Search results for: Biomass
128 Bioprocess Intelligent Control: A Case Study
Authors: Mihai Caramihai Ana A Chirvase, Irina Severin
Abstract:
Bioprocesses are appreciated as difficult to control because their dynamic behavior is highly nonlinear and time varying, in particular, when they are operating in fed batch mode. The research objective of this study was to develop an appropriate control method for a complex bioprocess and to implement it on a laboratory plant. Hence, an intelligent control structure has been designed in order to produce biomass and to maximize the specific growth rate.
Keywords: Fed batch bioprocess, mass-balance model, fuzzy control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562127 Use of Corn Stover for the Production of 2G Bioethanol, Enzymes and Xylitol under a Biorefinery Concept
Authors: Astorga-Trejo Rebeca, Fonseca-Peralta Héctor Manuel, Beltrán-Arredondo Laura Ivonne, Castro-Martínez Claudia
Abstract:
The use of biomass as feedstock for the production of fuels and other chemicals of interest is an ever growing accepted option in the way to the development of biorefinery complexes. In the Mexican state of Sinaloa, a significant amount of residues from corn crops are produced every year, most of which can be converted to bioethanol and other products through biotechnological conversion using yeast and other microorganisms. Therefore, the objective of this work was to take advantage of corn stover and evaluate its potential as a substrate for the production of second generation bioethanol (2G), enzymes and xylitol. To produce bioethanol 2G, an acid-alkaline pretreatment was carried out prior to saccharification and fermentation. The microorganisms used for the production of enzymes, as well as for the production of xylitol, were isolated and characterized in our work group. Statistical analysis was performed using Design Expert version 11.0. The results showed that it is possible to obtain 2G bioethanol employing corn stover as a carbon source and Saccharomyces cerevisiae ItVer01 and Candida intermedia CBE002 with yields of 0.42 g and 0.31 g, respectively. It was also shown that C. intermedia has the ability to produce xylitol with a good yield (0.46 g/g). On the other hand, qualitative and quantitative studies showed that the native strains of Fusarium equiseti (0.4 IU/mL - xylanase), Bacillus velezensis (1.2 IU/mL – xylanase and 0.4 UI/mL - amylase) and Penicillium funiculosum (1.5 IU/mL - cellulases) have the capacity to produce xylanases, amylases or cellulases using corn stover as raw material. This study allowed us to demonstrate that it is possible to use corn stover as a carbon source, a low-cost raw material with high availability in our country, to obtain bioproducts of industrial interest, using processes that are more environmentally friendly and sustainable. It is necessary to continue the optimization of each bioprocess.
Keywords: Biomass, corn stover, biorefinery, bioethanol 2G, enzymes, xylitol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 476126 Investigating the Process Kinetics and Nitrogen Gas Production in Anammox Hybrid Reactor with Special Emphasis on the Role of Filter Media
Authors: Swati Tomar, Sunil Kumar Gupta
Abstract:
Anammox is a novel and promising technology that has changed the traditional concept of biological nitrogen removal. The process facilitates direct oxidation of ammonical nitrogen under anaerobic conditions with nitrite as an electron acceptor without addition of external carbon sources. The present study investigated the feasibility of Anammox Hybrid Reactor (AHR) combining the dual advantages of suspended and attached growth media for biodegradation of ammonical nitrogen in wastewater. Experimental unit consisted of 4 nos. of 5L capacity AHR inoculated with mixed seed culture containing anoxic and activated sludge (1:1). The process was established by feeding the reactors with synthetic wastewater containing NH4-H and NO2-N in the ratio 1:1 at HRT (hydraulic retention time) of 1 day. The reactors were gradually acclimated to higher ammonium concentration till it attained pseudo steady state removal at a total nitrogen concentration of 1200 mg/l. During this period, the performance of the AHR was monitored at twelve different HRTs varying from 0.25-3.0 d with increasing NLR from 0.4 to 4.8 kg N/m3d. AHR demonstrated significantly higher nitrogen removal (95.1%) at optimal HRT of 1 day. Filter media in AHR contributed an additional 27.2% ammonium removal in addition to 72% reduction in the sludge washout rate. This may be attributed to the functional mechanism of filter media which acts as a mechanical sieve and reduces the sludge washout rate many folds. This enhances the biomass retention capacity of the reactor by 25%, which is the key parameter for successful operation of high rate bioreactors. The effluent nitrate concentration, which is one of the bottlenecks of anammox process was also minimised significantly (42.3-52.3 mg/L). Process kinetics was evaluated using first order and Grau-second order models. The first-order substrate removal rate constant was found as 13.0 d-1. Model validation revealed that Grau second order model was more precise and predicted effluent nitrogen concentration with least error (1.84±10%). A new mathematical model based on mass balance was developed to predict N2 gas in AHR. The mass balance model derived from total nitrogen dictated significantly higher correlation (R2=0.986) and predicted N2 gas with least error of precision (0.12±8.49%). SEM study of biomass indicated the presence of heterogeneous population of cocci and rod shaped bacteria of average diameter varying from 1.2-1.5 mm. Owing to enhanced NRE coupled with meagre production of effluent nitrate and its ability to retain high biomass, AHR proved to be the most competitive reactor configuration for dealing with nitrogen laden wastewater.
