Search results for: GA (genetic Algorithms)
1850 A Nondominated Sorting Genetic Algorithm for Shortest Path Routing Problem
Authors: C. Chitra, P. Subbaraj
Abstract:
The shortest path routing problem is a multiobjective nonlinear optimization problem with constraints. This problem has been addressed by considering Quality of service parameters, delay and cost objectives separately or as a weighted sum of both objectives. Multiobjective evolutionary algorithms can find multiple pareto-optimal solutions in one single run and this ability makes them attractive for solving problems with multiple and conflicting objectives. This paper uses an elitist multiobjective evolutionary algorithm based on the Non-dominated Sorting Genetic Algorithm (NSGA), for solving the dynamic shortest path routing problem in computer networks. A priority-based encoding scheme is proposed for population initialization. Elitism ensures that the best solution does not deteriorate in the next generations. Results for a sample test network have been presented to demonstrate the capabilities of the proposed approach to generate well-distributed pareto-optimal solutions of dynamic routing problem in one single run. The results obtained by NSGA are compared with single objective weighting factor method for which Genetic Algorithm (GA) was applied.
Keywords: Multiobjective optimization, Non-dominated Sorting Genetic Algorithm, Routing, Weighted sum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19261849 Genetic Algorithm Optimization of the Economical, Ecological and Self-Consumption Impact of the Energy Production of a Single Building
Authors: Ludovic Favre, Thibaut M. Schafer, Jean-Luc Robyr, Elena-Lavinia Niederhäuser
Abstract:
This paper presents an optimization method based on genetic algorithm for the energy management inside buildings developed in the frame of the project Smart Living Lab (SLL) in Fribourg (Switzerland). This algorithm optimizes the interaction between renewable energy production, storage systems and energy consumers. In comparison with standard algorithms, the innovative aspect of this project is the extension of the smart regulation over three simultaneous criteria: the energy self-consumption, the decrease of greenhouse gas emissions and operating costs. The genetic algorithm approach was chosen due to the large quantity of optimization variables and the non-linearity of the optimization function. The optimization process includes also real time data of the building as well as weather forecast and users habits. This information is used by a physical model of the building energy resources to predict the future energy production and needs, to select the best energetic strategy, to combine production or storage of energy in order to guarantee the demand of electrical and thermal energy. The principle of operation of the algorithm as well as typical output example of the algorithm is presented.Keywords: Building’s energy, control system, energy management, modelling, genetic optimization algorithm, renewable energy, greenhouse gases, energy storage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7911848 Using Morphological and Microsatellite (SSR) Markers to Assess the Genetic Diversity in Alfalfa (Medicago sativa L.)
Authors: T. Cholastova, D. Knotova
Abstract:
Utilization of diverse germplasm is needed to enhance the genetic diversity of cultivars. The objective of this study was to evaluate the genetic relationships of 98 alfalfa germplasm accessions using morphological traits and SSR markers. From the 98 tested populations, 81 were locals originating in Europe, 17 were introduced from USA, Australia, New Zealand and Canada. Three primers generated 67 polymorphic bands. The average polymorphic information content (PIC) was very high (> 0.90) over all three used primer combinations. Cluster analysis using Unweighted Pair Group Method with Arithmetic Means (UPGMA) and Jaccard´s coefficient grouped the accessions into 2 major clusters with 4 sub-clusters with no correlation between genetic and morphological diversity. The SSR analysis clearly indicated that even with three polymorphic primers, reliable estimation of genetic diversity could be obtained.Keywords: genetic diversity, Medicago sativa L., morphological traits, SSR markers
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31001847 A Multi-Objective Evolutionary Algorithm of Neural Network for Medical Diseases Problems
Authors: Sultan Noman Qasem
Abstract:
This paper presents an evolutionary algorithm for solving multi-objective optimization problems-based artificial neural network (ANN). The multi-objective evolutionary algorithm used in this study is genetic algorithm while ANN used is radial basis function network (RBFN). The proposed algorithm named memetic elitist Pareto non-dominated sorting genetic algorithm-based RBFN (MEPGAN). The proposed algorithm is implemented on medical diseases problems. The experimental results indicate that the proposed algorithm is viable, and provides an effective means to design multi-objective RBFNs with good generalization capability and compact network structure. This study shows that MEPGAN generates RBFNs coming with an appropriate balance between accuracy and simplicity, comparing to the other algorithms found in literature.
