Open Science Index, Mathematical and Computational Sciences Vol:5, No:3, 2011 publications.waset.org/4652.pdf

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences
Voal:5, No:3, 2011

Performance Comparison of Parallel Sorting
Algorithms on the Cluster of Workstations

Lai Lai Win Kyi, Nay Min Tun

Abstract—Sorting appears the most attention among all
computational tasks over the past years because sorted data is at the
heart of many computations. Sorting is of additional importance to
parallel computing because of its close relation to the task of routing
data among processes, which is an essential part of many parallel
algorithms. Many parallel sorting algorithms have been investigated
for a variety of parallel computer architectures. In this paper, three
parallel sorting algorithms have been implemented and compared in
terms of their overall execution time. The algorithms implemented
are the odd-even transposition sort, parallel merge sort and parallel
rank sort. Cluster of Workstations or Windows Compute Cluster has
been used to compare the algorithms implemented. The C#
programming language is used to develop the sorting algorithms. The
MPI (Message Passing Interface) library has been selected to
establish the communication and synchronization between
processors. The time complexity for each parallel sorting algorithm
will also be mentioned and analyzed.

Keywords— Cluster of Workstations, parallel sorting algorithms,
performance analysis, parallel computing, MPI.

1. INTRODUCTION

ORTING is one of the most common operations performed

by a computer. Because sorted data are easier to
manipulate than randomly-ordered data, many algorithms
require sorted data. Moreover sorting is one of the most
important operations in database systems and its
efficiency can influences drastically the overall system
performance. Sorting is of additional importance to parallel
computing because of its close relation to the task of routing
data among processes, which is an essential part of many
parallel algorithms. To speed up the performance of
database system, parallelism is applied to the execution of
the data administration operations. The workstations
connected via a local area network allow to speed up the
application processing time [4].

Today, clusters of loosely coupled desktop computers
present extremely popular infrastructure for development of
parallel algorithms. The processes, running on computers in
cluster, communicate with each other through messages. MPI
is standardized and portable implementation of this concept,

Lai Lai Win Kyi is with the Ph.D 7" Batch Candidate from Department of
Information Technology, Mandalay Technological University, Mandalay
Region, Myanmar. (e-mail: laelae83@gmail.com)

Nay Min Tun is with the Principle in Computer University, Kyaing Tong,
Myanmar. (e-mail: naymin.300777@gmail).

International Scholarly and Scientific Research & Innovation 5(3) 2011

providing several abstractions that simplify the use of parallel
computers with distributed memory.

Although, the majority of today clusters run on Linux
operating systems, Microsoft Windows operating coupled with
the .NET platform is also becoming an interesting alternative.
The .NET platform, designed to simplify the connection of
information, people, systems and devices has two important
parts: (i) Common Language Infrastructure (CLI), a layer built
upon operating system, allowing development of operating
system independent applications and (ii) new programming
language C# — simple, safe, object-oriented, network centered
high performance language.

In this paper implementation of parallel sorting algorithms
in aspect of linking Message Passing Interface to the C# and
NET framework is considered. The research has been
carried out on performance evaluations of parallel sorting
algorithms on the cluster of workstations. In next section MPI
binding C# on .Net Platform and parallelization of sorting
algorithms are presented. Furthermore, sorting algorithms
detail with emphasis on technology is exposed in section three.
In section four, the experimental setup and results in terms of
computational times are given. The main findings are
concluded in the last section.

II. RELATED WORK

This section describes the related work to implement
parallel sorting algorithms using MPI and C# on .NET
platform.

A. Binding C# and MPI on .Net Platform

The language C# is object oriented language with bounds
checking and garbage collection. Thus it helps writing safe
code by protecting from dangerous pointer and memory-
management errors, such as accessing the element of array out
of its bounds or problems connected to creation and deletion
of objects. The meta code, produced by C# compiler is then
executed by the CLI interpreter, available for Windows
systems and also for Linux systems [5].

Due to the fact that MPI standard only requires source
compatibility and that current MPI implementations do not
support .NET platform, the final code, using MPI libraries
written in C language is not platform independent. On
Windows systems the freely available MPICH library [2] is
mostly used.