Keywords: Anammox, filter media, kinetics, nitrogen removal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2551125 Biogas from Cover Crops and Field Residues: Effects on Soil, Water, Climate and Ecological Footprint
Authors: Manfred Szerencsits, Christine Weinberger, Maximilian Kuderna, Franz Feichtinger, Eva Erhart, Stephan Maier
Abstract:
Cover or catch crops have beneficial effects for soil, water, erosion, etc. If harvested, they also provide feedstock for biogas without competition for arable land in regions, where only one main crop can be produced per year. On average gross energy yields of approx. 1300 m³ methane (CH4) ha-1 can be expected from 4.5 tonnes (t) of cover crop dry matter (DM) in Austria. Considering the total energy invested from cultivation to compression for biofuel use a net energy yield of about 1000 m³ CH4 ha-1 is remaining. With the straw of grain maize or Corn Cob Mix (CCM) similar energy yields can be achieved. In comparison to catch crops remaining on the field as green manure or to complete fallow between main crops the effects on soil, water and climate can be improved if cover crops are harvested without soil compaction and digestate is returned to the field in an amount equivalent to cover crop removal. In this way, the risk of nitrate leaching can be reduced approx. by 25% in comparison to full fallow. The risk of nitrous oxide emissions may be reduced up to 50% by contrast with cover crops serving as green manure. The effects on humus content and erosion are similar or better than those of cover crops used as green manure when the same amount of biomass was produced. With higher biomass production the positive effects increase even if cover crops are harvested and the only digestate is brought back to the fields. The ecological footprint of arable farming can be reduced by approx. 50% considering the substitution of natural gas with CH4 produced from cover crops.
Keywords: Biogas, cover crops, catch crops, land use competition, sustainable agriculture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1319124 Valorization of Waste Dates in South Algeria: Biofuel Production
Authors: Insaf Mehani, Bachir Bouchekima
Abstract:
In Algeria, the conditioning units of dates, generate significant quantities of waste arising from sorting deviations. This biomass, until then considered as a waste with high impact on the environment can be transformed into high value added product. It is possible to develop common dates of low commercial value, and put on the local and international market a new generation of products with high added values such as bio ethanol. Besides its use in chemical synthesis, bio ethanol can be blended with gasoline to produce a clean fuel while improving the octane.Keywords: Bioenergy, dates, bioethanol, valorisation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1464123 The Effect of Multiple Environmental Conditions on Acacia Senegal Seedling’s Carbon, Nitrogen, and Hydrogen Contents: An Experimental Investigation
Authors: Abdoelmoniem A. Attaelmanan, Ahmed A. H. Siddig
Abstract:
This study was conducted in light of continual global climate changes that projected increasing aridity, changes in soil fertility, and pollution. Plant growth and development largely depend on the combination of availing water and nutrients in the soil. Changes in the climate and atmospheric chemistry can cause serious effects on these growth factors. Plant carbon (C), nitrogen (N), and hydrogen (H) play a fundamental role in the maintenance of ecosystem structure and function. Hashab (Acacia senegal), which produces gum Arabic, supports dryland ecosystems in tropical zones by its potentiality to restore degraded soils; hence, it is ecologically and economically important for the dry areas of sub-Saharan Africa. The study aims at investigating the effects of water stress (simulated drought) and poor soil type on Acacia senegal C, N, and H contents. Seven-day-old seedlings were assigned to the treatments in split-plot design for four weeks. The main plot is irrigation interval (well-watered and water-stressed), and the subplot is soil types (silt and sandy soils). Seedling's C%, N%, and H% were measured using CHNS-O Analyzer and applying Standard Test Method. Irrigation intervals and soil types had no effects on seedlings and leaves C%, N%, and H%, irrigation interval had affected stem C% and H%, both irrigation intervals and soil types had affected root N% and interaction effect of water and soil was found on leaves and root's N%. Application of well-watered irrigation with soil that is rich in N and other nutrients would result in the greatest seedling C, N, and H content which will enhance growth and biomass accumulation and can play a crucial role in ecosystem productivity and services in the dryland regions.