Keywords: Radial basis function network, Hybrid learning, Multi-objective optimization, Genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22511846 Dynamic Routing to Multiple Destinations in IP Networks using Hybrid Genetic Algorithm (DRHGA)
Authors: K. Vijayalakshmi, S. Radhakrishnan
Abstract:
In this paper we have proposed a novel dynamic least cost multicast routing protocol using hybrid genetic algorithm for IP networks. Our protocol finds the multicast tree with minimum cost subject to delay, degree, and bandwidth constraints. The proposed protocol has the following features: i. Heuristic local search function has been devised and embedded with normal genetic operation to increase the speed and to get the optimized tree, ii. It is efficient to handle the dynamic situation arises due to either change in the multicast group membership or node / link failure, iii. Two different crossover and mutation probabilities have been used for maintaining the diversity of solution and quick convergence. The simulation results have shown that our proposed protocol generates dynamic multicast tree with lower cost. Results have also shown that the proposed algorithm has better convergence rate, better dynamic request success rate and less execution time than other existing algorithms. Effects of degree and delay constraints have also been analyzed for the multicast tree interns of search success rate.
Keywords: Dynamic Group membership change, Hybrid Genetic Algorithm, Link / node failure, QoS Parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14471845 Economic Evaluations Using Genetic Algorithms to Determine the Territorial Impact Caused by High Speed Railways
Authors: Gianluigi De Mare, Tony Leopoldo Luigi Lenza, Rino Conte
Abstract:
The evolution of technology and construction techniques has enabled the upgrading of transport networks. In particular, the high-speed rail networks allow convoys to peak at above 300 km/h. These structures, however, often significantly impact the surrounding environment. Among the effects of greater importance are the ones provoked by the soundwave connected to train transit. The wave propagation affects the quality of life in areas surrounding the tracks, often for several hundred metres. There are substantial damages to properties (buildings and land), in terms of market depreciation. The present study, integrating expertise in acoustics, computering and evaluation fields, outlines a useful model to select project paths so as to minimize the noise impact and reduce the causes of possible litigation. It also facilitates the rational selection of initiatives to contain the environmental damage to the already existing railway tracks. The research is developed with reference to the Italian regulatory framework (usually more stringent than European and international standards) and refers to a case study concerning the high speed network in Italy.
Keywords: Impact, compensation for financial loss, depreciation of property, railway network design, genetic algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17621844 Genetic Characterization of Barley Genotypes via Inter-Simple Sequence Repeat
Authors: Mustafa Yorgancılar, Emine Atalay, Necdet Akgün, Ali Topal
Abstract:
In this study, polymerase chain reaction based Inter-simple sequence repeat (ISSR) from DNA fingerprinting techniques were used to investigate the genetic relationships among barley crossbreed genotypes in Turkey. It is important that selection based on the genetic base in breeding programs via ISSR, in terms of breeding time. 14 ISSR primers generated a total of 97 bands, of which 81 (83.35%) were polymorphic. The highest total resolution power (RP) value was obtained from the F2 (0.53) and M16 (0.51) primers. According to the ISSR result, the genetic similarity index changed between 0.64–095; Lane 3 with Line 6 genotypes were the closest, while Line 36 were the most distant ones. The ISSR markers were found to be promising for assessing genetic diversity in barley crossbreed genotypes.
