Search results for: adaptive learning rate.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5324

Search results for: adaptive learning rate.

3584 Land Suitability Prediction Modelling for Agricultural Crops Using Machine Learning Approach: A Case Study of Khuzestan Province, Iran

Authors: Saba Gachpaz, Hamid Reza Heidari

Abstract:

The sharp increase in population growth leads to more pressure on agricultural areas to satisfy the food supply. This necessitates increased resource consumption and underscores the importance of addressing sustainable agriculture development along with other environmental considerations. Land-use management is a crucial factor in obtaining optimum productivity. Machine learning is a widely used technique in the agricultural sector, from yield prediction to customer behavior. This method focuses on learning and provides patterns and correlations from our data set. In this study, nine physical control factors, namely, soil classification, electrical conductivity, normalized difference water index (NDWI), groundwater level, elevation, annual precipitation, pH of water, annual mean temperature, and slope in the alluvial plain in Khuzestan (an agricultural hotspot in Iran) are used to decide the best agricultural land use for both rainfed and irrigated agriculture for 10 different crops. For this purpose, each variable was imported into Arc GIS, and a raster layer was obtained. In the next level, by using training samples, all layers were imported into the python environment. A random forest model was applied, and the weight of each variable was specified. In the final step, results were visualized using a digital elevation model, and the importance of all factors for each one of the crops was obtained. Our results show that despite 62% of the study area being allocated to agricultural purposes, only 42.9% of these areas can be defined as a suitable class for cultivation purposes.

Keywords: Land suitability, machine learning, random forest, sustainable agriculture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 308
3583 The Cloud Systems Used in Education: Properties and Overview

Authors: Agah Tuğrul Korucu, Handan Atun

Abstract:

Diversity and usefulness of information that used in education are have increased due to development of technology. Web technologies have made enormous contributions to the distance learning system especially. Mobile systems, one of the most widely used technology in distance education, made much easier to access web technologies. Not bounding by space and time, individuals have had the opportunity to access the information on web. In addition to this, the storage of educational information and resources and accessing these information and resources is crucial for both students and teachers. Because of this importance, development and dissemination of web technologies supply ease of access to information and resources are provided by web technologies. Dynamic web technologies introduced as new technologies that enable sharing and reuse of information, resource or applications via the Internet and bring websites into expandable platforms are commonly known as Web 2.0 technologies. Cloud systems are one of the dynamic web technologies that defined as a model provides approaching the demanded information independent from time and space in appropriate circumstances and developed by NIST. One of the most important advantages of cloud systems is meeting the requirements of users directly on the web regardless of hardware, software, and dealing with install. Hence, this study aims at using cloud services in education and investigating the services provided by the cloud computing. Survey method has been used as research method. In the findings of this research the fact that cloud systems are used such studies as resource sharing, collaborative work, assignment submission and feedback, developing project in the field of education, and also, it is revealed that cloud systems have plenty of significant advantages in terms of facilitating teaching activities and the interaction between teacher, student and environment.

Keywords: Cloud systems, cloud systems in education, distance learning, e-learning, integration of information technologies, online learning environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1024
3582 Application of MADM in Identifying the Transmission Rate of Dengue fever: A Case Study of Shah Alam, Malaysia

Authors: Nuraini Yusoff, Harun Budin, Salemah Ismail

Abstract:

Identifying parameters in an epidemic model is one of the important aspect of modeling. In this paper, we suggest a method to identify the transmission rate by using the multistage Adomian decomposition method. As a case study, we use the data of the reported dengue fever cases in the city of Shah Alam, Malaysia. The result obtained fairly represents the actual situation. However, in the SIR model, this method serves as an alternative in parameter identification and enables us to make necessary analysis for a smaller interval.

Keywords: dengue fever, multistage Adomian decomposition method, Shah Alam, SIR model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2197
3581 Slow Pyrolysis of Biowastes: Environmental, Exergetic, and Energetic Assessment

Authors: Daniela Zalazar-Garcia, Erick Torres, Germán Mazza

Abstract:

Slow pyrolysis of a pellet of pistachio waste was studied using a lab-scale stainless-steel reactor. Experiments were conducted at different heating rates (5, 10, and 15 K/min). A 3-E (environmental, exergetic, and energetic) analysis for the processing of 20 kg/h of biowaste was carried out. Experimental results showed that biochar and gas yields decreased with an increase in the heating rate (43% to 36% and 28% to 24%, respectively), while the bio-oil yield increased (29% to 40%). Finally, from the 3-E analysis and the experimental results, it can be suggested that an increase in the heating rate resulted in a higher pyrolysis exergetic efficiency (70%), due to an increase of the bio-oil yield with high-energy content.