Keywords: Acacia senegal, Africa, climate change, drylands, nutrients biomass, Sub-Sahara, Sudan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 537122 Biodegradation of PCP by the Rhizobacteria Isolated from Pentachlorophenol-tolerant Crop Species
Authors: Avita K. Marihal, K.S. Jagadeesh, Sarita Sinha
Abstract:
Pentachlorophenol (PCP) is a polychlorinated aromatic compound that is widespread in industrial effluents and is considered to be a serious pollutant. Among the variety of industrial effluents encountered, effluents from tanning industry are very important and have a serious pollution potential. PCP is also formed unintentionally in effluents of paper and pulp industries. It is highly persistent in soils and is lethal to a wide variety of beneficial microorganisms and insects, human beings and animals. The natural processes that breakdown toxic chemicals in the environment have become the focus of much attention to develop safe and environmentfriendly deactivation technologies. Microbes and plants are among the most important biological agents that remove and degrade waste materials to enable their recycling in the environment. The present investigation was carried out with the aim of developing a microbial system for bioremediation of PCP polluted soils. A number of plant species were evaluated for their ability to tolerate different concentrations of pentachlorophenol (PCP) in the soil. The experiment was conducted for 30 days under pot culture conditions. The toxic effect of PCP on plants was studied by monitoring seed germination, plant growth and biomass. As the concentration of PCP was increased to 50 ppm, the inhibition of seed germination, plant growth and biomass was also increased. Although PCP had a negative effect on all plant species tested, maize and groundnut showed the maximum tolerance to PCP. Other tolerating crops included wheat, safflower, sunflower, and soybean. From the rhizosphere soil of the tolerant seedlings, as many as twenty seven PCP tolerant bacteria were isolated. From soybean, 8; sunflower, 3; safflower 8; maize 2; groundnut and wheat, 3 each isolates were made. They were screened for their PCP degradation potentials. HPLC analyses of PCP degradation revealed that the isolate MAZ-2 degraded PCP completely. The isolate MAZ-1 was the next best isolate with 90 per cent PCP degradation. These strains hold promise to be used in the bioremediation of PCP polluted soils.Keywords: Biodegradation, pentachlorophenol, rhizobacteria.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2015121 Application of Biogas Technology in Turkey
Authors: B. Demirel, T.T. Onay, O. Yenigün
Abstract:
The potential, opportunities and drawbacks of biogas technology use in Turkey are evaluated in this paper. Turkey is dependent on foreign sources of energy. Therefore, use of biogas technology would provide a safe way of waste disposal and recovery of renewable energy, particularly from a sustainable domestic source, which is less unlikely to be influenced by international price or political fluctuations. Use of biogas technology would especially meet the cooking, heating and electricity demand in rural areas and protect the environment, additionally creating new job opportunities and improving social-economical conditions.Keywords: anaerobic digestion, agricultural biogas plant, biogas, biomass, methane, waste
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3409120 Production and Purification of Monosaccharides by Hydrolysis of Sugar Cane Bagasse in an Ionic Liquid Medium
Authors: T. R. Bandara, H. Jaelani, G. J. Griffin
Abstract:
The conversion of lignocellulosic waste materials, such as sugar cane bagasse, to biofuels such as ethanol has attracted significant interest as a potential element for transforming transport fuel supplies to totally renewable sources. However, the refractory nature of the cellulosic structure of lignocellulosic materials has impeded progress on developing an economic process, whereby the cellulose component may be effectively broken down to glucose monosaccharides and then purified to allow downstream fermentation. Ionic liquid (IL) treatment of lignocellulosic biomass has been shown to disrupt the crystalline structure of cellulose thus potentially