Keywords: Barley, crossbreed, genetic similarity, ISSR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9181843 Metaheuristics Methods (GA and ACO) for Minimizing the Length of Freeman Chain Code from Handwritten Isolated Characters
Authors: Dewi Nasien, Habibollah Haron, Siti SophiayatiYuhaniz
Abstract:
This paper presents a comparison of metaheuristic algorithms, Genetic Algorithm (GA) and Ant Colony Optimization (ACO), in producing freeman chain code (FCC). The main problem in representing characters using FCC is the length of the FCC depends on the starting points. Isolated characters, especially the upper-case characters, usually have branches that make the traversing process difficult. The study in FCC construction using one continuous route has not been widely explored. This is our motivation to use the population-based metaheuristics. The experimental result shows that the route length using GA is better than ACO, however, ACO is better in computation time than GA.Keywords: Handwriting Recognition, Feature Extraction, Freeman Chain Code, Genetic Algorithm and Ant ColonyOptimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20561842 Factors Determining Intention to Pursue Genetic Testing for People in Taiwan
Authors: Ju-Chun Chien
Abstract:
The Ottawa Charter for Health Promotion proposed that the role of health services should shift the focus from cure to prevention. Nowadays, besides having physical examinations, people could also conduct genetic tests to provide important information for diagnosing, treating, and/or preventing illnesses. However, because of the incompletion of the Chinese Genetic Database, people in Taiwan were still unfamiliar with genetic testing. The purposes of the present study were to: (1) Figure out people’s attitudes towards genetic testing. (2) Examine factors that influence people’s intention to pursue genetic testing by means of the Health Belief Model (HBM). A pilot study was conducted on 249 Taiwanese in 2017 to test the feasibility of the self-developed instrument. The reliability and construct validity of scores on the self-developed questionnaire revealed that this HBM-based questionnaire with 40 items was a well-developed instrument. A total of 542 participants were recruited and the valid participants were 535 (99%) between the ages of 20 and 86. Descriptive statistics, one-way ANOVA, two-way contingency table analysis, Pearson’s correlation, and stepwise multiple regression analysis were used in this study. The main results were that only 32 participants (6%) had already undergone genetic testing; moreover, their attitude towards genetic testing was more positive than those who did not have the experience. Compared with people who never underwent genetic tests, those who had gone for genetic testing had higher self-efficacy, greater intention to pursue genetic testing, had academic majors in health-related fields, had chronic and genetic diseases, possessed Catastrophic Illness Cards, and all of them had heard about genetic testing. The variables that best predicted people’s intention to pursue genetic testing were cues to action, self-efficacy, and perceived benefits (the three variables all correlated with one another positively at high magnitudes). To sum up, the HBM could be effective in designing and identifying the needs and priorities of the target population to pursue genetic testing.
Keywords: Genetic testing, intention to pursue genetic testing, Taiwan, health belief model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7001841 A New Heuristic for Improving the Performance of Genetic Algorithm
Authors: Warattapop Chainate, Peeraya Thapatsuwan, Pupong Pongcharoen
Abstract:
The hybridisation of genetic algorithm with heuristics has been shown to be one of an effective way to improve its performance. In this work, genetic algorithm hybridised with four heuristics including a new heuristic called neighbourhood improvement were investigated through the classical travelling salesman problem. The experimental results showed that the proposed heuristic outperformed other heuristics both in terms of quality of the results obtained and the computational time.Keywords: Genetic Algorithm, Hybridisation, Metaheuristics, Travelling Salesman Problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18471840 Effect of a Linear-Exponential Penalty Functionon the GA-s Efficiency in Optimization of a Laminated Composite Panel
Authors: A. Abedian, M. H. Ghiasi, B. Dehghan-Manshadi
Abstract:
A stiffened laminated composite panel (1 m length × 0.5m width) was optimized for minimum weight and deflection under several constraints using genetic algorithm. Here, a significant study on the performance of a penalty function with two kinds of static and dynamic penalty factors was conducted. The results have shown that linear dynamic penalty factors are more effective than the static ones. Also, a specially combined linear-exponential function has shown to perform more effective than the previously mentioned penalty functions. This was then resulted in the less sensitivity of the GA to the amount of penalty factor.Keywords: Genetic algorithms, penalty function, stiffenedcomposite panel, finite element method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16771839 Performance Comparison of Parallel Sorting Algorithms on the Cluster of Workstations
Authors: Lai Lai Win Kyi, Nay Min Tun
Abstract:
Sorting appears the most attention among all computational tasks over the past years because sorted data is at the heart of many computations. Sorting is of additional importance to parallel computing because of its close relation to the task of routing data among processes, which is an essential part of many parallel algorithms. Many parallel sorting algorithms have been investigated for a variety of parallel computer architectures. In this paper, three parallel sorting algorithms have been implemented and compared in terms of their overall execution time. The algorithms implemented are the odd-even transposition sort, parallel merge sort and parallel rank sort. Cluster of Workstations or Windows Compute Cluster has been used to compare the algorithms implemented. The C# programming language is used to develop the sorting algorithms. The MPI (Message Passing Interface) library has been selected to establish the communication and synchronization between processors. The time complexity for each parallel sorting algorithm will also be mentioned and analyzed.