Keywords: 3E assessment, biowaste pellet, life cycle assessment, slow pyrolysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 524
3580 Hybrid Anomaly Detection Using Decision Tree and Support Vector Machine

Authors: Elham Serkani, Hossein Gharaee Garakani, Naser Mohammadzadeh, Elaheh Vaezpour

Abstract:

Intrusion detection systems (IDS) are the main components of network security. These systems analyze the network events for intrusion detection. The design of an IDS is through the training of normal traffic data or attack. The methods of machine learning are the best ways to design IDSs. In the method presented in this article, the pruning algorithm of C5.0 decision tree is being used to reduce the features of traffic data used and training IDS by the least square vector algorithm (LS-SVM). Then, the remaining features are arranged according to the predictor importance criterion. The least important features are eliminated in the order. The remaining features of this stage, which have created the highest level of accuracy in LS-SVM, are selected as the final features. The features obtained, compared to other similar articles which have examined the selected features in the least squared support vector machine model, are better in the accuracy, true positive rate, and false positive. The results are tested by the UNSW-NB15 dataset.

Keywords: Intrusion detection system, decision tree, support vector machine, feature selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1247
3579 Currency Exchange Rate Forecasts Using Quantile Regression

Authors: Yuzhi Cai

Abstract:

In this paper, we discuss a Bayesian approach to quantile autoregressive (QAR) time series model estimation and forecasting. Together with a combining forecasts technique, we then predict USD to GBP currency exchange rates. Combined forecasts contain all the information captured by the fitted QAR models at different quantile levels and are therefore better than those obtained from individual models. Our results show that an unequally weighted combining method performs better than other forecasting methodology. We found that a median AR model can perform well in point forecasting when the predictive density functions are symmetric. However, in practice, using the median AR model alone may involve the loss of information about the data captured by other QAR models. We recommend that combined forecasts should be used whenever possible.

Keywords: Exchange rate, quantile regression, combining forecasts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783
3578 An iTunes U App for Development of Metacognition Skills Delivered in the Enrichment Program Offered to Gifted Students at the Secondary Level

Authors: Maha Awad M. Almuttairi

Abstract:

This research aimed to measure the impact of the use of a mobile learning (iTunes U) app for the development of metacognition skills delivered in the enrichment program offered to gifted students at the secondary level in Jeddah. The author targeted a group of students on an experimental scale to evaluate the achievement. The research sample consisted of a group of 38 gifted female students. The scale of evaluation of the metacognition skills used to measure the performance of students in the enrichment program was as follows: Satisfaction scale for the assessment of the technique used and the final product form after completion of the program. Appropriate statistical treatment used includes Paired Samples T-Test Cronbach’s alpha formula and eta squared formula. It was concluded in the results the difference of α≤ 0.05, which means the performance of students in the skills of metacognition in favor of using iTunes U. In light of the conclusion of the experiment, a number of recommendations and suggestions were present; the most important benefit of mobile learning applications is to provide enrichment programs for gifted students in the Kingdom of Saudi Arabia, as well as conducting further research on mobile learning and gifted student teaching.

Keywords: Enrichment program, gifted students, metacognition skills.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 725
3577 An Investigation into the Role of School Social Workers and Psychologists with Children Experiencing Special Educational Needs in Libya

Authors: Abdelbasit Gadour

Abstract:

This study explores the function of schools’ psychosocial services within Libyan mainstream schools in relation to children’s special educational needs (SEN). This is with the aim to examine the role of school social workers and psychologists in the assessment procedure of children with SEN. A semi-structured interview was used in this study, with 21 professionals working in the schools’ psychosocial services, of whom 13 were school social workers (SSWs) and eight were school psychologists (SPs). The results of the interviews with SSWs and SPs provided insights into how SEN children are identified, assessed, and dealt with by school professionals. It appears from the results that what constitutes a problem has not changed significantly, and the link between learning difficulties and behavioural difficulties is also evident from this study. Children with behaviour difficulties are more likely to be referred to school psychosocial services than children with learning difficulties. Yet, it is not clear from the interviews with SSWs and SPs whether children are excluded merely because of their behaviour problems. Instead, they would surely be expelled from the school if they failed academically. Furthermore, the interviews with SSWs and SPs yield a rather unusual source accountable for children’s SEN; school-related difficulties were a major factor in which almost all participants attributed children’s learning and behaviour problems to teachers’ deficiencies, followed by school lack of resources.