enabling the cellulose to be more readily hydrolysed to monosaccharides. Furthermore, conventional hydrolysis of lignocellulosic materials yields byproducts that are inhibitors for efficient fermentation of the monosaccharides. However, selective extraction of monosaccharides from an aqueous/IL phase into an organic phase utilizing a combination of boronic acids and quaternary amines has shown promise as a purification process. Hydrolysis of sugar cane bagasse immersed in an aqueous solution with IL (1-ethyl-3-methylimidazolium acetate) was conducted at different pH and temperature below 100 ºC. It was found that the use of a high concentration of hydrochloric acid to acidify the solution inhibited the hydrolysis of bagasse. At high pH (i.e. basic conditions), using sodium hydroxide, catalyst yields were reduced for total reducing sugars (TRS) due to the rapid degradation of the sugars formed. For purification trials, a supported liquid membrane (SLM) apparatus was constructed, whereby a synthetic solution containing xylose and glucose in an aqueous IL phase was transported across a membrane impregnated with phenyl boronic acid/Aliquat 336 to an aqueous phase. The transport rate of xylose was generally higher than that of glucose indicating that a SLM scheme may not only be useful for purifying sugars from undesirable toxic compounds, but also for fractionating sugars to improve fermentation efficiency.
Keywords: Biomass, bagasse, hydrolysis, monosaccharide, supported liquid membrane, purification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1358119 Cogeneration Unit for Small Stove
Authors: Michal Spilacek, Marian Brazdil, Otakar Stelcl, Jiri Pospisil
Abstract:
This paper shows an experimental testing of a small unit for combustion of solid fuels, such as charcoal and wood logs, that can provide electricity. One of the concepts is that the unit does not require qualified personnel for its operation. The unit itself is composed of two main parts. The design requires a heat producing stove and electricity producing thermoelectric generator. After the construction the unit was tested and the results show that the emission release is within the legislative requirements for emission production and environmental protection. That qualifies such unit for indoor application.
Keywords: Micro-cogeneration, thermoelectric generator, biomass combustion, wood stove.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2442118 Sophorolipids Production by Candida Bombicola using Synthetic Dairy Wastewater
Authors: A. Daverey, K. Pakshirajan, P. Sangeetha
Abstract:
Sophorolipids (SLs) production by the yeast Candida bombicola was studied in batch shake flasks using synthetic dairy wastewaters (SDWW) with or without any added external carbon and nitrogen sources. A maximum SLs production of 38.76 g/l was observed with the SDWW supplemented with low cost substrate of sugarcane molasses at 50 g/l and soybean oil at 50 g/l. When the SDWW was supplemented with more costly glucose, yeast extract, urea and soybean oil, the production, however, got lowered to only 29.49 g/l, but with a maximum biomass production of 17.38 g/l together with a complete utilization of the carbon sources.Keywords: Candida bombicola, dairy wastewater, fat and oil, sophorolipids.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3094117 Effect of Fermentation Time on Xanthan Gum Production from Sugar Beet Molasses
Authors: Marzieh Moosavi- Nasab, Safoora Pashangeh, Maryam Rafsanjani
Abstract:
Xanthan gum is a microbial polysaccharide of great commercial significance. The purpose of this study was to select the optimum fermentation time for xanthan gum production by Xanthomonas campestris (NRRL-B-1459) using 10% sugar beet molasses as a carbon source. The pre-heating of sugar beet molasses and the supplementation of the medium were investigated in order to improve xanthan gum production. Maximum xanthan gum production in fermentation media (9.02 g/l) was observed after 4 days shaking incubation at 25°C and 240 rpm agitation speed. A solution of 10% sucrose was used as a control medium. Results indicated that the optimum period for xanthan gum production in this condition was 4 days.Keywords: Biomass, Molasses, Xanthan gum, Xanthomonascampestris