Besides the compatibility issues, there are also some
problems regarding the binding of the MPI libraries to the C#

447 1SN1:0000000091950263

Open Science Index, Mathematical and Computational Sciences Vol:5, No:3, 2011 publications.waset.org/4652.pdf

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences
Voal:5, No:3, 2011

language. First, the objects in .NET can be arbitrarily moved
by garbage collector, and this must be prevented when they are
in use by MPI functions. The solution, which still generates
safe code, is to use special C# class to pin the object in some
memory location and than obtain pointer to that object needed
by MPI library functions. Special care is needed to unpin the
object when it is not needed anymore. Secondly, MPI data
types and constants are defined in C++ header files, which
cannot be directly imported into C#. Therefore, MPI constants
need to be represented as functions, which can return the value
of particular constant on startup. Similarly special functions
are written to create, access and delete special MPI data types.
In order to put the binding problems out of the C#
programmer’s sight, a wrapper was written in C# and partially
in C [6], providing an interface to the MPICH library that
looks more like a normal C# class. It is reported that with
careful pinning and unpinning of objects the performance of
the MPI is only slightly affected [6].

B. Parallelization of Sorting Algorithms

There are six main steps in parallelizing sorting algorithms
shown in Figure 1. Firstly, “Initialize MPI” is called prior to
any calls to other MPI routines. Its purpose is to initialize the
MPI Environment. MPLInit is called once typically at the start
of the program before any other MPI functions are called. This
provides application developers with the function declarations
for all MPI functions. The second step is accepting data. If the
node is the root of the cluster, it must open the data file and
accept the data into the array of the same data type. Initially,
the data file has already created by inserting large amount of
data randomly at a root node. The root node also accepts the
search key from user it must send it to all the other compute
nodes.

To send the data of any type to all the other nodes,
MPI.Bcast() function is used.For parallel processing to take
place, the root of the cluster divides the data into multiple
partitions according to the number of the compute nodes and
distributes them to the compute nodes. To divide the entire
data file into multiple fragments, the entire size of the file and
the total number of nodes in the cluster must be known. The
total number of nodes in the cluster must be determined by
MPI.Comm.size(). The root node sends the data partitions to
the compute nodes by calling the MPI.Scatter(). It can also use
MPI.Send() and MPI.Recv() functions to send and receive data
from one node to another.

After that the data file is partitioned according to the
number of compute nodes at the root node. This data partition
is sorted in parallelizing with any sorting algorithm by all
computing nodes. Then the sorted data partitions are gathered
by the root node using MPI.Gather() commands. MPI.Finalize
allows the program to take MPI.Finalize is called at the end of
the computation; it performs various clean-up tasks to
terminate the MPI Environment. No MPI calls may be
performed after MPIL.Finalize has been called, not even
MPLInit

International Scholarly and Scientific Research & Innovation 5(3) 2011

Open data file Accept data and
and accent data search kev
v

| Perform sort |

<o >

Accept search

Send data partitions
and search key to
comoute nodes

Send

v
Perform search
result to

|

Receive data
from nodes

Display Result

Finalize MPI H STOP]

Fig. 1 Parallelization of Sorting Algorithms

III. PARALLEL SORTING ALGORITHMS

There are many types of sorting algorithms for parallel
computing. In this paper, three parallel sorting algorithms will
be implemented and evaluated. These algorithms are odd-
even transposition sort, parallel merge sort and Parallel rank
sort.

A. Odd-Even Transposition Sort

The Odd-even transposition sort algorithm [5,6] starts by
distributing n/p sub-lists (p is the number of processors) to all
the processors. Each processor then sequentially sorts its sub-
list locally. The algorithm then operates by alternating between
an odd and an even phase, hence the name odd-even. In the
even phase, even numbered processors (processor i)
communicate with the next odd numbered processors
(processor i+1).

In this communication process, the two sub-lists for each
two communicating processes are merged together. The upper
half of the list is then kept in the higher number
processor and the lower half is put in the lower number
processor. Similarly, in the odd phase, odd number processors
(processor i) communicate with the previous even number
processors (i-1) in exactly the same fashion as in the even
phase. It is clear that the whole list will be sorted in a
maximum of p stages. Figure 2 shows an illustration of the
odd-even transposition algorithm.