Keywords: Special education, school, social workers, psychologist.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 704
3576 Female Work Force Participation and Women Empowerment in Haryana

Authors: Dinabandhu Mahata, Amit Kumar, Ambarish Kumar Rai

Abstract:

India is known as a country of diversity regarding the social, cultural and wide geographical variations. In the north and north-west part of the country, the strong patriarchal norms and the male dominance based social structure are the important constructs. Patriarchal social setup adversely affects the women’s social and economic wellbeing and hence in that social structure women are considered as second level citizen. Work participation rate of women has directly linked to the development of society or household. Haryana is one of the developed states of India, still being ahead in economic prosperity, much lagged behind in gender-based equality and male dominance in all dimensions of life. The position of women in the Haryana is no better than the other states of India. Haryana state has the great difference among the male-female sex ratio which is a serious concern for social science research as a demographic problem for the state. Now women are requiring for their holistic empowerment and that will take care of them for an enabling process that must lead to their economic as well as social transformation. Hence, the objective of the paper is to address the role of sex ratio, women literacy and her work participation in the process of their empowerment with special attention to the gender perspective. The study used the data from Census of India from 1991 to 2011. This paper will examine the regional disparity of sex ratio, literacy rate and female work participation and the improvement of empowerment of women in the state of Haryana. This paper will suggest the idea for focusing much intensively on the issues of women empowerment through enhancement of her education, workforce participation and social participation with people participation and holistic approach.

Keywords: Sex ratio, literacy rate, workforce participation rate, women empowerment, Haryana.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2655
3575 Integrated Cultivation Technique for Microbial Lipid Production by Photosynthetic Microalgae and Locally Oleaginous Yeast

Authors: Mutiyaporn Puangbut, Ratanaporn Leesing

Abstract:

The objective of this research is to study of microbial lipid production by locally photosynthetic microalgae and oleaginous yeast via integrated cultivation technique using CO2 emissions from yeast fermentation. A maximum specific growth rate of Chlorella sp. KKU-S2 of 0.284 (1/d) was obtained under an integrated cultivation and a maximum lipid yield of 1.339g/L was found after cultivation for 5 days, while 0.969g/L of lipid yield was obtained after day 6 of cultivation time by using CO2 from air. A high value of volumetric lipid production rate (QP, 0.223 g/L/d), specific product yield (YP/X, 0.194), volumetric cell mass production rate (QX, 1.153 g/L/d) were found by using ambient air CO2 coupled with CO2 emissions from yeast fermentation. Overall lipid yield of 8.33 g/L was obtained (1.339 g/L of Chlorella sp. KKU-S2 and 7.06g/L of T. maleeae Y30) while low lipid yield of 0.969g/L was found using non-integrated cultivation technique. To our knowledge this is the unique report about the lipid production from locally microalgae Chlorella sp. KKU-S2 and yeast T. maleeae Y30 in an integrated technique to improve the biomass and lipid yield by using CO2 emissions from yeast fermentation.

Keywords: Microbial lipid, Chlorella sp. KKU-S2, Torulaspora maleeae Y30, oleaginous yeast, biodiesel, CO2 emissions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2263
3574 Design Method for Knowledge Base Systems in Education Using COKB-ONT

Authors: Nhon Do, Tuyen Trong Tran, Phan Hoai Truong

Abstract:

Nowadays e-Learning is more popular, in Vietnam especially. In e-learning, materials for studying are very important. It is necessary to design the knowledge base systems and expert systems which support for searching, querying, solving of problems. The ontology, which was called Computational Object Knowledge Base Ontology (COB-ONT), is a useful tool for designing knowledge base systems in practice. In this paper, a design method for knowledge base systems in education using COKB-ONT will be presented. We also present the design of a knowledge base system that supports studying knowledge and solving problems in higher mathematics.

Keywords: artificial intelligence, knowledge base systems, ontology, educational software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053
3573 Prospective English Language Teachers’ Views on Translation Use in Foreign Language Teaching

Authors: Ozlem Bozok, Yusuf Bozok

Abstract:

The importance of using mother tongue and translation in foreign language classrooms cannot be ignored and translation can be utilized as a method in English Language Teaching courses. There exist researches advocating or objecting to the use of translation in foreign language learning but they all have a point in common: Translation should be used as an aid to teaching, not an end in itself. In this research, prospective English language teachers’ opinions about translation use and use of mother tongue in foreign language teaching are investigated and according to the findings, some explanations and recommendations are made.