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3735116 CO2 Abatement by Methanol Production from Flue-Gas in Methanol Plant
Authors: A. K. Sayah, Sh. Hosseinabadi, M. Farazar
Abstract:
This study investigates CO2 mitigation by methanol synthesis from flue gas CO2 and H2 generation through water electrolysis. Electrolytic hydrogen generation is viable provided that the required electrical power is supplied from renewable energy resources; whereby power generation from renewable resources is yet commercial challenging. This approach contribute to zero-emission, moreover it produce oxygen which could be used as feedstock for chemical process. At ZPC, however, oxygen would be utilized through partial oxidation of methane in autothermal reactor (ATR); this makes ease the difficulties of O2 delivery and marketing. On the other hand, onboard hydrogen storage and consumption; in methanol plant; make the project economically more competitive.Keywords: Biomass, CO2 abatement, flue gas recovery, renewable energy, sustainable development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3595115 Removal of Heavy Metals from Rainwater in Batch Reactors with Sulphate Reducing Bacteria (SRB)
Authors: Abdulsalam I. Rafida
Abstract:
The main objective of this research was to investigate the biosorption capacity for biofilms of sulphate reducing bacteria (SRB) to remove heavy metals, such as Zn, Pb and Cd from rainwater using laboratory-scale reactors containing mixed support media. Evidence showed that biosorption had contributed to removal of heavy metals including Zn, Pb and Cd in presence of SRB and SRB were also found in the aqueous samples from reactors. However, the SRB and specific families (Desulfobacteriaceae and Desulfovibrionaceae) were found mainly in the biomass samples taken from all reactors at the end of the experiment. EDX-analysis of reactor solids at end of experiment showed that heavy metals Zn, Pb and Cd had also accumulated in these precipitates.Keywords: Sulphate reducing bacteria (SRB), biosorption capacity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449114 Feasibility Study of Potential and Economic of Rice Straw VSPP Power Plant in Thailand
Authors: Sansanee Sansiribhan, Anusorn Rattanathanaophat, Chirapan Nuengchaknin
Abstract:
The potential feasibility of a 9.5 MWe capacity rice straw power plant project in Thailand was studied by evaluating the rice straw resource. The result showed that Thailand had a high rice straw biomass potential at the provincial level, especially, the provinces in the central, northeastern and western Thailand, which could feasibly develop plants. The economic feasibility of project was also investigated. The financial feasibility is also evaluated based on two important factors in the project, i.e., NPV ≥ 0 and IRR ≥ 11%. It was found that the rice straw power plant project at 9.5 MWe was financially feasible with the cost of fuel in the range of 30.6-47.7 USD/t.
Keywords: Power plant, Project feasibility, Rice straw, Thailand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3476113 Anaerobic Treatment of Produced Water
Authors: F. C. Khong, M. H. Isa, S. R. M. Kutty, S. A. Farhan
Abstract:
An experimental study of anaerobic treatment was performed by hybrid upflow anaerobic sludge blanket (HUASB) reactor to treat produced water (PW) of an onshore crude oil terminal (COD: 1597 mg/L, NH3-N: 14.7 mg/L, phenol: 13.8 mg/L, BOD5: 862 mg/L, sodium: 6240 mg/L and chloride 9530 mg/L). The produced water with high salinity and other toxic substances will inhibit the methanogens performance if there is no adaptation on biomass before anaerobic digestion. COD removal from produced water was investigated at five different dilutions of produced water and tap water (TW) without any nutrient addition and pre-treatment. The dilution ratios were 1PW:4TW, 2PW:3TW, 3PW:2TW, 4PW:1TW and 5PW:0TW. The reactor was evaluated at mesophilic operating condition (35 ± 2 °C) at 5 days of HRT for 250 days continuous feed. The average COD removals for 1PW:4TW, 2PW:3TW, 3PW:2TW, 4PW:1TW and 5PW:0TW were found to be approximately 76.1%, 73.8%, 70.3%, 46.3% and 61.82% respectively, with final average effluent COD of 123.7 mg/L, 240 mg/L, 294 mg/L, 589 mg/L and 738 mg/L, respectively.