Keywords: Cluster of Workstations, Parallel sorting algorithms, performance analysis, parallel computing and MPI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14811838 Hierarchical Clustering Algorithms in Data Mining
Authors: Z. Abdullah, A. R. Hamdan
Abstract:
Clustering is a process of grouping objects and data into groups of clusters to ensure that data objects from the same cluster are identical to each other. Clustering algorithms in one of the area in data mining and it can be classified into partition, hierarchical, density based and grid based. Therefore, in this paper we do survey and review four major hierarchical clustering algorithms called CURE, ROCK, CHAMELEON and BIRCH. The obtained state of the art of these algorithms will help in eliminating the current problems as well as deriving more robust and scalable algorithms for clustering.Keywords: Clustering, method, algorithm, hierarchical, survey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33741837 Financing - Scheduling Optimization for Construction Projects by using Genetic Algorithms
Authors: Hesham Abdel-Khalek, Sherif M. Hafez, Abdel-Hamid M. el-Lakany, Yasser Abuel-Magd
Abstract:
Investment in a constructed facility represents a cost in the short term that returns benefits only over the long term use of the facility. Thus, the costs occur earlier than the benefits, and the owners of facilities must obtain the capital resources to finance the costs of construction. A project cannot proceed without an adequate financing, and the cost of providing an adequate financing can be quite large. For these reasons, the attention to the project finance is an important aspect of project management. Finance is also a concern to the other organizations involved in a project such as the general contractor and material suppliers. Unless an owner immediately and completely covers the costs incurred by each participant, these organizations face financing problems of their own. At a more general level, the project finance is the only one aspect of the general problem of corporate finance. If numerous projects are considered and financed together, then the net cash flow requirements constitute the corporate financing problem for capital investment. Whether project finance is performed at the project or at the corporate level does not alter the basic financing problem .In this paper, we will first consider facility financing from the owner's perspective, with due consideration for its interaction with other organizations involved in a project. Later, we discuss the problems of construction financing which are crucial to the profitability and solvency of construction contractors. The objective of this paper is to present the steps utilized to determine the best combination of minimum project financing. The proposed model considers financing; schedule and maximum net area .The proposed model is called Project Financing and Schedule Integration using Genetic Algorithms "PFSIGA". This model intended to determine more steps (maximum net area) for any project with a subproject. An illustrative example will demonstrate the feature of this technique. The model verification and testing are put into consideration.Keywords: Project Management, Large-scale ConstructionProjects, Cash flow, Interest, Investment, Loan, Optimization, Scheduling, Financing and Genetic Algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22191836 Visualization of Searching and Sorting Algorithms
Authors: Bremananth R, Radhika.V, Thenmozhi.S
Abstract:
Sequences of execution of algorithms in an interactive manner using multimedia tools are employed in this paper. It helps to realize the concept of fundamentals of algorithms such as searching and sorting method in a simple manner. Visualization gains more attention than theoretical study and it is an easy way of learning process. We propose methods for finding runtime sequence of each algorithm in an interactive way and aims to overcome the drawbacks of the existing character systems. System illustrates each and every step clearly using text and animation. Comparisons of its time complexity have been carried out and results show that our approach provides better perceptive of algorithms.Keywords: Algorithms, Searching, Sorting, Visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21101835 Genetic-Fuzzy Inverse Controller for a Robot Arm Suitable for On Line Applications
Authors: Abduladheem A. Ali, Easa A. Abd
Abstract:
The robot is a repeated task plant. The control of such a plant under parameter variations and load disturbances is one of the important problems. The aim of this work is to design Geno-Fuzzy controller suitable for online applications to control single link rigid robot arm plant. The genetic-fuzzy online controller (indirect controller) has two genetic-fuzzy blocks, the first as controller, the second as identifier. The identification method is based on inverse identification technique. The proposed controller it tested in normal and load disturbance conditions.Keywords: Fuzzy network, genetic algorithm, robot control, online genetic control, parameter identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14581834 A Dynamic Hybrid Option Pricing Model by Genetic Algorithm and Black- Scholes Model
Authors: Yi-Chang Chen, Shan-Lin Chang, Chia-Chun Wu
Abstract:
Unlike this study focused extensively on trading behavior of option market, those researches were just taken their attention to model-driven option pricing. For example, Black-Scholes (B-S) model is one of the most famous option pricing models. However, the arguments of B-S model are previously mentioned by some pricing models reviewing. This paper following suggests the importance of the dynamic character for option pricing, which is also the reason why using the genetic algorithm (GA). Because of its natural selection and species evolution, this study proposed a hybrid model, the Genetic-BS model which combining GA and B-S to estimate the price more accurate. As for the final experiments, the result shows that the output estimated price with lower MAE value than the calculated price by either B-S model or its enhanced one, Gram-Charlier garch (G-C garch) model. Finally, this work would conclude that the Genetic-BS pricing model is exactly practical.Keywords: genetic algorithm, Genetic-BS, option pricing model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22441833 Simulation of Robotic Arm using Genetic Algorithm and AHP
Authors: V. K. Banga, Y. Singh, R. Kumar
Abstract:
In this paper, we have proposed a low cost optimized solution for the movement of a three-arm manipulator using Genetic Algorithm (GA) and Analytical Hierarchy Process (AHP). A scheme is given for optimizing the movement of robotic arm with the help of Genetic Algorithm so that the minimum energy consumption criteria can be achieved. As compared to Direct Kinematics, Inverse Kinematics evolved two solutions out of which the best-fit solution is selected with the help of Genetic Algorithm and is kept in search space for future use. The Inverse Kinematics, Fitness Value evaluation and Binary Encoding like tasks are simulated and tested. Although, three factors viz. Movement, Friction and Least Settling Time (or Min. Vibration) are used for finding the Fitness Function / Fitness Values, however some more factors can also be considered.Keywords: Inverse Kinematics, Genetic Algorithm (GA), Analytical Hierarchy Process (AHP), Fitness Value, Fitness Function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29631832 Apoptosis Inspired Intrusion Detection System
Authors: R. Sridevi, G. Jagajothi
Abstract:
Artificial Immune Systems (AIS), inspired by the human immune system, are algorithms and mechanisms which are self-adaptive and self-learning classifiers capable of recognizing and classifying by learning, long-term memory and association. Unlike other human system inspired techniques like genetic algorithms and neural networks, AIS includes a range of algorithms modeling on different immune mechanism of the body. In this paper, a mechanism of a human immune system based on apoptosis is adopted to build an Intrusion Detection System (IDS) to protect computer networks. Features are selected from network traffic using Fisher Score. Based on the selected features, the record/connection is classified as either an attack or normal traffic by the proposed methodology. Simulation results demonstrates that the proposed AIS based on apoptosis performs better than existing AIS for intrusion detection.
Keywords: Apoptosis, Artificial Immune System (AIS), Fisher Score, KDD dataset, Network intrusion detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21901831 Methodology for the Multi-Objective Analysis of Data Sets in Freight Delivery
Authors: Dale Dzemydiene, Aurelija Burinskiene, Arunas Miliauskas, Kristina Ciziuniene
Abstract:
Data flow and the purpose of reporting the data are different and dependent on business needs. Different parameters are reported and transferred regularly during freight delivery. This business practices form the dataset constructed for each time point and contain all required information for freight moving decisions. As a significant amount of these data is used for various purposes, an integrating methodological approach must be developed to respond to the indicated problem. The proposed methodology contains several steps: (1) collecting context data sets and data validation; (2) multi-objective analysis for optimizing freight transfer services. For data validation, the study involves Grubbs outliers analysis, particularly for data cleaning and the identification of statistical significance of data reporting event cases. The Grubbs test is often used as it measures one external value at a time exceeding the boundaries of standard normal distribution. In the study area, the test was not widely applied by authors, except when the Grubbs test for outlier detection was used to identify outsiders in fuel consumption data. In the study, the authors applied the method with a confidence level of 99%. For the multi-objective analysis, the authors would like to select the forms of construction of the genetic algorithms, which have more possibilities to extract the best solution. For freight delivery management, the schemas of genetic algorithms' structure are used as a more effective technique. Due to that, the adaptable genetic algorithm is applied for the description of choosing process of the effective transportation corridor. In this study, the multi-objective genetic algorithm methods are used to optimize the data evaluation and select the appropriate transport corridor. The authors suggest a methodology for the multi-objective analysis, which evaluates collected context data sets and uses this evaluation to determine a delivery corridor for freight transfer service in the multi-modal transportation network. In the multi-objective analysis, authors include safety components, the number of accidents a year, and freight delivery time in the multi-modal transportation network. The proposed methodology has practical value in the management of multi-modal transportation processes.