Keywords: Exposure to foreign language, translation, foreign language learning, prospective teachers’ opinions, use of L1.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2473
3572 The Effect of Acute Toxicity and Thyroid Hormone Treatments on Hormonal Changes during Embryogenesis of Acipenser persicus

Authors: Samaneh Nazeri, Bagher Mojazi Amiri, Hamid Farahmand

Abstract:

Production of high quality fish eggs with reasonable hatching rate makes a success in aquaculture industries. It is influenced by the environmental stimulators and inhibitors. Diazinon is a widely-used pesticide in Golestan province (Southern Caspian Sea, North of Iran) which is washed to the aquatic environment (3 mg/L in the river). It is little known about the effect of this pesticide on the embryogenesis of sturgeon fish, the valuable species of the Caspian Sea. Hormonal content of the egg is an important factor to guaranty the successful passes of embryonic stages. In this study, the fate of Persian sturgeon embryo to 24, 48, 72, and 96-hours exposure of diazinon (LC50 dose) was tested. Also, the effect of thyroid hormones (T3 and T4) on these embryos was tested concurrently or separately with diazinon LC 50 dose. Fertilized eggs are exposed to T3 (low dose: 1 ng/ml, high dose: 10 ng/ml), T4 (low dose: 1 ng/ml, high dose: 10 ng/ml). Six eggs were randomly selected from each treatment (with three replicates) in five developmental stages (two cell- division, neural, heart present, heart beaten, and hatched larvae). The possibility of changing T3, T4, and cortisol contents of the embryos were determined in all treated groups and in every mentioned embryonic stage. The hatching rate in treated groups was assayed at the end of the embryogenesis to clarify the effect of thyroid hormones and diazinon. The results indicated significant differences in thyroid hormone contents, but no significant differences were recognized in cortisol levels at various early life stages of embryos. There was also significant difference in thyroid hormones in (T3, T4) + diazinon treated embryos (P˂0.05), while no significant difference between control and treatments in cortisol levels was observed. The highest hatching rate was recorded in HT3 treatment, while the lowest hatching rate was recorded for diazinon LC50 treatment. The result confirmed that Persian sturgeon embryo is less sensitive to diazinon compared to teleost embryos, and thyroid hormones may increase hatching rate even in the presence of diazinon.

Keywords: Persian sturgeon, diazinon, thyroid hormones, cortisol, embryo.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1297
3571 GMDH Modeling Based on Polynomial Spline Estimation and Its Applications

Authors: LI qiu-min, TIAN yi-xiang, ZHANG gao-xun

Abstract:

GMDH algorithm can well describe the internal structure of objects. In the process of modeling, automatic screening of model structure and variables ensure the convergence rate.This paper studied a new GMDH model based on polynomial spline  stimation. The polynomial spline function was used to instead of the transfer function of GMDH to characterize the relationship between the input variables and output variables. It has proved that the algorithm has the optimal convergence rate under some conditions. The empirical results show that the algorithm can well forecast Consumer Price Index (CPI).

Keywords: spline, GMDH, nonparametric, bias, forecast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2143
3570 An Efficient Approach for Shear Behavior Definition of Plant Stalk

Authors: M. R. Kamandar, J. Massah

Abstract:

The information of the impact cutting behavior of plants stalk plays an important role in the design and fabrication of plants cutting equipment. It is difficult to investigate a theoretical method for defining cutting properties of plants stalks because the cutting process is complex. Thus, it is necessary to set up an experimental approach to determine cutting parameters for a single stalk. To measure the shear force, shear energy and shear strength of plant stalk, a special impact cutting tester was fabricated. It was similar to an Izod impact cutting tester for metals but a cutting blade and data acquisition system were attached to the end of pendulum's arm. The apparatus was included four strain gages and a digital indicator to show the real-time cutting force of plant stalk. To measure the shear force and also testing the apparatus, two plants’ stalks, like buxus and privet, were selected. The samples (buxus and privet stalks) were cut under impact cutting process at four loading rates 1, 2, 3 and 4 m.s-1 and three internodes fifth, tenth and fifteenth by the apparatus. At buxus cutting analysis: the minimum value of cutting energy was obtained at fifth internode and loading rate 4 m.s-1 and the maximum value of shear energy was obtained at fifteenth internode and loading rate 1 m.s-1. At privet cutting analysis: the minimum value of shear consumption energy was obtained at fifth internode and loading rate: 4 m.s-1 and the maximum value of shear energy was obtained at fifteenth internode and loading rate: 1 m.s-1. The statistical analysis at both plants showed that the increase of impact cutting speed would decrease the shear consumption energy and shear strength. In two scenarios, the results showed that with increase the cutting speed, shear force would decrease.