Keywords: Anaerobic, fixed film, hybrid UASB, produced water, inhibitor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2499112 Adsorption Studies on the Removal of Pesticides(Carbofuran) using Activated Carbon from Rice Straw Agricultural Waste
Authors: Ken-Lin Chang, Jun-Hong Lin, Shui-Tein Chen
Abstract:
In this study, we used a two-stage process and potassium hydroxide (KOH) to transform waste biomass (rice straw) into activated carbon and then evaluated the adsorption capacity of the waste for removing carbofuran from an aqueous solution. Activated carbon was fast and effective for the removal of carbofuran because of its high surface area. The native and carbofuran-loaded adsorbents were characterized by elemental analysis. Different adsorption parameters, such as the initial carbofuran concentration, contact time, temperature and pH for carbofuran adsorption, were studied using a batch system. This study demonstrates that rice straw can be very effective in the adsorption of carbofuran from bodies of water.Keywords: Rice straw, Carbofuran, Activated carbon
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4127111 Measurement of Rainwater Chemical Composition in Malaysia based on Ion Chromatography Method
Authors: S.H. Khoon, G.I. Issabayeva, L.W. Lee
Abstract:
Air quality in Setapak district of Kuala Lumpur was studied by analysing the rainwater chemical composition using ion chromatography method. Twelve sampling sites were selected and 120 rainwater samples were collected in the period of 10 weeks. The results of this study were compared to the earlier published data and the evaluation showed that the NO3 - ion concentration increased from 0.41 to 3.32 ppm, while SO4 2- ion concentration increased from 0.39 to 3.26 ppm over the past two decades that is mostly due to rapid urban development of the city. However, it was found that the chemical composition for both residential and industrial areas does not have significant difference. Most of the rainwater samples showed alkaline pH (pH > 5.6). The possible factors for such alkaline pH in rainwater samples are assumed to be the marine sources, biomass burning and alkaline character of soil particles.Keywords: acid deposition; atmospheric pollution; deposition fluxes; trajectories
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2700110 Influence of Type of Burner on NOx Emission Characteristics from Combustion of Palm Methyl Ester
Authors: Nozomu Hashimoto, Hiroyuki Nishida, Yasushi Ozawa, Tetsushiro Iwatsubo, Jun Inumaru
Abstract:
Palm methyl ester (PME) is one of the alternative biomass fuels to liquid fossil fuels. To investigate the combustion characteristics of PME as an alternative fuel for gas turbines, combustion experiments using two types of burners under atmospheric pressure were performed. One of the burners has a configuration making strong non-premixed flame, whereas the other has a configuration promoting prevaporization of fuel droplets. The results show that the NOx emissions can be reduced by employing the latter burner without accumulation of soot when PME is used as a fuel. A burner configuration promoting prevaporzation of fuel droplets is recommended for PME.Keywords: Palm methyl ester (PME), biodiesel fuel, gas turbine, spray combustion, NOx emission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1904109 Dynamics of Nutrients Pool in the Baltic Sea Using the Ecosystem Model 3D-CEMBS
Authors: L. Dzierzbicka-Głowacka, M. Janecki
Abstract:
Seasonal variability of nutrients concentration in the Baltic Sea using the 3D ecosystem numerical model 3D-CEMBS has been investigated. Additionally this study shows horizontal and vertical distribution of nutrients in the Baltic Sea. Model domain is an extended Baltic Sea area divided into 600x640 horizontal grid cells. Aside from standard hydrodynamic parameters 3D-CEMBS produces modeled ecological variables such as: three types of phytoplankton, two detrital classes, dissolved oxygen and the nutrients (nitrate, ammonium, phosphate and silicate). The presented model allows prediction of parameters that describe distribution of nutrients concentration and phytoplankton biomass. 3D-CEMBS can be used to study the effect of different hydrodynamic and biogeochemical processes on distributions of these variables in a larger scale.