448 1SN1:0000000091950263

Open Science Index, Mathematical and Computational Sciences Vol:5, No:3, 2011 publications.waset.org/4652.pdf

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences
Voal:5, No:3, 2011

Vescrbed | o o 16 1-rerin

tage | | 2

st [s [oz] [

R

s Wi '.|.|.s

Farlad L. I

B |* 3 |1f)|1]

Sl;u.we:~| [}

'1| 13 | 1% ;u .-c'||

Fig. 2 Odd-Even Transposition Sort

Below 1is the analysis of the time complexity for
the odd-even transposition sorting algorithm [3]. The
performance of the sequential sort algorithm is:

. , nn-1) n® n -
i=1+2+3+4n=—"—=——-=0(n)
where a=1/2.
The performance of the odd-even transposition
algorithm is:
n/p
) =1 $2+3+ 402 /RO/R 1) o O(bn?]
i=1+2 k- = — = “[
i P 2 2p" 2p ¢

i=L
where b=1/2p”.
This means that theoretically speaking the time will reduce

by 1/p2.

B. Parallel Merge Sort

Parallel merge sort algorithm uses a parallel binary merge
sort strategy to sort its element. Parallel binary merge sort is
composed of two phases: local sort and final merge. The local
sort phase is carried out independently in each processor.
Local sorting in each processor is performed as per normal
serial external sorting mechanism.

After local sort phase is completed, the second phase: final
merge phase starts. The merging phase is pipelined, instead of
concentrating on one processor. The way the merging phase
works is taking the results from two processors, and merging
the two in one processor. As this merging technique uses only
two processors, this merging is called “Binary Merging”. The
result of the merging between two processors is passed on to
the next level until one processor left; that is the host.
Subsequently, the merging process forms a hierarchy. Figure 3
gives an illustration of the process[3].

The main motivation to use parallel binary-merge sort is
that the merging workload is spread to a pipeline of
processors, instead of one processor. It is true however that
final merging has still to be done by one processor.

Sequential merge sort time complexity is T = (n-1) when
parallelizing the merge sort algorithm the time complexity
reduces t0 Tparane=2"F —p+1.

International Scholarly and Scientific Research & Innovation 5(3) 2011

B n|“ 72 |'!|m|:|(.

Lnsonted List of |6 Elemaents v .

o

|:i||3|1|? 2
v

"'l_:|||}'.‘| [6]76]50]4]
7

(ry

"

A

"\ . ",

(w0 (an

\|”&'|'11

B |3|‘s-|:'] '|2i'|o 7] [8] ')|w|4' [F
| S hevacms sy | . FRE e ———
17 |:s'|3|': |5 1]1z| |4 t."m|-a| s
v
(=)

ill.s]sn'_?ol

ENERE B

s | IJ‘ S
i

3 ‘3 |.<

78 [10]12] 1z
(7T o],

_‘JJ:b.’I\
ENENENEN

_1.\]:0. :q|

Fig. 3 Parallel binary-merge sort

C. Parallel Rank Sort

In the sequential rank sort algorithm (also known as
enumeration sort), each element in the list to be sorted is
compared against the rest of the elements to determine its
rank amongst them [7]. This sequential algorithm can be easily
parallelized by enabling the master processor to distribute the
list amongst all the processors and assigning each slave
processor n/p elements (where n is the list size and p is the
number of processors). Each processor is responsible of
computing the rank of all the n/p elements. The ranks are then
returned from the slaves to the master who in turn is
responsible of constructing the whole sorted list as shown in
Figure 4.

Unsorled List o 15 clemzuls

|s|13 3 |:|1u|5 E'I?E o4 3 15|1|1'_
(D
2|12|10|i .=.|7s|m 4|3|15 |‘11|
Back > 9 13 &
b|1i| |;| |1' lu|‘~|b|zb|‘~t|4| | 1 L1|
Bank 52 12 i
D
|s 13]3] | |1"|]0‘|6|’6 "JJJI |15|1]11|
[1E 15 c_@‘]
ERRELE] 7]:?]|:’ I(_l|ﬁ|{i ?Ei[ﬁ(l|4 31151 11
Sorted List Rad—me 1 u o1 11
1023]3] s e |7]e]10]11]12]13]15 |50 75 |
1 2 3 3 5 5 7 & % Wb 1z 13 14 15 16