Keywords: Buxus, privet, impact cutting, shear energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 841
3569 Using Probe Person Data for Travel Mode Detection

Authors: Muhammad Awais Shafique, Eiji Hato, Hideki Yaginuma

Abstract:

Recently GPS data is used in a lot of studies to automatically reconstruct travel patterns for trip survey. The aim is to minimize the use of questionnaire surveys and travel diaries so as to reduce their negative effects. In this paper data acquired from GPS and accelerometer embedded in smart phones is utilized to predict the mode of transportation used by the phone carrier. For prediction, Support Vector Machine (SVM) and Adaptive boosting (AdaBoost) are employed. Moreover a unique method to improve the prediction results from these algorithms is also proposed. Results suggest that the prediction accuracy of AdaBoost after improvement is relatively better than the rest.

Keywords: Accelerometer, AdaBoost, GPS, Mode Prediction, Support vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2456
3568 Effect of Heat Treatment on the Phase Formation of La0.6Sr0.4CoO3-α

Authors: A. A. Samat, N. A. Abdullah, M. A. M. Ishak, N. Osman

Abstract:

Powder of La0.6Sr0.4CoO3-α (LSCO) was synthesized by a combined citrate-EDTA method. The as-synthesized LSCO powder was calcined, respectively at temperatures of 800, 900 and 1000 °C with different heating/cooling rates which are 2, 5, 10 and 15 °C min-1. The effects of heat treatments on the phase formation of perovskite phase of LSCO were investigated by powder X-ray diffraction (XRD). The XRD patterns revealed that the rate of 5 °C min-1 is the optimum heating/cooling rate to obtain a single perovskite phase of LSCO with calcination temperature of 800 °C. This result was confirmed by a thermogravimetric analysis (TGA) as it showed a complete decomposition of intermediate compounds to form oxide material was also observed at 800 °C.

Keywords: La0.6Sr0.4CoO3-α, heat treatment, perovskite-type oxide, XRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4411
3567 Convergence Analysis of Training Two-Hidden-Layer Partially Over-Parameterized ReLU Networks via Gradient Descent

Authors: Zhifeng Kong

Abstract:

Over-parameterized neural networks have attracted a great deal of attention in recent deep learning theory research, as they challenge the classic perspective of over-fitting when the model has excessive parameters and have gained empirical success in various settings. While a number of theoretical works have been presented to demystify properties of such models, the convergence properties of such models are still far from being thoroughly understood. In this work, we study the convergence properties of training two-hidden-layer partially over-parameterized fully connected networks with the Rectified Linear Unit activation via gradient descent. To our knowledge, this is the first theoretical work to understand convergence properties of deep over-parameterized networks without the equally-wide-hidden-layer assumption and other unrealistic assumptions. We provide a probabilistic lower bound of the widths of hidden layers and proved linear convergence rate of gradient descent. We also conducted experiments on synthetic and real-world datasets to validate our theory.

Keywords: Over-parameterization, Rectified Linear Units (ReLU), convergence, gradient descent, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 914
3566 Automatic Segmentation of the Clean Speech Signal

Authors: M. A. Ben Messaoud, A. Bouzid, N. Ellouze

Abstract:

Speech Segmentation is the measure of the change point detection for partitioning an input speech signal into regions each of which accords to only one speaker. In this paper, we apply two features based on multi-scale product (MP) of the clean speech, namely the spectral centroid of MP, and the zero crossings rate of MP. We focus on multi-scale product analysis as an important tool for segmentation extraction. The MP is based on making the product of the speech wavelet transform coefficients (WTC). We have estimated our method on the Keele database. The results show the effectiveness of our method. It indicates that the two features can find word boundaries, and extracted the segments of the clean speech.

Keywords: Speech segmentation, Multi-scale product, Spectral centroid, Zero crossings rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2511
3565 Application of Granular Computing Paradigm in Knowledge Induction

Authors: Iftikhar U. Sikder

Abstract:

This paper illustrates an application of granular computing approach, namely rough set theory in data mining. The paper outlines the formalism of granular computing and elucidates the mathematical underpinning of rough set theory, which has been widely used by the data mining and the machine learning community. A real-world application is illustrated, and the classification performance is compared with other contending machine learning algorithms. The predictive performance of the rough set rule induction model shows comparative success with respect to other contending algorithms.