Keywords: ecosystem model, nutrients, Baltic Sea
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2483108 Performance of a Power Generator System Using Crude Plant Oil Blend with Diesel Fuel
Authors: Tsair-Wang Chung, Kuan-Ting Liu, Mai-Tzu Chen
Abstract:
Under the variation of crude oil price and the impact of greenhouse effect, it is urgent to find a potential alternative fuel. Among these alternative fuels, non edible plant oils are the most potential ones, because they don-t have the problem of food and cropland competitions. Among the non-edible plant oils, Jatropha oil is the most potential one. Jatropha oil is non-eatable oil and has good oil quality and low temperature performance. It has potential to become one of the most competitive biomass crude oils. The crude plant oil will be blended with diesel fuel to be tested in a power generator. The international collaboration between Taiwan and Indonesia on the production of Jatropha in Indonesia will also be presented in this study.Keywords: Jatropha, plant oil, oil blend, diesel, power generator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2735107 Characterization for Post-treatment Effect of Bagasse Ash for Silica Extraction
Authors: Patcharin Worathanakul, Wisaroot Payubnop, Akhapon Muangpet
Abstract:
Utilization of bagasse ash for silica sources is one of the most common application for agricultural wastes and valuable biomass byproducts in sugar milling. The high percentage silica content from bagasse ash was used as silica source for sodium silicate solution. Different heating temperature, time and acid treatment were studies for silica extraction. The silica was characterized using various techniques including X-ray fluorescence, X-ray diffraction, Scanning electron microscopy, and Fourier Transform Infrared Spectroscopy method,. The synthesis conditions were optimized to obtain the bagasse ash with the maximum silica content. The silica content of 91.57 percent was achieved from heating of bagasse ash at 600°C for 3 hours under oxygen feeding and HCl treatment. The result can be used as value added for bagasse ash utilization and minimize the environmental impact of disposal problems.Keywords: Bagasse ash, synthesis, silica, extraction, posttreatment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3818106 Studies of Zooplankton in Gdańsk Basin (2010-2011)
Authors: Dzierzbicka-Glowacka, A. Lemieszek, M. Figiela
Abstract:
In 2010-2011, the research on zooplankton was conducted in the southern part of the Baltic Sea to determine seasonal variability in changes occurring throughout the zooplankton in 2010 and 2011, both in the region of Gdańsk Deep, and in the western part of Gdańsk Bay. The research in the sea showed that the taxonomic composition of holoplankton in the southern part of the Baltic Sea was similar to that recorded in this region for many years. The maximum values of abundance and biomass of zooplankton both in the Deep and the Bay of Gdańsk were observed in the summer season. Copepoda dominated in the composition of zooplankton for almost the entire study period, while rotifers occurred in larger numbers only in the summer 2010 in the Gdańsk Deep as well as in May and July 2010 in the western part of Gdańsk Bay, and meroplankton – in April 2011.
Keywords: Baltic Sea, composition, Gdańsk Bay, zooplankton.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3478105 Bioethanol - A Viable Answer to India-s Surging Energy Needs
Authors: Pranav Raghav Sood
Abstract:
India is currently the second most populous nation in the world with over 1.2 billion people, growing annually at the rate of 1.5%. It is experiencing a surge in energy demands, expected to grow more than three to four times in 25 years. Most of the energy requirements are currently satisfied by the import of fossil fuels – coal, petroleum-based products and natural gas. Biofuels can satisfy these energy needs in an environmentally benign and cost effective manner while reducing dependence on import of fossil fuels, thus providing National Energy Security. Among various forms of bioenergy, bioethanol is one of the major options for India because of availability of feed stock crops. This paper presents an overview on bioethanol production and technology, steps taken by the Indian government to facilitate and bring about optimal development and utilization of indigenous biomass feedstocks for production of this biofuel.Keywords: Bioethanol, Fossil fuel, Biofuel, energy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728104 Effects of Macrophyte Vallisneria asiatica Biomasses on the Algae Community
Authors: Caixia Kang, Takahiro Kuba, Aimin Hao, Yasushi Iseri, Chunjie Li, Zhenjia Zhang
Abstract:
To improve the water quality of lakes and control algae blooms, the effects of Vallisneria asiatica which is one of aquatic plants spread over Lake Taihu, with different biomasses on the water quality and algae communities were researched. The results indicated that V. asiatica could control an excess of Microcystis spp. when the V. asiatica biomass was larger than 50g in the tank with 30L solution in the laboratory. Planktonic and epiphytic algae responded differently to V. asiatica. The presence of macrophyte V. asiatica in eutrophic waters has a positive effect on algae compositions because of different sensitivities of algae species to allelopathic substances released by macrophyte V. asiatica. That is, V. asiatica could inhibit the growth of Microcystis spp. effectively and was benefited to the diatom on the condition in the laboratory.
Keywords: Algae bloom, algae community, Microcystis spp., Vallisneria asiatica.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1862103 The Impact of Fish Cages on Water Quality in One Fish Farm in Croatia
Authors: G. Jelic Mrcelic, M. Sliskovic
Abstract:
In Croatia, the majority of cultured marine fish species are reared in net cages. The intensive production of the fish in net cages may generate the considerable amount of bio waste and change water quality especially in enclosed and semi-enclosed coastal areas. The aim of this paper is to assess the potential impact of sea bass (Dicentrarchus labrax L.) cage farm on water quality. The weak relationship between food supply and water quality parameters (nutrient content and phytoplankton biomass) was found, but significant changes in oxygen saturation was observed in the cages during the warmer period of a year especially in the morning (occasionally it dropped below 70 %). Despite of, satisfactory results of water quality parameters, it is necessary to establish comprehensive monitoring process, especially to include quality assessment of fouling communities.