Fig. 4 Parallel Rank Sort Algorithm

In the sequential version of the rank sort algorithm, each
element is compared to all the other elements. The complexity
of the algorithm can be expressed as:

T
Z n = 0(n?)
i=1

When parallelizing this algorithm, it can be easily seen that
the complexity reduces to:

n/p
. 1
Z n=0(m),c=-
i=1 2
This means that if n number of processors is used then the

449 1SN1:0000000091950263

Open Science Index, Mathematical and Computational Sciences Vol:5, No:3, 2011 publications.waset.org/4652.pdf

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences
Voal:5, No:3, 2011

sorting time will become almost linear O (n).

IV. RESULTS AND DISCUSSIONS

Each of the parallel algorithms stated above will be
compared to its sequential implementation and evaluated in
terms of its overall execution time, speedup and efficiency.
The speedup is used to measure the gain of parallelizing an
application versus running the application sequentially and can

be expressed as:
Execution time using one processor

Speedup = — -
? P Execution time using p processor

On the other hand, the efficiency is used to indicate how
well the multiple processors are utilized in executing the
application and can be expressed as:

Execution time using p processor

Efficiency =
Total number of processor

The C# programming language and MPI library used to
develop the sorting algorithms. The performance of the sorting
algorithms was evaluated on a homogeneous cluster of
workstations, with Window operating system. Each sorting
algorithm performance was evaluated for 2, 4, 8, 16 and 32
processors. The speedup and efficiency will be calculated
based on the previous records. An array of 2'* random integers
was used to test the parallel algorithms.

A. Odd-Even Transposition Sort

The time of sequential odd-even transposition sort is 5x10°
seconds. Figure 5 shows the total execution time for the
odd-even transposition sorting algorithm. It can easily be
seen that parallel algorithm is by far faster than the sequential
sort algorithm. The speed up for the odd-even transposition
sorting algorithm is also displayed in figure 6 along with the
efficiency in figure 7.

Sorling 214 intezers
o AOOO000
E 2000000
=14
-2 4000000
o
2 3000000
=¥
& 2000000
o "~
1000000 S o
o — -
2 - 16 32
Number of Processors

Fig. 5 Total Execution Time of the Odd-Even Transposition Sort

Algorithm
5 Odd-Even Transposition Speedup
204
154
10
e
o
0
2 4 8 16 32
MNumber of Processors

Fig. 6 Speedup of the Odd-Even Transposition Sort Algorithm

International Scholarly and Scientific Research & Innovation 5(3) 2011

Effcicncy of Cidd-Evea Transpositica

o EH

Tnabea of Bruc s

Fig. 7 Efficiency of the Odd-Even Transposition Sort Algorithm
B. Parallel Merge Sort

Parallel merge sort is one of the most efficient algorithms
for sorting elements. The time of sequential merge sort is
29000 seconds. In Figure 8 an illustration of the total
execution time of the parallel algorithm is displayed.

Sorting 2 integers

80000
& 70000
BO000

=

16 32

Number of Processors

Fig. 8 Total Execution Time of the Parallel Merge Sort Algorithm

o Parallel Merge Speedup
1.8 *
1.8 - *
1.4
1.2 -

1
0 R
Lo
0.4 *
e

0 . . ' .

2 4 -] 16 32
MNumber of Processors

Fig. 9 Speedup of the Parallel Merge Sort Algorithm

Fffiviern v of Parid v hlemgre Sorl,

f N

4 a
MNupiber of Processors

Fig. 10 Efficiency of the Parallel Merge Sort Algorithm
It shows that sorting using up tol6 processors is helpful in
reducing the total time required to sort the elements. However,
increasing the processors to more than 16 processors
will result in lower performance compared to the
sequential merge sort algorithm. This of course is due to the

450 1SN1:0000000091950263

Open Science Index, Mathematical and Computational Sciences Vol:5, No:3, 2011 publications.waset.org/4652.pdf

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences
Voal:5, No:3, 2011

communication overhead that occurs between the processors to
merge the result in to one sorted list. The speedup and
efficiency of the parallel merge sort algorithm are
displayed in Figure 9 and Figure 10 respectively.