Keywords: Concept approximation, granular computing, reducts, rough set theory, rule induction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 844
3564 Amino Acid Coated Silver Nanoparticles: A Green Catalyst for Methylene Blue Reduction

Authors: Abhishek Chandra, Man Singh

Abstract:

Highly stable and homogeneously dispersed amino acid coated silver nanoparticles (ANP) of ≈ 10 nm diameter, ranging from 420 to 430 nm are prepared on AgNO3 solution addition to gum of Azadirachta indica solution at 373.15 K. The amino acids were selected based on their polarity. The synthesized nanoparticles were characterized by UV-Vis, FTIR spectroscopy, HR-TEM, XRD, SEM and 1H-NMR. The coated nanoparticles were used as catalyst for the reduction of methylene blue dye in presence of Sn(II) in aqueous, anionic and cationic micellar media. The rate of reduction of dye was determined by measuring the absorbance at 660 nm, spectrophotometrically and followed the order: Kcationic > Kanionic > Kwater. After 12 min and in absence of the ANP, only 2%, 3% and 6% of the dye reduction was completed in aqueous, anionic and cationic micellar media respectively while, in presence of ANP coated by polar neutral amino acid with non-polar -R group, the reduction completed to 84%, 95% and 98% respectively. The ANP coated with polar neutral amino acid having non-polar -R group, increased the rate of reduction of the dye by 94, 3205 and 6370 folds in aqueous, anionic and cationic micellar media respectively. Also, the rate of reduction of the dye increased by three folds when the micellar media was changed from anionic to cationic when the ANP is coated by a polar neutral amino acid having a non-polar -R group.

Keywords: Silver nanoparticle, surfactant, methylene blue, amino acid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2534
3563 An Optimal Control Method for Reconstruction of Topography in Dam-Break Flows

Authors: Alia Alghosoun, Nabil El Moçayd, Mohammed Seaid

Abstract:

Modeling dam-break flows over non-flat beds requires an accurate representation of the topography which is the main source of uncertainty in the model. Therefore, developing robust and accurate techniques for reconstructing topography in this class of problems would reduce the uncertainty in the flow system. In many hydraulic applications, experimental techniques have been widely used to measure the bed topography. In practice, experimental work in hydraulics may be very demanding in both time and cost. Meanwhile, computational hydraulics have served as an alternative for laboratory and field experiments. Unlike the forward problem, the inverse problem is used to identify the bed parameters from the given experimental data. In this case, the shallow water equations used for modeling the hydraulics need to be rearranged in a way that the model parameters can be evaluated from measured data. However, this approach is not always possible and it suffers from stability restrictions. In the present work, we propose an adaptive optimal control technique to numerically identify the underlying bed topography from a given set of free-surface observation data. In this approach, a minimization function is defined to iteratively determine the model parameters. The proposed technique can be interpreted as a fractional-stage scheme. In the first stage, the forward problem is solved to determine the measurable parameters from known data. In the second stage, the adaptive control Ensemble Kalman Filter is implemented to combine the optimality of observation data in order to obtain the accurate estimation of the topography. The main features of this method are on one hand, the ability to solve for different complex geometries with no need for any rearrangements in the original model to rewrite it in an explicit form. On the other hand, its achievement of strong stability for simulations of flows in different regimes containing shocks or discontinuities over any geometry. Numerical results are presented for a dam-break flow problem over non-flat bed using different solvers for the shallow water equations. The robustness of the proposed method is investigated using different numbers of loops, sensitivity parameters, initial samples and location of observations. The obtained results demonstrate high reliability and accuracy of the proposed techniques.

Keywords: Optimal control, ensemble Kalman Filter, topography reconstruction, data assimilation, shallow water equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 686
3562 A Deep-Learning Based Prediction of Pancreatic Adenocarcinoma with Electronic Health Records from the State of Maine

Authors: Xiaodong Li, Peng Gao, Chao-Jung Huang, Shiying Hao, Xuefeng B. Ling, Yongxia Han, Yaqi Zhang, Le Zheng, Chengyin Ye, Modi Liu, Minjie Xia, Changlin Fu, Bo Jin, Karl G. Sylvester, Eric Widen

Abstract:

Predicting the risk of Pancreatic Adenocarcinoma (PA) in advance can benefit the quality of care and potentially reduce population mortality and morbidity. The aim of this study was to develop and prospectively validate a risk prediction model to identify patients at risk of new incident PA as early as 3 months before the onset of PA in a statewide, general population in Maine. The PA prediction model was developed using Deep Neural Networks, a deep learning algorithm, with a 2-year electronic-health-record (EHR) cohort. Prospective results showed that our model identified 54.35% of all inpatient episodes of PA, and 91.20% of all PA that required subsequent chemoradiotherapy, with a lead-time of up to 3 months and a true alert of 67.62%. The risk assessment tool has attained an improved discriminative ability. It can be immediately deployed to the health system to provide automatic early warnings to adults at risk of PA. It has potential to identify personalized risk factors to facilitate customized PA interventions.