Keywords: Multi-objective decision support, analysis, data validation, freight delivery, multi-modal transportation, genetic programming methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4831830 Multi Objective Micro Genetic Algorithm for Combine and Reroute Problem
Authors: Soottipoom Yaowiwat, Manoj Lohatepanont, Proadpran Punyabukkana
Abstract:
Several approaches such as linear programming, network modeling, greedy heuristic and decision support system are well-known approaches in solving irregular airline operation problem. This paper presents an alternative approach based on Multi Objective Micro Genetic Algorithm. The aim of this research is to introduce the concept of Multi Objective Micro Genetic Algorithm as a tool to solve irregular airline operation, combine and reroute problem. The experiment result indicated that the model could obtain optimal solutions within a few second.Keywords: Irregular Airline Operation, Combine and RerouteRoutine, Genetic Algorithm, Micro Genetic Algorithm, Multi ObjectiveOptimization, Evolutionary Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16411829 Reducing SAGE Data Using Genetic Algorithms
Authors: Cheng-Hong Yang, Tsung-Mu Shih, Li-Yeh Chuang
Abstract:
Serial Analysis of Gene Expression is a powerful quantification technique for generating cell or tissue gene expression data. The profile of the gene expression of cell or tissue in several different states is difficult for biologists to analyze because of the large number of genes typically involved. However, feature selection in machine learning can successfully reduce this problem. The method allows reducing the features (genes) in specific SAGE data, and determines only relevant genes. In this study, we used a genetic algorithm to implement feature selection, and evaluate the classification accuracy of the selected features with the K-nearest neighbor method. In order to validate the proposed method, we used two SAGE data sets for testing. The results of this study conclusively prove that the number of features of the original SAGE data set can be significantly reduced and higher classification accuracy can be achieved.Keywords: Serial Analysis of Gene Expression, Feature selection, Genetic Algorithm, K-nearest neighbor method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16081828 Learning to Order Terms: Supervised Interestingness Measures in Terminology Extraction
Authors: Jérôme Azé, Mathieu Roche, Yves Kodratoff, Michèle Sebag
Abstract:
Term Extraction, a key data preparation step in Text Mining, extracts the terms, i.e. relevant collocation of words, attached to specific concepts (e.g. genetic-algorithms and decisiontrees are terms associated to the concept “Machine Learning" ). In this paper, the task of extracting interesting collocations is achieved through a supervised learning algorithm, exploiting a few collocations manually labelled as interesting/not interesting. From these examples, the ROGER algorithm learns a numerical function, inducing some ranking on the collocations. This ranking is optimized using genetic algorithms, maximizing the trade-off between the false positive and true positive rates (Area Under the ROC curve). This approach uses a particular representation for the word collocations, namely the vector of values corresponding to the standard statistical interestingness measures attached to this collocation. As this representation is general (over corpora and natural languages), generality tests were performed by experimenting the ranking function learned from an English corpus in Biology, onto a French corpus of Curriculum Vitae, and vice versa, showing a good robustness of the approaches compared to the state-of-the-art Support Vector Machine (SVM).Keywords: Text-mining, Terminology Extraction, Evolutionary algorithm, ROC Curve.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16581827 Optimal Planning of Ground Grid Based on Particle Swam Algorithm
Authors: Chun-Yao Lee, Yi-Xing Shen
Abstract:
This paper presents an application of particle swarm optimization (PSO) to the grounding grid planning which compares to the application of genetic algorithm (GA). Firstly, based on IEEE Std.80, the cost function of the grounding grid and the constraints of ground potential rise, step voltage and touch voltage are constructed for formulating the optimization problem of grounding grid planning. Secondly, GA and PSO algorithms for obtaining optimal solution of grounding grid are developed. Finally, a case of grounding grid planning is shown the superiority and availability of the PSO algorithm and proposal planning results of grounding grid in cost and computational time.Keywords: Genetic algorithm, particle swarm optimization, grounding grid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20771826 Optimal Design of Selective Excitation Pulses in Magnetic Resonance Imaging using Genetic Algorithms
Authors: Mohammed A. Alolfe, Abou-Bakr M. Youssef, Yasser M. Kadah
Abstract:
The proper design of RF pulses in magnetic resonance imaging (MRI) has a direct impact on the quality of acquired images, and is needed for many applications. Several techniques have been proposed to obtain the RF pulse envelope given the desired slice profile. Unfortunately, these techniques do not take into account the limitations of practical implementation such as limited amplitude resolution. Moreover, implementing constraints for special RF pulses on most techniques is not possible. In this work, we propose to develop an approach for designing optimal RF pulses under theoretically any constraints. The new technique will pose the RF pulse design problem as a combinatorial optimization problem and uses efficient techniques from this area such as genetic algorithms (GA) to solve this problem. In particular, an objective function will be proposed as the norm of the difference between the desired profile and the one obtained from solving the Bloch equations for the current RF pulse design values. The proposed approach will be verified using analytical solution based RF simulations and compared to previous methods such as Shinnar-Le Roux (SLR) method, and analysis, selected, and tested the options and parameters that control the Genetic Algorithm (GA) can significantly affect its performance to get the best improved results and compared to previous works in this field. The results show a significant improvement over conventional design techniques, select the best options and parameters for GA to get most improvement over the previous works, and suggest the practicality of using of the new technique for most important applications as slice selection for large flip angles, in the area of unconventional spatial encoding, and another clinical use.