C. Parallel Rank Sort

The time of sequential rank sort is 3.4x10° seconds.
Running the parallel rank sort algorithm on 2 processors to
sort 2" integers is slower than the sequential
implementation due to the communication overhead needed
to distribute the whole unsorted list to all the processors.
However, the benefit of parallelization kicks in after increasing
the number of processors. Using 2 processors run parallel
rank sort should increase the performance of the
algorithm conditioned the number of elements to be sorted
are greater than 2'* elements.

Sorting 2 14 integers

u 4500000
2 4000000
2 3500000 \,

5111,

2500000
2000000 - g
1500000 L

B 1000000
500000

3

eragz Proces:

Av

2 16 32

MNumber of Processors

Fig. 11 Total Execution Time of the Parallel Rank Sort Algorithm

DParallcl Rank Sort Spcedup

_1 //“\

2 4 8 18 | 32

Numnbrer of Processors

]
Lhy

[

[
Lh

Fig. 12 Speedup of the Parallel Rank Sort Algorithm

Efficiency of Farallel Fank Sort
045
04
0.35
vs 4+
0.25 |

ni1s +
01 +
0.05 +

2 3 16 3z
Number of Processors

Fig. 13 Efficiency of the Parallel Rank Sort Algorithm

The limitation of the parallel rank sort is the memory it
requires in order to sort its elements. Each processor needs a
copy of the whole unsorted list for it to rank its portion of

International Scholarly and Scientific Research & Innovation 5(3) 2011

elements. Another memory requirement is to construct an
array proportional to the unsorted list size to enable the
algorithm of sorting lists with repeated elements. The
parallel rank sort algorithm can be considered as a
memory intensive algorithm. Figure 11 shows the total
execution time for the parallel sort algorithm. When this
algorithm runs on 8 processors it can improve the total
execution time by a factor slightly greater than 2. However,
lot of communication overheads and data transfer is
required which prevents wus from increasing the
performance beyond this factor. Figure 12 and 13 shows
speedup and efficiency.

V.CONCLUSION

Three parallel sorting algorithms have been developed
and executed on a homogeneous cluster of workstations.
The parallel algorithms implemented are the odd even
transposition sorting algorithm, the parallel rank sort
algorithm and the parallel merge sort algorithm. Figure
shows a comparison between the three parallel sorting
algorithms when sorting 2'* integers on 2, 4, 8, 16 and 32
processors. According to Figures it is obvious that the
parallel merge sort is the fastest sorting algorithm
followed by the odd-even transposition sorting algorithm then
the parallel rank sorting algorithm.

ACKNOWLEDGMENT

The author wants to express her gratitude to Dr. Nay Min Tun for
his help and advice regarding of this topic and excellent
guidance, valuable suggestions and advices. We would also
like to thank all teachers from Department of Information
Technology at Mandalay Technological University for their
valuable suggestions.

REFERENCES

[1] Kalim Qureshi, “A Practical Performance Comparison of Parallel
Sorting Algorithms on Homogeneous Network of Workstations”

[2] Gropp, W., Lusk, E., Skjellum, A. (1999) Using MPI: portable
parallel programming with the message-passing interface, MIT,
Cambridge

[3] D. Bitton, D. DeWitt, D.K. Hsiao, J. Menon, “A Taxonomy of

Parallel ~ Sorting”, ACM Computing Surveys, 16,3,pp. 287-318,
September 1984.

[4] E. Lusk. Programming with MPI on clusters. In 3rd IEEE
International Conference on Cluster Computing (CLUSTER’01),
October 2001.

[5] Mono project (2004) Open
http://www.mono-project.com

[6] Willcock, J., et. al. (2002) Using MPI with C# and the Common
language infrastructure, Technical report TR570, Indiana University,

source platform basedon .NET,

Bloomington

[71 E. Meyer auf der Heide, A Wigderson, The Complexity of
Parallel Sorting, SIAM Journal of Computing, 16, 1, pp. 100-107,
February1999.

[8] Gropp, W., Lusk, E., Skjellum, A. (1999) Using MPL portable
parallel programming with the message-passing interface, MIT,
Cambridge.

451 1SN1:0000000091950263