Keywords: Cancer prediction, deep learning, electronic health records, pancreatic adenocarcinoma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 869
3561 Efficient Web-Learning Collision Detection Tool on Five-Axis Machine

Authors: Chia-Jung Chen, Rong-Shine Lin, Rong-Guey Chang

Abstract:

As networking has become popular, Web-learning tends to be a trend while designing a tool. Moreover, five-axis machining has been widely used in industry recently; however, it has potential axial table colliding problems. Thus this paper aims at proposing an efficient web-learning collision detection tool on five-axis machining. However, collision detection consumes heavy resource that few devices can support, thus this research uses a systematic approach based on web knowledge to detect collision. The methodologies include the kinematics analyses for five-axis motions, separating axis method for collision detection, and computer simulation for verification. The machine structure is modeled as STL format in CAD software. The input to the detection system is the g-code part program, which describes the tool motions to produce the part surface. This research produced a simulation program with C programming language and demonstrated a five-axis machining example with collision detection on web site. The system simulates the five-axis CNC motion for tool trajectory and detects for any collisions according to the input g-codes and also supports high-performance web service benefiting from C. The result shows that our method improves 4.5 time of computational efficiency, comparing to the conventional detection method.

Keywords: Collision detection, Five-axis machining, Separating axis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2186
3560 Food Security in Nigeria: An Examination of Food Availability and Accessibility in Nigeria

Authors: Chimaobi Valentine Okolo, Chizoba Obidigbo

Abstract:

As a basic physiology need, threat to sufficient food production is threat to human survival. Food security has been an issue that has gained global concern. This paper looks at the food security in Nigeria by assessing the availability of food and accessibility of the available food. The paper employed multiple linear regression technique and graphic trends of growth rates of relevant variables to show the situation of food security in Nigeria. Results of the tests revealed that population growth rate was higher than the growth rate of food availability in Nigeria for the earlier period of the study. Commercial bank credit to agricultural sector, foreign exchange utilization for food and the Agricultural Credit Guarantee Scheme Fund (ACGSF) contributed significantly to food availability in Nigeria. Food prices grew at a faster rate than the average income level, making it difficult to access sufficient food. It implies that prior to the year 2012; there was insufficient food to feed the Nigerian populace. However, continued credit to the food and agricultural sector will ensure sustained and sufficient production of food in Nigeria. Microfinance banks should make sufficient credit available to smallholder farmer. Government should further control and subsidize the rising price of food to make it more accessible by the people.

Keywords: Food security, food availability and food accessibility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6157
3559 Comparison of BER Performances for Conventional and Non-Conventional Mapping Schemes Used in OFDM

Authors: Riddhi Parmar, Shilpi Gupta, Upena Dalal

Abstract:

Orthogonal Frequency Division Multiplexing (OFDM) is one of the techniques for high speed data rate communication with main consideration for 4G and 5G systems. In OFDM, there are several mapping schemes which provide a way of parallel transmission. In this paper, comparisons of mapping schemes used by some standards have been made and also has been discussed about the performance of the non-conventional modulation technique. The Comparisons of Bit Error Rate (BER) performances for conventional and non-conventional modulation schemes have been done using MATLAB software. Mentioned schemes used in OFDM system can be selected on the basis of the requirement of power or spectrum efficiency and BER analysis.

Keywords: BER, π/4 differential quadrature phase shift keying (Pi/4 DQPSK), OFDM, phase shift keying, quadrature phase shift keying.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3130
3558 Mediation in Turkish Health Law for Healthcare Disputes

Authors: V. Durmus, M. Uydaci

Abstract:

In order to prevent overburdened courts, rising costs of litigation, and lengthy trial resolutions, the Law on Mediation for Civil Disputes was enacted, which was aimed at defining the procedure and guiding principles for dispute resolutions under Civil Law, in 2012. This “Mediation Code” also applies for civil healthcare disputes in Turkey. Aside from mediation, reconciliation, governed by Articles 253-255 of Criminal Procedure Law, has emerged as an alternative way to resolve criminal medical disputes, but the difference between mediation and conciliation is mostly procedural. This article deals with mediation in Turkish health law and aspect of medical malpractice mediation in Turkey. In addition, this study examines the issue of mediation in health law from both a legal and normative point of view, including codes of mediation which regulate both the structural and professional practice of mediation providers. As a result, although there is not official record about success rate of medical malpractice litigations and malpractice mediation in Turkey, it is widely accepted that the success rate for medical malpractice cases is relatively low compared to other personal injury cases even if it is generally considered that medical malpractice case filings have gradually increased recently. According to the Justice Ministry’s Department of Mediation in Turkey, 719 civil disputes have referred to mediators since 2013 (when the first mediation law came into force) with a 98% success rate.