Keywords: Mariculture, monitoring, fish cages, water quality parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2661102 Utilising Unground Oil Palm Ash in Producing Foamed Concrete and Its Implementation as an Interlocking Mortar-Less Block
Authors: Hanizam Awang, Mohammed Zuhear Al-Mulali
Abstract:
In this study, the possibility of using unground oil palm ash (UOPA) for producing foamed concrete is investigated. The UOPA used in this study is produced by incinerating palm oil biomass at a temperature exceeding 1000ºC. A semi-structural density of 1300kg/m3 was used with filler to binder ratio of 1.5 and preliminary water to binder ratio of 0.45. Cement was replaced by UOPA at replacement levels of 0, 25, 35, 45, 55 and 65% by weight of binder. Properties such as density, compressive strength, drying shrinkage and water absorption were investigated to the age of 90 days. The mix with a 35% of UOPA content was chosen to be used as the base material of a newly designed interlocking, mortar-less block system.
Keywords: Foamed concrete, oil palm ash, strength, interlocking block.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1360101 Optimization of NaOH Thermo-Chemical Pretreatment to Enhance Solubilisation of Organic Food Waste by Response Surface Methodology
Authors: H. Junoh, K. Palanisamy, C. H. Yip, F. L. Pua
Abstract:
This study investigates the influence of low temperature thermo-chemical pretreatment of organic food waste on performance of COD solubilisation. Both temperature and alkaline agent were reported to have effect on solubilizing any possible biomass including organic food waste. The three independent variables considered in this pretreatment were temperature (50-90oC), pretreatment time (30-120 minutes) and alkaline concentration, sodium hydroxide, NaOH (0.7-15 g/L). The maximal condition obtained were 90oC, 15 g/L NaOH for 2 hours. Solubilisation has potential in enhancing methane production by providing high amount of soluble components at early stage during anaerobic digestion.
Keywords: Food waste, pretreatments, respond surface methodology, ANOVA, anaerobic digestion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2287100 Restoration of Biological Function of Degraded Soil via Chemical Method
Authors: M. Chomczyńska
Abstract:
The studies concerned an effect of six variants of ion exchange substrate (nutrient carriers with a different potential impact on pH of soil solution) on vegetation of orchard grass during two different periods (42 and 84 days). In the pot experiment plants were grown on sand (model of degraded soil) and six mixtures of sand and 2% (v/v) additions of particular variants of ion exchange substrate (with pH ranged from 5.5 to 8.0). The study results showed that the addition of the substrate at pH=6.5 caused the highest increase in plant yield after shorter vegetation period whereas the addition of the substrate at pH=5.5 increased dry stem and root biomass of orchard grass after longer vegetation period. Thus, the ion exchange substrate at pH=6.5 can be recommended for restoration of exhausted soils when shorter vegetation period is planned; the ion exchange substrate at pH=5.5 can be used for the same purpose when longer periods of vegetative growth are considered.Keywords: ion exchanger, ion exchange substrate, soilrestoration
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 133899 Effect of Different Fertilization Methods on Soil Biological Indexes
Authors: Khosro Mohammadi
Abstract:
Fertilization plays an important role in crop growth and soil improvement. This study was conducted to determine the best fertilization system for wheat production. Experiments were arranged in a complete block design with three replications in two years. Main plots consisted of six methods of fertilization including (N1): farmyard manure; (N2): compost; (N3): chemical fertilizers; (N4): farmyard manure + compost; (N5): farmyard manure + compost + chemical fertilizers and (N6): control were arranged in sub plots. The addition of compost or farm yard manure significantly increased the soil microbial biomass carbon in comparison to the chemical fertilizer. The dehydrogenase, phosphatase and urease activities in the N3 treatment were significantly lower than in the farm yard manure and compost treatments.
Keywords: Enzyme activity, fertilization, microbial biomasscarbon, wheat.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2664