Keywords: Selective excitation, magnetic resonance imaging, combinatorial optimization, pulse design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16111825 Optimization of Supersonic Ejector via Sequence-Adapted Micro-Genetic Algorithm
Authors: Kolar Jan, Dvorak Vaclav
Abstract:
In this study, an optimization of supersonic air-to-air ejector is carried out by a recently developed single-objective genetic algorithm based on adaption of sequence of individuals. Adaptation of sequence is based on Shape-based distance of individuals and embedded micro-genetic algorithm. The optimal sequence found defines the succession of CFD-aimed objective calculation within each generation of regular micro-genetic algorithm. A spring-based deformation mutates the computational grid starting the initial individualvia adapted population in the optimized sequence. Selection of a generation initial individual is knowledge-based. A direct comparison of the newly defined and standard micro-genetic algorithm is carried out for supersonic air-to-air ejector. The only objective is to minimize the loose of total stagnation pressure in the ejector. The result is that sequence-adopted micro-genetic algorithm can provide comparative results to standard algorithm but in significantly lower number of overall CFD iteration steps.
Keywords: Grid deformation, Micro-genetic algorithm, shapebased sequence, supersonic ejector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15631824 Selective Harmonic Elimination of PWM AC/AC Voltage Controller Using Hybrid RGA-PS Approach
Authors: A. K. Al-Othman, Nabil A. Ahmed, A. M. Al-Kandari, H. K. Ebraheem
Abstract:
Selective harmonic elimination-pulse width modulation techniques offer a tight control of the harmonic spectrum of a given voltage waveform generated by a power electronic converter along with a low number of switching transitions. Traditional optimization methods suffer from various drawbacks, such as prolonged and tedious computational steps and convergence to local optima; thus, the more the number of harmonics to be eliminated, the larger the computational complexity and time. This paper presents a novel method for output voltage harmonic elimination and voltage control of PWM AC/AC voltage converters using the principle of hybrid Real-Coded Genetic Algorithm-Pattern Search (RGA-PS) method. RGA is the primary optimizer exploiting its global search capabilities, PS is then employed to fine tune the best solution provided by RGA in each evolution. The proposed method enables linear control of the fundamental component of the output voltage and complete elimination of its harmonic contents up to a specified order. Theoretical studies have been carried out to show the effectiveness and robustness of the proposed method of selective harmonic elimination. Theoretical results are validated through simulation studies using PSIM software package.Keywords: PWM, AC/AC voltage converters, selectiveharmonic elimination, direct search method, pattern search method, Real-coded Genetic algorithms, evolutionary algorithms andoptimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33171823 Time-Cost-Quality Trade-off Software by using Simplified Genetic Algorithm for Typical Repetitive Construction Projects
Authors: Refaat H. Abd El Razek, Ahmed M. Diab, Sherif M. Hafez, Remon F. Aziz
Abstract:
Time-Cost Optimization "TCO" is one of the greatest challenges in construction project planning and control, since the optimization of either time or cost, would usually be at the expense of the other. Since there is a hidden trade-off relationship between project and cost, it might be difficult to predict whether the total cost would increase or decrease as a result of the schedule compression. Recently third dimension in trade-off analysis is taken into consideration that is quality of the projects. Few of the existing algorithms are applied in a case of construction project with threedimensional trade-off analysis, Time-Cost-Quality relationships. The objective of this paper is to presents the development of a practical software system; that named Automatic Multi-objective Typical Construction Resource Optimization System "AMTCROS". This system incorporates the basic concepts of Line Of Balance "LOB" and Critical Path Method "CPM" in a multi-objective Genetic Algorithms "GAs" model. The main objective of this system is to provide a practical support for typical construction planners who need to optimize resource utilization in order to minimize project cost and duration while maximizing its quality simultaneously. The application of these research developments in planning the typical construction projects holds a strong promise to: 1) Increase the efficiency of resource use in typical construction projects; 2) Reduce construction duration period; 3) Minimize construction cost (direct cost plus indirect cost); and 4) Improve the quality of newly construction projects. A general description of the proposed software for the Time-Cost-Quality Trade-Off "TCQTO" is presented. The main inputs and outputs of the proposed software are outlined. The main subroutines and the inference engine of this software are detailed. The complexity analysis of the software is discussed. In addition, the verification, and complexity of the proposed software are proved and tested using a real case study.
