes as fuel. The petroleum coke, which is produced through the oil refining process, is an attractive fuel in terms of its high heating value and low price. But petroleum coke is a challenging fuel because of its low volatile content, high sulfur and nitrogen content, which give rise to undesirable emission characteristics and low ignitability. Therefore, the research and development regarding the petroleum coke burner is needed for applying this industrial system. In this study, combustion and emission characteristics of petroleum cokes burner are experimentally investigated in an industrial steam boiler. The low NOx burner is designed to control fuel and air mixing to achieve staged combustion, which, in turn reduces both flame temperature and oxygen. Air distribution ratio of triple staged air is optimized experimentally. The result showed that NOx concentration is lowest when overfire air is used, and the burner function at a fuel rich condition. That is, the burner is operated at the equivalence ratio of 1.67 and overall equivalence ratio including overfire air is kept 0.87.Keywords: Petroleum cokes, Staged combustion, Low NOx, Equivalence ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21801592 Combustion Characteristics of Syngas and Natural Gas in Micro-pilot Ignited Dual-fuel Engine
Authors: Ulugbek Azimov, Eiji Tomita, Nobuyuki Kawahara, Sharul Sham Dol
Abstract:
The objective of this study is to investigate the combustion in a pilot-ignited supercharged dual-fuel engine, fueled with different types of gaseous fuels under various equivalence ratios. It is found that if certain operating conditions are maintained, conventional dual-fuel engine combustion mode can be transformed to the combustion mode with the two-stage heat release. This mode of combustion was called the PREMIER (PREmixed Mixture Ignition in the End-gas Region) combustion. During PREMIER combustion, initially, the combustion progresses as the premixed flame propagation and then, due to the mixture autoignition in the end-gas region, ahead of the propagating flame front, the transition occurs with the rapid increase in the heat release rate.Keywords: Combustion, dual-fuel engine, end-gas autoignition, PREMIER.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44741591 In vitro and in vivo Anticancer Activity of Nanosize Zinc Oxide Composites of Doxorubicin
Authors: E. R. Arakelova, S. G. Grigoryan, F. G. Arsenyan, N. S. Babayan, R. M. Grigoryan, N. K. Sarkisyan
Abstract:
The nanotechnology offers some exciting possibilities in cancer treatment, including the possibility of destroying tumors with minimal damage to healthy tissue and organs by targeted drug delivery systems. Considerable achievements in investigations aimed at the use of ZnO nanoparticles and nanocontainers in diagnostics and antitumor therapy were described. However, there are substantial obstacles to the purposes to be achieved by the use of zinc oxide nanosize materials in antitumor therapy. Among the serious problems are the techniques of obtaining ZnO nanosize materials. The article presents a new vector delivery system for the known antitumor drug, doxorubicin in the form of polymeric (PEO, starch-NaCMC) hydrogels, in which nanosize ZnO film of a certain thickness are deposited directly on the drug surface on glass substrate by DC-magnetron sputtering of a zinc target. Anticancer activity in vitro and in vivo of those nanosize zinc oxide composites is shown.
Keywords: Anticancer activity, cancer specificity, doxorubicin, zinc oxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42011590 Development of a Water-Jet Assisted Underwater Laser Cutting Process
Authors: Suvradip Mullick, Yuvraj K. Madhukar, Subhranshu Roy, Ashish K. Nath
Abstract:
We present the development of a new underwater laser cutting process in which a water-jet has been used along with the laser beam to remove the molten material through kerf. The conventional underwater laser cutting usually utilizes a high pressure gas jet along with laser beam to create a dry condition in the cutting zone and also to eject out the molten material. This causes a lot of gas bubbles and turbulence in water, and produces aerosols and waste gas. This may cause contamination in the surrounding atmosphere while cutting radioactive components like burnt nuclear fuel. The water-jet assisted underwater laser cutting process produces much less turbulence and aerosols in the atmosphere. Some amount of water vapor bubbles is formed at the laser-metal-water interface; however, they tend to condense as they rise up through the surrounding water. We present the design and development of a water-jet assisted underwater laser cutting head and the parametric study of the cutting of AISI 304 stainless steel sheets with a 2 kW CW fiber laser. The cutting performance is similar to that of the gas assist laser cutting; however, the process efficiency is reduced due to heat convection by water-jet and laser beam scattering by vapor. This process may be attractive for underwater cutting of nuclear reactor components.Keywords: Laser, underwater cutting, water-jet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46601589 Nuclear Safety and Security in France in the 1970s: A Turning Point for the Media
Authors: Jandot Aurélia
Abstract:
In France, in the main media, the concern about nuclear safety and security has not really appeared before the beginning of the 1970s. The gradual changes in its perception are studied here through the arguments given in the main French news magazines, linked with several parameters. As this represents a considerable amount of copies and thus of information, are selected here the main articles as well as the main “mental images” aiming to persuade the readers and which have led the public awareness to evolve. Indeed, in the 1970s, in France, these evolutions were not made in one day. Indeed, over the period, many articles were still in favor of nuclear power plants and promoted the technological advances that were made in this field. They had to be taken into account. But, gradually, grew up arguments and mental images discrediting the perception of nuclear technology. Among these were the environmental impacts of this industry, as the question of pollution progressively appeared. So, between 1970 and 1979, the language has changed, as the perceptible objectives of the communication, allowing to discern the deepest intentions of the editorial staffs of the French news magazines. This is all these changes that are emphasized here, over a period when the safety and security concern linked to the nuclear technology, to there a field for specialists, has become progressively a social issue seemingly open to all.
Keywords: French media discourse, nuclear safety and security, public awareness, persuasion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1248