Keywords: Malpractice mediation, medical disputes, reconciliation, health litigation, Turkish Health Law.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492
3557 In Cognitive Radio the Analysis of Bit-Error- Rate (BER) by using PSO Algorithm

Authors: Shrikrishan Yadav, Akhilesh Saini, Krishna Chandra Roy

Abstract:

The electromagnetic spectrum is a natural resource and hence well-organized usage of the limited natural resources is the necessities for better communication. The present static frequency allocation schemes cannot accommodate demands of the rapidly increasing number of higher data rate services. Therefore, dynamic usage of the spectrum must be distinguished from the static usage to increase the availability of frequency spectrum. Cognitive radio is not a single piece of apparatus but it is a technology that can incorporate components spread across a network. It offers great promise for improving system efficiency, spectrum utilization, more effective applications, reduction in interference and reduced complexity of usage for users. Cognitive radio is aware of its environmental, internal state, and location, and autonomously adjusts its operations to achieve designed objectives. It first senses its spectral environment over a wide frequency band, and then adapts the parameters to maximize spectrum efficiency with high performance. This paper only focuses on the analysis of Bit-Error-Rate in cognitive radio by using Particle Swarm Optimization Algorithm. It is theoretically as well as practically analyzed and interpreted in the sense of advantages and drawbacks and how BER affects the efficiency and performance of the communication system.

Keywords: BER, Cognitive Radio, Environmental Parameters, PSO, Radio spectrum, Transmission Parameters

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2162
3556 Comparison of Machine Learning Techniques for Single Imputation on Audiograms

Authors: Sarah Beaver, Renee Bryce

Abstract:

Audiograms detect hearing impairment, but missing values pose problems. This work explores imputations in an attempt to improve accuracy. This work implements Linear Regression, Lasso, Linear Support Vector Regression, Bayesian Ridge, K Nearest Neighbors (KNN), and Random Forest machine learning techniques to impute audiogram frequencies ranging from 125 Hz to 8000 Hz. The data contain patients who had or were candidates for cochlear implants. Accuracy is compared across two different Nested Cross-Validation k values. Over 4000 audiograms were used from 800 unique patients. Additionally, training on data combines and compares left and right ear audiograms versus single ear side audiograms. The accuracy achieved using Root Mean Square Error (RMSE) values for the best models for Random Forest ranges from 4.74 to 6.37. The R2 values for the best models for Random Forest ranges from .91 to .96. The accuracy achieved using RMSE values for the best models for KNN ranges from 5.00 to 7.72. The R2 values for the best models for KNN ranges from .89 to .95. The best imputation models received R2 between .89 to .96 and RMSE values less than 8dB. We also show that the accuracy of classification predictive models performed better with our imputation models versus constant imputations by a two percent increase.

Keywords: Machine Learning, audiograms, data imputations, single imputations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188
3555 Time and Frequency Domain Analysis of Heart Rate Variability and their Correlations in Diabetes Mellitus

Authors: P. T. Ahamed Seyd, V. I. Thajudin Ahamed, Jeevamma Jacob, Paul Joseph K

Abstract:

Diabetes mellitus (DM) is frequently characterized by autonomic nervous dysfunction. Analysis of heart rate variability (HRV) has become a popular noninvasive tool for assessing the activities of autonomic nervous system (ANS). In this paper, changes in ANS activity are quantified by means of frequency and time domain analysis of R-R interval variability. Electrocardiograms (ECG) of 16 patients suffering from DM and of 16 healthy volunteers were recorded. Frequency domain analysis of extracted normal to normal interval (NN interval) data indicates significant difference in very low frequency (VLF) power, low frequency (LF) power and high frequency (HF) power, between the DM patients and control group. Time domain measures, standard deviation of NN interval (SDNN), root mean square of successive NN interval differences (RMSSD), successive NN intervals differing more than 50 ms (NN50 Count), percentage value of NN50 count (pNN50), HRV triangular index and triangular interpolation of NN intervals (TINN) also show significant difference between the DM patients and control group.

Keywords: Autonomic nervous system, diabetes mellitus, frequency domain and time domain analysis, heart rate variability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3122