Keywords: Project management, typical (repetitive) large scale projects, line of balance, multi-objective optimization, genetic algorithms, time-cost-quality trade-offs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30631822 An Expert System Designed to Be Used with MOEAs for Efficient Portfolio Selection
Authors: K. Metaxiotis, K. Liagkouras
Abstract:
This study presents an Expert System specially designed to be used with Multiobjective Evolutionary Algorithms (MOEAs) for the solution of the portfolio selection problem. The validation of the proposed hybrid System is done by using data sets from Hang Seng 31 in Hong Kong, DAX 100 in Germany and FTSE 100 in UK. The performance of the proposed system is assessed in comparison with the Non-dominated Sorting Genetic Algorithm II (NSGAII). The evaluation of the performance is based on different performance metrics that evaluate both the proximity of the solutions to the Pareto front and their dispersion on it. The results show that the proposed hybrid system is efficient for the solution of this kind of problems.
Keywords: Expert Systems, Multiobjective optimization, Evolutionary Algorithms, Portfolio Selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17661821 Genetic Diversity Based Population Study of Freshwater Mud Eel (Monopterus cuchia) in Bangladesh
Authors: M. F. Miah, K. M. A. Zinnah, M. J. Raihan, H. Ali, M. N. Naser
Abstract:
As genetic diversity is most important for existing, breeding and production of any fish; this study was undertaken for investigating genetic diversity of freshwater mud eel, Monopterus cuchia at population level where three ecological populations such as flooded area of Sylhet (P1), open water of Moulvibazar (P2) and open water of Sunamganj (P3) districts of Bangladesh were considered. Four arbitrary RAPD primers (OPB-12, C0-4, B-03 and OPB-08) were screened and RAPD banding patterns were analyzed among the populations considering 15 individuals of each population. In total 174, 138 and 149 bands were detected in the populations of P1, P2 and P3 respectively; however, each primer revealed less number of bands in each population. 100% polymorphic loci were recorded in P2 and P3 whereas only one monomorphic locus was observed in P1, recorded 97.5% polymorphism. Different genetic parameters such as inter-individual pairwise similarity, genetic distance, Nei genetic similarity, linkage distances, cluster analysis and allelic information, etc. were considered for measuring genetic diversity. The average inter-individual pairwise similarity was recorded 2.98, 1.47 and 1.35 in P1, P2 and P3 respectively. Considering genetic distance analysis, the highest distance 1 was recorded in P2 and P3 and the lowest genetic distance 0.444 was found in P2. The average Nei genetic similarity was observed 0.19, 0.16 and 0.13 in P1, P2 and P3, respectively; however, the average linkage distance was recorded 24.92, 17.14 and 15.28 in P1, P3 and P2 respectively. Based on linkage distance, genetic clusters were generated in three populations where 6 clades and 7 clusters were found in P1, 3 clades and 5 clusters were observed in P2 and 4 clades and 7 clusters were detected in P3. In addition, allelic information was observed where the frequency of p and q alleles were observed 0.093 and 0.907 in P1, 0.076 and 0.924 in P2, 0.074 and 0.926 in P3 respectively. The average gene diversity was observed highest in P2 (0.132) followed by P3 (0.131) and P1 (0.121) respectively.
Keywords: Genetic diversity, Monopterus cuchia, population, RAPD, Bangladesh.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1830